mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-02 08:33:38 +00:00
[misc] fix accelerator (#9661)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@@ -15,26 +15,27 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""A unified interface for model parallelism and data parallelism.
|
||||
|
||||
Supports model parallelism types:
|
||||
- mp_replicate: Replicate model across multiple devices.
|
||||
- mp_shard: Shard model across multiple devices.
|
||||
|
||||
And data parallelism types:
|
||||
- dp: Data parallelism.
|
||||
- cp: Context parallelism.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
from datetime import timedelta
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from torch.distributed import init_process_group
|
||||
from torch.distributed import barrier, destroy_process_group, init_process_group
|
||||
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
|
||||
|
||||
from ..utils.types import DistributedConfig, ProcessGroup, Tensor, TensorLike
|
||||
from .helper import (
|
||||
ReduceOp,
|
||||
all_gather,
|
||||
all_reduce,
|
||||
get_current_accelerator,
|
||||
get_local_rank,
|
||||
get_local_world_size,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
is_distributed,
|
||||
)
|
||||
from . import helper
|
||||
|
||||
|
||||
class Dim(str, Enum):
|
||||
@@ -60,24 +61,24 @@ class DistributedStrategy:
|
||||
"""Context parallel size, default to 1."""
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
if not is_distributed():
|
||||
if not helper.is_distributed():
|
||||
self.mp_shard_size = 1
|
||||
elif self.mp_shard_size is None:
|
||||
self.mp_shard_size = get_world_size() // self.mp_replicate_size
|
||||
elif self.mp_replicate_size * self.mp_shard_size != get_world_size():
|
||||
self.mp_shard_size = helper.get_world_size() // self.mp_replicate_size
|
||||
elif self.mp_replicate_size * self.mp_shard_size != helper.get_world_size():
|
||||
raise ValueError(
|
||||
f"mp_replicate_size * mp_shard_size must equal to world_size, "
|
||||
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {get_world_size()}."
|
||||
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {helper.get_world_size()}."
|
||||
)
|
||||
|
||||
if not is_distributed():
|
||||
if not helper.is_distributed():
|
||||
self.dp_size = 1
|
||||
elif self.dp_size is None:
|
||||
self.dp_size = get_world_size() // self.cp_size
|
||||
elif self.dp_size * self.cp_size != get_world_size():
|
||||
self.dp_size = helper.get_world_size() // self.cp_size
|
||||
elif self.dp_size * self.cp_size != helper.get_world_size():
|
||||
raise ValueError(
|
||||
f"dp_size * cp_size must equal to world_size, "
|
||||
f"got {self.dp_size} * {self.cp_size} != {get_world_size()}."
|
||||
f"got {self.dp_size} * {self.cp_size} != {helper.get_world_size()}."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -106,20 +107,6 @@ class DistributedInterface:
|
||||
|
||||
_instance: Optional["DistributedInterface"] = None
|
||||
_initialized: bool = False
|
||||
_is_distributed = is_distributed()
|
||||
_rank = get_rank()
|
||||
_world_size = get_world_size()
|
||||
_local_rank = get_local_rank()
|
||||
_local_world_size = get_local_world_size()
|
||||
|
||||
strategy: Optional[DistributedStrategy] = None
|
||||
"""Distributed strategy."""
|
||||
model_device_mesh: Optional[DeviceMesh] = None
|
||||
"""Model parallel device mesh."""
|
||||
data_device_mesh: Optional[DeviceMesh] = None
|
||||
"""Data parallel device mesh."""
|
||||
current_accelerator = get_current_accelerator()
|
||||
"""Current accelerator."""
|
||||
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
|
||||
"""Singleton pattern."""
|
||||
@@ -132,6 +119,14 @@ class DistributedInterface:
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
self._is_distributed = helper.is_distributed()
|
||||
self._rank = helper.get_rank()
|
||||
self._world_size = helper.get_world_size()
|
||||
self._local_rank = helper.get_local_rank()
|
||||
self._local_world_size = helper.get_local_world_size()
|
||||
self.current_accelerator = helper.get_current_accelerator()
|
||||
self.device_count = helper.get_device_count()
|
||||
|
||||
if config is None:
|
||||
self.strategy = DistributedStrategy()
|
||||
timeout = 18000
|
||||
@@ -145,6 +140,7 @@ class DistributedInterface:
|
||||
timeout = config.get("timeout", 18000)
|
||||
|
||||
if self._is_distributed:
|
||||
helper.set_device()
|
||||
init_process_group(timeout=timedelta(seconds=timeout))
|
||||
self.model_device_mesh = init_device_mesh(
|
||||
device_type=self.current_accelerator.type,
|
||||
@@ -169,65 +165,84 @@ class DistributedInterface:
|
||||
f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_device_mesh(cls, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
|
||||
def get_device_mesh(self, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
|
||||
"""Get device mesh for specified dimension."""
