mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-01-30 06:12:04 +00:00
[v1] add cli sampler (#9721)
This commit is contained in:
@@ -1,173 +0,0 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Integration tests for DataLoader with different combinations of packing and dynamic batching.
|
||||
|
||||
Tests the 4 scenarios:
|
||||
a) non pack + non dynamic.
|
||||
b) non pack + dynamic.
|
||||
c) pack + non dynamic.
|
||||
d) pack + dynamic.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader as TorchDataLoader
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.v1.config.data_args import DataArguments
|
||||
from llamafactory.v1.core.data_engine import DataEngine
|
||||
from llamafactory.v1.core.trainer_utils.data_collator import (
|
||||
DefaultCollator,
|
||||
)
|
||||
from llamafactory.v1.core.trainer_utils.data_loader import DataLoader
|
||||
from llamafactory.v1.plugins.data_plugins.template import QwenTemplate
|
||||
from llamafactory.v1.utils.batching_queue import TextBatchingQueue
|
||||
|
||||
|
||||
class TensorDataset(Dataset):
|
||||
"""Wrapper dataset that converts DataEngine samples to tensor format."""
|
||||
|
||||
def __init__(self, data_engine: DataEngine, processor, template, max_samples: int = None):
|
||||
self.data_engine = data_engine
|
||||
self.processor = processor
|
||||
self.template = template
|
||||
self.max_samples = max_samples or len(data_engine)
|
||||
self.tokenizer = processor.tokenizer if hasattr(processor, "tokenizer") else processor
|
||||
|
||||
def __len__(self):
|
||||
return min(self.max_samples, len(self.data_engine))
|
||||
|
||||
def __getitem__(self, idx):
|
||||
# Get sample from DataEngine
|
||||
sample = self.data_engine[idx]
|
||||
|
||||
# Extract messages from sample
|
||||
# DataEngine returns samples with format like {"messages": [...], ...}
|
||||
# For llamafactory/v1-sft-demo, the format should have "messages" field
|
||||
messages = None
|
||||
if "messages" in sample:
|
||||
messages = sample["messages"]
|
||||
elif "conversations" in sample:
|
||||
messages = sample["conversations"]
|
||||
elif "conversation" in sample:
|
||||
messages = sample["conversation"]
|
||||
else:
|
||||
# Try to find message-like fields (skip _dataset_name)
|
||||
for key, value in sample.items():
|
||||
if key.startswith("_"):
|
||||
continue
|
||||
if isinstance(value, list) and len(value) > 0:
|
||||
# Check if it looks like a message list
|
||||
if isinstance(value[0], dict) and "role" in value[0]:
|
||||
messages = value
|
||||
break
|
||||
|
||||
if messages is None:
|
||||
raise ValueError(f"Could not find messages in sample: {list(sample.keys())}")
|
||||
|
||||
# Encode messages using template
|
||||
encoded = self.template.encode_messages(self.tokenizer, messages)
|
||||
|
||||
# Convert to tensors
|
||||
return {
|
||||
"input_ids": torch.tensor(encoded["input_ids"], dtype=torch.long),
|
||||
"attention_mask": torch.tensor(encoded["attention_mask"], dtype=torch.long),
|
||||
"labels": torch.tensor(encoded["labels"], dtype=torch.long),
|
||||
}
|
||||
|
||||
|
||||
def create_real_dataset(max_samples: int = 20, batch_size: int = 4):
|
||||
"""Create a real dataset using DataEngine."""
|
||||
data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
|
||||
data_engine = DataEngine(data_args)
|
||||
|
||||
# Create processor and template
|
||||
processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
template = QwenTemplate()
|
||||
|
||||
# Create tensor dataset
|
||||
raw_data_dataset = TensorDataset(data_engine, processor, template, max_samples=max_samples)
|
||||
|
||||
# Create torch DataLoader
|
||||
torch_dataloader = TorchDataLoader(
|
||||
raw_data_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
collate_fn=lambda x: x,
|
||||
)
|
||||
|
||||
return torch_dataloader, processor, template
|
||||
|
||||
|
||||
class TestDataLoaderNonPackNonDynamic:
|
||||
"""Test case a) non pack + non dynamic."""
