fix PPO trainer #551 , update readme

Former-commit-id: faead74849470cebae9e37cde5fab2a71b32aa43
This commit is contained in:
hiyouga
2023-08-18 11:43:10 +08:00
parent 736ddd0319
commit be4d2822ea
6 changed files with 42 additions and 53 deletions

View File

@@ -1,7 +1,4 @@
import torch
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple
from llmtuner.extras.constants import LAYERNORM_NAMES
from typing import TYPE_CHECKING, Literal
if TYPE_CHECKING:
from trl import AutoModelForCausalLMWithValueHead
@@ -18,22 +15,3 @@ def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["d
"summary.weight": getattr(model, "{}_head_weight".format(target)),
"summary.bias": getattr(model, "{}_head_bias".format(target))
})
def cast_layernorm_dtype(
model: "AutoModelForCausalLMWithValueHead",
layer_norm_names: List[str] = LAYERNORM_NAMES,
layer_norm_params: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple["AutoModelForCausalLMWithValueHead", Dict[str, torch.Tensor]]:
layer_norm_state_dict = {}
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
if layer_norm_params is not None:
param.data = layer_norm_params[name] # restore float32 weights
else:
layer_norm_state_dict[name] = param.data.detach().clone() # store float32 weights for stability
param.data = param.data.to(torch.float16)
return model, layer_norm_state_dict