[misc] fix accelerator (#9661)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Yaowei Zheng
2025-12-25 02:11:04 +08:00
committed by GitHub
parent 6a2eafbae3
commit a754604c11
44 changed files with 396 additions and 448 deletions

View File

@@ -15,26 +15,27 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""A unified interface for model parallelism and data parallelism.
Supports model parallelism types:
- mp_replicate: Replicate model across multiple devices.
- mp_shard: Shard model across multiple devices.
And data parallelism types:
- dp: Data parallelism.
- cp: Context parallelism.
"""
from dataclasses import dataclass
from datetime import timedelta
from enum import Enum
from typing import Any, Optional
from torch.distributed import init_process_group
from torch.distributed import barrier, destroy_process_group, init_process_group
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from ..utils.types import DistributedConfig, ProcessGroup, Tensor, TensorLike
from .helper import (
ReduceOp,
all_gather,
all_reduce,
get_current_accelerator,
get_local_rank,
get_local_world_size,
get_rank,
get_world_size,
is_distributed,
)
from . import helper
class Dim(str, Enum):
@@ -60,24 +61,24 @@ class DistributedStrategy:
"""Context parallel size, default to 1."""
def __post_init__(self) -> None:
if not is_distributed():
if not helper.is_distributed():
self.mp_shard_size = 1
elif self.mp_shard_size is None:
self.mp_shard_size = get_world_size() // self.mp_replicate_size
elif self.mp_replicate_size * self.mp_shard_size != get_world_size():
self.mp_shard_size = helper.get_world_size() // self.mp_replicate_size
elif self.mp_replicate_size * self.mp_shard_size != helper.get_world_size():
raise ValueError(
f"mp_replicate_size * mp_shard_size must equal to world_size, "
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {get_world_size()}."
f"got {self.mp_replicate_size} * {self.mp_shard_size} != {helper.get_world_size()}."
)
if not is_distributed():
if not helper.is_distributed():
self.dp_size = 1
elif self.dp_size is None:
self.dp_size = get_world_size() // self.cp_size
elif self.dp_size * self.cp_size != get_world_size():
self.dp_size = helper.get_world_size() // self.cp_size
elif self.dp_size * self.cp_size != helper.get_world_size():
raise ValueError(
f"dp_size * cp_size must equal to world_size, "
f"got {self.dp_size} * {self.cp_size} != {get_world_size()}."
f"got {self.dp_size} * {self.cp_size} != {helper.get_world_size()}."
)
@property
@@ -106,20 +107,6 @@ class DistributedInterface:
_instance: Optional["DistributedInterface"] = None
_initialized: bool = False
_is_distributed = is_distributed()
_rank = get_rank()
_world_size = get_world_size()
_local_rank = get_local_rank()
_local_world_size = get_local_world_size()
strategy: Optional[DistributedStrategy] = None
"""Distributed strategy."""
model_device_mesh: Optional[DeviceMesh] = None
"""Model parallel device mesh."""
data_device_mesh: Optional[DeviceMesh] = None
"""Data parallel device mesh."""
current_accelerator = get_current_accelerator()
"""Current accelerator."""
def __new__(cls, *args: Any, **kwargs: Any) -> "DistributedInterface":
"""Singleton pattern."""
@@ -132,6 +119,14 @@ class DistributedInterface:
if self._initialized:
return
self._is_distributed = helper.is_distributed()
self._rank = helper.get_rank()
self._world_size = helper.get_world_size()
self._local_rank = helper.get_local_rank()
self._local_world_size = helper.get_local_world_size()
self.current_accelerator = helper.get_current_accelerator()
self.device_count = helper.get_device_count()
if config is None:
self.strategy = DistributedStrategy()
timeout = 18000
@@ -145,6 +140,7 @@ class DistributedInterface:
timeout = config.get("timeout", 18000)
if self._is_distributed:
helper.set_device()
init_process_group(timeout=timedelta(seconds=timeout))
self.model_device_mesh = init_device_mesh(
device_type=self.current_accelerator.type,
@@ -169,65 +165,84 @@ class DistributedInterface:
f"model_device_mesh={self.model_device_mesh}, data_device_mesh={self.data_device_mesh}"
)
@classmethod
def get_device_mesh(cls, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
def get_device_mesh(self, dim: Optional[Dim] = None) -> Optional[DeviceMesh]:
"""Get device mesh for specified dimension."""