|
||||
|
||||
def test_basic_functionality(self):
|
||||
"""Test DataLoader without packing and without dynamic batching."""
|
||||
# Create real dataset
|
||||
torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
|
||||
|
||||
# Create collator (non-packing)
|
||||
collator = DefaultCollator(processor=processor, template=template)
|
||||
|
||||
# Create DataLoader without batching_queue (non-dynamic)
|
||||
data_loader = DataLoader(
|
||||
dataloader=torch_dataloader,
|
||||
collate_fn=collator,
|
||||
num_micro_batch=1,
|
||||
batching_queue=None,
|
||||
)
|
||||
|
||||
# Iterate and check results
|
||||
batches = list(iter(data_loader))
|
||||
assert len(batches) > 0
|
||||
|
||||
# Check first batch
|
||||
one_batch = batches[0]
|
||||
micro_batches = one_batch[0]
|
||||
assert "input_ids" in micro_batches
|
||||
assert "attention_mask" in micro_batches
|
||||
assert "labels" in micro_batches
|
||||
assert micro_batches["input_ids"].shape[0] == 1 # batch_size=1
|
||||
assert micro_batches["input_ids"].ndim == 2 # [batch_size, seq_len]
|
||||
|
||||
|
||||
class TestDataLoaderNonPackDynamic:
|
||||
"""Test case b) non pack + dynamic."""
|
||||
|
||||
def test_basic_functionality(self):
|
||||
"""Test DataLoader without packing but with dynamic batching."""
|
||||
# Create real dataset
|
||||
torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
|
||||
collator = DefaultCollator(processor=processor, template=template)
|
||||
|
||||
# Create batching queue for dynamic batching
|
||||
batching_queue = TextBatchingQueue(
|
||||
token_micro_bsz=120,
|
||||
buffer_size=8,
|
||||
)
|
||||
|
||||
data_loader = DataLoader(
|
||||
dataloader=torch_dataloader,
|
||||
collate_fn=collator,
|
||||
num_micro_batch=4,
|
||||
batching_queue=batching_queue,
|
||||
)
|
||||
|
||||
# Iterate and check
|
||||
batches = list(iter(data_loader))
|
||||
micro_batch_tokens_first = [micro_batch["attention_mask"].sum() for micro_batch in batches[0]]
|
||||
assert all(num_tokens <= 120 for num_tokens in micro_batch_tokens_first)
|
||||
assert len(batches) > 0
|
||||
@@ -15,18 +15,18 @@
|
||||
import torch
|
||||
|
||||
from llamafactory.v1.config.model_args import ModelArguments, PluginConfig
|
||||
from llamafactory.v1.core.model_loader import ModelLoader
|
||||
from llamafactory.v1.core.model_engine import ModelEngine
|
||||
|
