add multimodal LLM BLIP-2 and InstructBLIP

Former-commit-id: a730f89a972f1a9d37c718c716f199cb8d4903b2
This commit is contained in:
BUAADreamer
2024-04-23 18:45:43 +08:00
parent 1d2e372a8e
commit ab6dc0ea30
16 changed files with 710 additions and 38 deletions

View File

@@ -0,0 +1,105 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, List, Optional
import torch
from PIL import Image
from torch.utils.data import Dataset
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
from ...data import split_dataset, get_mm_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_sft_mm(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
processor = load_processor(model_args)
tokenizer = processor.tokenizer
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
splited_dataset = split_dataset(dataset, data_args, training_args)
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
columns=list(splited_dataset['train_dataset'].features.keys()))
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
columns=list(splited_dataset['eval_dataset'].features.keys()))
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
data_collator = DataCollatorForVis2Seq(
processor=processor,
use_qformer=model_args.use_qformer,
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
# Initialize our Trainer
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)