if dim is None:
raise ValueError("dim must be specified.")
elif cls.model_device_mesh is None:
elif self.model_device_mesh is None:
return None
elif dim in cls.strategy.data_mesh_dim_names:
return cls.data_device_mesh[dim.value]
elif dim in self.strategy.data_mesh_dim_names:
return self.data_device_mesh[dim.value]
else:
return cls.model_device_mesh[dim.value]
return self.model_device_mesh[dim.value]
@classmethod
def get_group(cls, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
def get_group(self, dim: Optional[Dim] = None) -> Optional[ProcessGroup]:
"""Get process group for specified dimension."""
if cls.model_device_mesh is None or dim is None:
if self.model_device_mesh is None or dim is None:
return None
else:
return cls.get_device_mesh(dim).get_group()
return self.get_device_mesh(dim).get_group()
@classmethod
def get_rank(cls, dim: Optional[Dim] = None) -> int:
def get_rank(self, dim: Optional[Dim] = None) -> int:
"""Get parallel rank for specified dimension."""
if cls.model_device_mesh is None:
if self.model_device_mesh is None:
return 0
elif dim is None:
return cls._rank
return self._rank
else:
return cls.get_device_mesh(dim).get_local_rank()
return self.get_device_mesh(dim).get_local_rank()
@classmethod
def get_world_size(cls, dim: Optional[Dim] = None) -> int:
def get_world_size(self, dim: Optional[Dim] = None) -> int:
"""Get parallel size for specified dimension."""
if cls.model_device_mesh is None:
if self.model_device_mesh is None:
return 1
elif dim is None:
return cls._world_size
return self._world_size
else:
return cls.get_device_mesh(dim).size()
return self.get_device_mesh(dim).size()
@classmethod
def get_local_rank(cls) -> int:
def get_local_rank(self) -> int:
"""Get parallel local rank."""
return cls._local_rank
return self._local_rank
@classmethod
def get_local_world_size(cls) -> int:
def get_local_world_size(self) -> int:
"""Get parallel local world size."""
return cls._local_world_size
return self._local_world_size
@classmethod
def all_gather(cls, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
def all_gather(self, data: Tensor, dim: Optional[Dim] = Dim.DP) -> Tensor:
"""Gather tensor across specified parallel group."""
return all_gather(data, cls.get_group(dim)) if cls.model_device_mesh is not None else data
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.all_gather, data, group=self.get_group(dim))
else:
return data
@classmethod
def all_reduce(cls, data: TensorLike, op: ReduceOp = ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP) -> TensorLike:
def all_reduce(
self, data: TensorLike, op: helper.ReduceOp = helper.ReduceOp.MEAN, dim: Optional[Dim] = Dim.DP
) -> TensorLike:
"""Reduce tensor across specified parallel group."""
return all_reduce(data, op, cls.get_group(dim)) if cls.model_device_mesh is not None else data
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.all_reduce, data, op=op, group=self.get_group(dim))
else:
return data
def broadcast(self, data: TensorLike, src: int = 0, dim: Optional[Dim] = Dim.DP) -> TensorLike:
"""Broadcast tensor across specified parallel group."""
if self.model_device_mesh is not None:
return helper.operate_tensorlike(helper.broadcast, data, src=src, group=self.get_group(dim))
else:
return data
def sync(self) -> None:
"""Synchronize all processes."""
helper.synchronize()
def barrier(self) -> None:
"""Barrier all processes."""
barrier()
def destroy(self) -> None:
"""Destroy all processes."""
destroy_process_group()
if __name__ == "__main__":