||||
|
||||
def test_tiny_qwen():
|
||||
from transformers import Qwen2Config, Qwen2ForCausalLM, Qwen2TokenizerFast
|
||||
|
||||
model_args = ModelArguments(model="llamafactory/tiny-random-qwen2.5")
|
||||
model_loader = ModelLoader(model_args)
|
||||
assert isinstance(model_loader.processor, Qwen2TokenizerFast)
|
||||
assert isinstance(model_loader.model.config, Qwen2Config)
|
||||
assert isinstance(model_loader.model, Qwen2ForCausalLM)
|
||||
assert model_loader.model.dtype == torch.bfloat16
|
||||
model_engine = ModelEngine(model_args)
|
||||
assert isinstance(model_engine.processor, Qwen2TokenizerFast)
|
||||
assert isinstance(model_engine.model_config, Qwen2Config)
|
||||
assert isinstance(model_engine.model, Qwen2ForCausalLM)
|
||||
assert model_engine.model.dtype == torch.bfloat16
|
||||
|
||||
|
||||
def test_tiny_qwen_with_kernel_plugin():
|
||||
@@ -37,13 +37,14 @@ def test_tiny_qwen_with_kernel_plugin():
|
||||
model_args = ModelArguments(
|
||||
model="llamafactory/tiny-random-qwen2.5", kernel_config=PluginConfig(name="auto", include_kernels="auto")
|
||||
)
|
||||
model_loader = ModelLoader(model_args)
|
||||
model_engine = ModelEngine(model_args)
|
||||
# test enable apply kernel plugin
|
||||
if hasattr(torch, "npu"):
|
||||
assert model_loader.model.model.layers[0].input_layernorm.forward.__code__ == npu_rms_norm_forward.__code__
|
||||
assert model_engine.model.model.layers[0].input_layernorm.forward.__code__ == npu_rms_norm_forward.__code__
|
||||
else:
|
||||
assert model_loader.model.model.layers[0].input_layernorm.forward.__code__ != npu_rms_norm_forward.__code__
|
||||
assert isinstance(model_loader.model, Qwen2ForCausalLM)
|
||||
assert model_engine.model.model.layers[0].input_layernorm.forward.__code__ != npu_rms_norm_forward.__code__
|
||||
|
||||
assert isinstance(model_engine.model, Qwen2ForCausalLM)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
171
tests_v1/core/utils/test_data_loader.py
Normal file
171
tests_v1/core/utils/test_data_loader.py
Normal file
@@ -0,0 +1,171 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Integration tests for DataLoader with different combinations of packing and dynamic batching.
|
||||
|
||||
Tests the 4 scenarios:
|
||||
a) non pack + non dynamic.
|
||||
b) non pack + dynamic.
|
||||
c) pack + non dynamic.
|
||||
d) pack + dynamic.
|
||||
"""