|
||||
if dim is None:
|
||||
raise ValueError("dim must be specified.")
|
||||
elif cls.model_device_mesh is None:
|
||||
elif self.model_device_mesh is None:
|
||||
return None
|
||||
elif dim in cls.strategy.data_mesh_dim_names:
|
||||
return cls.data_device_mesh[dim.value]
|
||||
elif dim in self.strategy.data_mesh_dim_names:
|
||||
return self.data_device_mesh[dim.value]
|
||||
else:
|
||||
return cls.model_device_mesh[dim.value]
|
||||
return self.model_device_mesh[dim.value]
|
||||
|
||||
@classmethod
|
||||
def get_group(cls, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
|
||||
def get_group(self, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
|
||||
"""Get process group for specified dimension."""
|
||||
if cls.model_device_mesh is None or dim is None:
|
||||
if self.model_device_mesh is None or dim is None:
|
||||
return None
|
||||
else:
|
||||
return cls.get_device_mesh(dim).get_group()
|
||||
return self.get_device_mesh(dim).get_group()
|
||||
|
||||
@classmethod
|
||||
def get_rank(cls, dim: Optional[Dim] = None) -> int:
|
||||
def get_rank(self, dim: Optional[Dim] = None) -> int:
|
||||
"""Get parallel rank for specified dimension."""
|
||||
if cls.model_device_mesh is None:
|
||||
if self.model_device_mesh is None:
|
||||
return 0
|
||||
elif dim is None:
|
||||
return cls._rank
|
||||
return self._rank
|
||||
else:
|
||||
return cls.get_device_mesh(dim).get_local_rank()
|
||||
return self.get_device_mesh(dim).get_local_rank()
|
||||
|
||||
@classmethod
|
||||
def get_world_size(cls, dim: Optional[Dim] = None) -> int:
|
||||
def get_world_size(self, dim: Optional[Dim] = None) -> int:
|
||||
"""Get parallel size for specified dimension."""
|
||||
if cls.model_device_mesh is None:
|
||||
if self.model_device_mesh is None:
|
||||
return 1
|
||||
elif dim is None:
|
||||
return cls._world_size
|
||||
return self._world_size
|
||||
else:
|
||||
return cls.get_device_mesh(dim).size()
|
||||
return self.get_device_mesh(dim).size()
|
||||
|
||||
@classmethod
|
||||
def get_local_rank(cls) -> int:
|
||||
def get_local_rank(self) -> int:
|
||||
"""Get parallel local rank."""
|
||||
return cls._local_rank
|
||||
return self._local_rank
|
||||
|
||||
@classmethod
|
||||
def get_local_world_size(cls) -> int:
|
||||
def get_local_world_size(self) -> int:
|
||||
"""Get parallel local world size."""
|
||||
return cls._local_world_size
|
||||
return self._local_world_size
|
||||
|
||||
@classmethod
|
||||
def all_gather(cls, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
|
||||
def all_gather(self, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
|
||||
"""Gather tensor across specified parallel group."""
|
||||
return all_gather(data, cls.get_group(dim)) if cls.model_device_mesh is not None else data
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.all_gather, data, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
@classmethod
|
||||
def all_reduce(cls, data: TensorLike, op: ReduceOp = ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP) -> TensorLike:
|
||||
def all_reduce(
|
||||
self, data: TensorLike, op: helper.ReduceOp = helper.ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP
|
||||
) -> TensorLike:
|
||||
"""Reduce tensor across specified parallel group."""
|
||||
return all_reduce(data, op, cls.get_group(dim)) if cls.model_device_mesh is not None else data
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.all_reduce, data, op=op, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
def broadcast(self, data: TensorLike, src: int = 0, dim: Optional[Dim] = Dim.DP) -> TensorLike:
|
||||
"""Broadcast tensor across specified parallel group."""
|
||||
if self.model_device_mesh is not None:
|
||||
return helper.operate_tensorlike(helper.broadcast, data, src=src, group=self.get_group(dim))
|
||||
else:
|
||||
return data
|
||||
|
||||
def sync(self) -> None:
|
||||
"""Synchronize all processes."""
|
||||
helper.synchronize()
|
||||
|
||||
def barrier(self) -> None:
|
||||
"""Barrier all processes."""
|
||||
barrier()
|
||||
|
||||
def destroy(self) -> None:
|
||||
"""Destroy all processes."""
|
||||
destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user