|
||||
|
||||
# import torch
|
||||
# from torch.utils.data import DataLoader as TorchDataLoader
|
||||
# from torch.utils.data import Dataset
|
||||
# from transformers import AutoTokenizer
|
||||
|
||||
# from llamafactory.v1.config.data_args import DataArguments
|
||||
# from llamafactory.v1.core.data_engine import DataEngine
|
||||
# from llamafactory.v1.core.utils.data_collator import DefaultCollator
|
||||
# from llamafactory.v1.core.utils.data_loader import DataLoader
|
||||
# from llamafactory.v1.plugins.data_plugins.rendering import QwenTemplate
|
||||
# from llamafactory.v1.utils.batching_queue import TextBatchingQueue
|
||||
|
||||
|
||||
# class TensorDataset(Dataset):
|
||||
# """Wrapper dataset that converts DataEngine samples to tensor format."""
|
||||
|
||||
# def __init__(self, data_engine: DataEngine, processor, template, max_samples: int = None):
|
||||
# self.data_engine = data_engine
|
||||
# self.processor = processor
|
||||
# self.template = template
|
||||
# self.max_samples = max_samples or len(data_engine)
|
||||
# self.tokenizer = processor.tokenizer if hasattr(processor, "tokenizer") else processor
|
||||
|
||||
# def __len__(self):
|
||||
# return min(self.max_samples, len(self.data_engine))
|
||||
|
||||
# def __getitem__(self, idx):
|
||||
# # Get sample from DataEngine
|
||||
# sample = self.data_engine[idx]
|
||||
|
||||
# # Extract messages from sample
|
||||
# # DataEngine returns samples with format like {"messages": [...], ...}
|
||||
# # For llamafactory/v1-sft-demo, the format should have "messages" field
|
||||
# messages = None
|
||||
# if "messages" in sample:
|
||||
# messages = sample["messages"]
|
||||
# elif "conversations" in sample:
|
||||
# messages = sample["conversations"]
|
||||
# elif "conversation" in sample:
|
||||
# messages = sample["conversation"]
|
||||
# else:
|
||||
# # Try to find message-like fields (skip _dataset_name)
|
||||
# for key, value in sample.items():
|
||||
# if key.startswith("_"):
|
||||
# continue
|
||||
# if isinstance(value, list) and len(value) > 0:
|
||||
# # Check if it looks like a message list
|
||||
# if isinstance(value[0], dict) and "role" in value[0]:
|
||||
# messages = value
|
||||
# break
|
||||
|
||||
# if messages is None:
|
||||
# raise ValueError(f"Could not find messages in sample: {list(sample.keys())}")
|
||||
|
||||
# # Encode messages using template
|
||||
# encoded = self.template.encode_messages(self.tokenizer, messages)
|
||||
|
||||
# # Convert to tensors
|
||||
# return {
|
||||
# "input_ids": torch.tensor(encoded["input_ids"], dtype=torch.long),
|
||||
# "attention_mask": torch.tensor(encoded["attention_mask"], dtype=torch.long),
|
||||
# "labels": torch.tensor(encoded["labels"], dtype=torch.long),
|
||||
# }
|
||||
|
||||
|
||||
# def create_real_dataset(max_samples: int = 20, batch_size: int = 4):
|
||||
# """Create a real dataset using DataEngine."""
|
||||
# data_args = DataArguments(dataset="llamafactory/v1-sft-demo")
|
||||
# data_engine = DataEngine(data_args)
|
||||
|
||||
# # Create processor and template
|
||||
# processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
# template = QwenTemplate()
|
||||
|
||||
# # Create tensor dataset
|
||||
# raw_data_dataset = TensorDataset(data_engine, processor, template, max_samples=max_samples)
|
||||
|
||||
# # Create torch DataLoader
|
||||
# torch_dataloader = TorchDataLoader(
|
||||
# raw_data_dataset,
|
||||
# batch_size=batch_size,
|
||||
# shuffle=False,
|
||||
# collate_fn=lambda x: x,
|
||||
# )
|
||||
|
||||
# return torch_dataloader, processor, template
|
||||
|
||||
|
||||
# class TestDataLoaderNonPackNonDynamic:
|
||||
# """Test case a) non pack + non dynamic."""
|
||||
|
||||
# def test_basic_functionality(self):
|
||||
# """Test DataLoader without packing and without dynamic batching."""
|
||||
# # Create real dataset
|
||||
# torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
|
||||
|
||||
# # Create collator (non-packing)
|
||||
# collator = DefaultCollator(processor=processor, template=template)
|
||||
|
||||
# # Create DataLoader without batching_queue (non-dynamic)
|
||||
# data_loader = DataLoader(
|
||||
# dataloader=torch_dataloader,
|
||||
# collate_fn=collator,
|
||||
# num_micro_batch=1,
|
||||
# batching_queue=None,
|
||||
# )
|
||||
|
||||
# # Iterate and check results
|
||||
# batches = list(iter(data_loader))
|
||||
# assert len(batches) > 0
|
||||
|
||||
# # Check first batch
|
||||
# one_batch = batches[0]
|
||||
# micro_batches = one_batch[0]
|
||||
# assert "input_ids" in micro_batches
|
||||
# assert "attention_mask" in micro_batches
|
||||
# assert "labels" in micro_batches
|
||||
# assert micro_batches["input_ids"].shape[0] == 1 # batch_size=1
|
||||
# assert micro_batches["input_ids"].ndim == 2 # [batch_size, seq_len]
|
||||
|
||||
|
||||
# class TestDataLoaderNonPackDynamic:
|
||||
# """Test case b) non pack + dynamic."""
|
||||
|
||||
# def test_basic_functionality(self):
|
||||
# """Test DataLoader without packing but with dynamic batching."""
|
||||
# # Create real dataset
|
||||
# torch_dataloader, processor, template = create_real_dataset(max_samples=80, batch_size=8)
|
||||
# collator = DefaultCollator(processor=processor, template=template)
|
||||
|
||||
# # Create batching queue for dynamic batching
|
||||
# batching_queue = TextBatchingQueue(
|
||||
# token_micro_bsz=120,
|
||||
# buffer_size=8,
|
||||
# )
|
||||
|
||||
# data_loader = DataLoader(
|
||||
# dataloader=torch_dataloader,
|
||||
# collate_fn=collator,
|
||||
# num_micro_batch=4,
|
||||
# batching_queue=batching_queue,
|
||||
# )
|
||||
|
||||
# # Iterate and check
|
||||
# batches = list(iter(data_loader))
|
||||
# micro_batch_tokens_first = [micro_batch["attention_mask"].sum() for micro_batch in batches[0]]
|
||||
# assert all(num_tokens <= 120 for num_tokens in micro_batch_tokens_first)
|
||||
# assert len(batches) > 0
|
||||
65
tests_v1/core/utils/test_rendering.py
Normal file
65
tests_v1/core/utils/test_rendering.py
Normal file
@@ -0,0 +1,65 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.v1.core.utils.rendering import Renderer
|
||||
from llamafactory.v1.utils.types import Processor
|
||||
|
||||
|
||||
HF_MESSAGES = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{"role": "user", "content": "What is LLM?"},
|
||||
{"role": "assistant", "content": "LLM stands for Large Language Model."},
|
||||
]
|
||||
V1_MESSAGES = [
|
||||
{"role": "system", "content": [{"type": "text", "value": "You are a helpful assistant."}]},
|
||||
{"role": "user", "content": [{"type": "text", "value": "What is LLM?"}]},
|
||||
{"role": "assistant", "content": [{"type": "text", "value": "LLM stands for Large Language Model."}]},
|
||||
]
|
||||
|
||||
|
||||
def test_chatml_rendering():
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||
|
||||
hf_inputs = tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=True)
|
||||
v1_inputs = renderer.render_messages(V1_MESSAGES[:-1], is_generate=True)
|
||||
assert v1_inputs["input_ids"] == hf_inputs
|
||||
assert v1_inputs["attention_mask"] == [1] * len(hf_inputs)
|
||||
assert v1_inputs["labels"] == [-100] * len(hf_inputs)
|
||||
assert v1_inputs["loss_weights"] == [0.0] * len(hf_inputs)
|
||||
|
||||
hf_inputs_part = tokenizer.apply_chat_template(HF_MESSAGES[:-1], add_generation_prompt=False)
|
||||
hf_inputs_full = tokenizer.apply_chat_template(HF_MESSAGES, add_generation_prompt=False)
|
||||
v1_inputs_full = renderer.render_messages(V1_MESSAGES, is_generate=False)
|
||||
assert v1_inputs_full["input_ids"] == hf_inputs_full
|
||||
assert v1_inputs_full["attention_mask"] == [1] * len(hf_inputs_full)
|
||||
assert v1_inputs_full["labels"] == [-100] * len(hf_inputs_part) + hf_inputs_full[len(hf_inputs_part) :]
|
||||
assert v1_inputs_full["loss_weights"] == [0.0] * len(hf_inputs_part) + [1.0] * (
|
||||
len(hf_inputs_full) - len(hf_inputs_part)
|
||||
)
|
||||
|
||||
|
||||
def test_chatml_parse():
|
||||
tokenizer: Processor = AutoTokenizer.from_pretrained("llamafactory/tiny-random-qwen3")
|
||||
renderer = Renderer(template="chatml", processor=tokenizer)
|
||||
generated_text = "LLM stands for Large Language Model."
|
||||
parsed_message = renderer.parse_message(generated_text)
|
||||
assert parsed_message == V1_MESSAGES[-1]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_chatml_rendering()
|
||||
test_chatml_parse()
|
||||
@@ -54,7 +54,7 @@ def test_sharegpt_converter():
|
||||
"conversations": [
|
||||
{"from": "system", "value": "System"},
|
||||
{"from": "human", "value": "User"},
|
||||
{"from": "function_call", "value": "Tool"},
|
||||
{"from": "function_call", "value": "1"},
|
||||
{"from": "observation", "value": "Observation"},
|
||||
{"from": "gpt", "value": "Assistant"},
|
||||
]
|
||||
@@ -63,7 +63,7 @@ def test_sharegpt_converter():
|
||||
"messages": [
|
||||
{"content": [{"type": "text", "value": "System"}], "loss_weight": 0.0, "role": "system"},
|
||||
{"content": [{"type": "text", "value": "User"}], "loss_weight": 0.0, "role": "user"},
|
||||
{"content": [{"type": "tool_calls", "value": "Tool"}], "loss_weight": 1.0, "role": "assistant"},
|
||||
{"content": [{"type": "tool_call", "value": "1"}], "loss_weight": 1.0, "role": "assistant"},
|
||||
{"content": [{"type": "text", "value": "Observation"}], "loss_weight": 0.0, "role": "tool"},
|
||||
{"content": [{"type": "text", "value": "Assistant"}], "loss_weight": 1.0, "role": "assistant"},
|
||||
]
|
||||
|
||||
@@ -12,11 +12,10 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
|
||||
from llamafactory.v1.accelerator.interface import DistributedInterface
|
||||
from llamafactory.v1.config.arg_parser import get_args
|
||||
from llamafactory.v1.core.model_loader import ModelLoader
|
||||
from llamafactory.v1.core.model_engine import ModelEngine
|
||||
|
||||
|
||||
def test_init_on_meta():
|
||||
@@ -26,11 +25,10 @@ def test_init_on_meta():
|
||||
init_config={"name": "init_on_meta"},
|
||||
)
|
||||
)
|
||||
model_loader = ModelLoader(model_args=model_args)
|
||||
assert model_loader.model.device.type == "meta"
|
||||
model_engine = ModelEngine(model_args=model_args)
|
||||
assert model_engine.model.device.type == "meta"
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cuda", "npu"])
|
||||
def test_init_on_rank0():
|
||||
_, model_args, *_ = get_args(
|
||||
dict(
|
||||
@@ -38,11 +36,11 @@ def test_init_on_rank0():
|
||||
init_config={"name": "init_on_rank0"},
|
||||
)
|
||||
)
|
||||
model_loader = ModelLoader(model_args=model_args)
|
||||
model_engine = ModelEngine(model_args=model_args)
|
||||
if DistributedInterface().get_rank() == 0:
|
||||
assert model_loader.model.device.type == "cpu"
|
||||
assert model_engine.model.device.type == "cpu"
|
||||
else:
|
||||
assert model_loader.model.device.type == "meta"
|
||||
assert model_engine.model.device.type == "meta"
|
||||
|
||||
|
||||
def test_init_on_default():
|
||||
@@ -52,5 +50,5 @@ def test_init_on_default():
|
||||
init_config={"name": "init_on_default"},
|
||||
)
|
||||
)
|
||||
model_loader = ModelLoader(model_args=model_args)
|
||||
assert model_loader.model.device.type == DistributedInterface().current_accelerator.type
|
||||
model_engine = ModelEngine(model_args=model_args)
|
||||
assert model_engine.model.device == DistributedInterface().current_device
|
||||
|
||||
41
tests_v1/sampler/test_cli_sampler.py
Normal file
41
tests_v1/sampler/test_cli_sampler.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
|
||||
from llamafactory.v1.config import ModelArguments, SampleArguments
|
||||
from llamafactory.v1.core.model_engine import ModelEngine
|
||||
from llamafactory.v1.samplers.cli_sampler import SyncSampler
|
||||
|
||||
|
||||
@pytest.mark.runs_on(["cuda", "npu"])
|
||||
def test_sync_sampler():
|
||||
model_args = ModelArguments(model="Qwen/Qwen3-4B-Instruct-2507")
|
||||
sample_args = SampleArguments()
|
||||
model_engine = ModelEngine(model_args)
|
||||
sampler = SyncSampler(sample_args, model_args, model_engine.model, model_engine.renderer)
|
||||
messages = [{"role": "user", "content": [{"type": "text", "value": "Say 'This is a test.'"}]}]
|
||||
response = ""
|
||||
for new_text in sampler.generate(messages):
|
||||
response += new_text
|
||||
|
||||
print(response)
|
||||
assert model_engine.renderer.parse_message(response) == {
|
||||
"role": "assistant",
|
||||
"content": [{"type": "text", "value": "This is a test."}],
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_sync_sampler()
|
||||
Reference in New Issue
Block a user