mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-02 08:33:38 +00:00
[model] support audio (#6701)
* support qwen2_audio * improve code * lint * fix * fix * fix --------- Co-authored-by: hiyouga <hiyouga@buaa.edu.cn> Former-commit-id: 5eacb5629e4d7733cd992a63747a1335f2c6a929
This commit is contained in:
@@ -24,7 +24,7 @@ if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput, VideoInput
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -39,6 +39,7 @@ def _encode_feedback_example(
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
@@ -56,8 +57,8 @@ def _encode_feedback_example(
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
|
||||
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
|
||||
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
|
||||
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, audios, processor)
|
||||
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
|
||||
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
|
||||
|
||||
@@ -65,8 +66,12 @@ def _encode_feedback_example(
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(
|
||||
prompt_ids, None, images, videos, audios, tokenizer, processor
|
||||
)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(
|
||||
kl_prompt_ids, None, images, videos, audios, tokenizer, processor
|
||||
)
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -107,6 +112,7 @@ def preprocess_feedback_dataset(
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -121,6 +127,7 @@ def preprocess_feedback_dataset(
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
|
||||
@@ -24,7 +24,7 @@ if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput, VideoInput
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -38,13 +38,14 @@ def _encode_pairwise_example(
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, processor)
|
||||
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, processor)
|
||||
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, audios, processor)
|
||||
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, audios, processor)
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools)
|
||||
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools)
|
||||
|
||||
@@ -52,7 +53,9 @@ def _encode_pairwise_example(
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(
|
||||
prompt_ids, None, images, videos, audios, tokenizer, processor
|
||||
)
|
||||
# consider the response is more important
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -89,6 +92,7 @@ def preprocess_pairwise_dataset(
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -102,6 +106,7 @@ def preprocess_pairwise_dataset(
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput, VideoInput
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -38,6 +38,7 @@ def _encode_supervised_example(
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
@@ -45,8 +46,8 @@ def _encode_supervised_example(
|
||||
train_on_prompt: bool,
|
||||
mask_history: bool,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor)
|
||||
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor)
|
||||
messages = template.mm_plugin.process_messages(prompt + response, images, videos, audios, processor)
|
||||
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, audios, tokenizer, processor)
|
||||
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
|
||||
total_length = len(input_ids) + (1 if template.efficient_eos else 0)
|
||||
if mask_history:
|
||||
@@ -111,6 +112,7 @@ def preprocess_supervised_dataset(
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -123,6 +125,7 @@ def preprocess_supervised_dataset(
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
@@ -138,7 +141,7 @@ def preprocess_packed_supervised_dataset(
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], []
|
||||
batch_input_ids, batch_labels, batch_images, batch_videos, batch_audios = [], [], [], [], []
|
||||
lengths = []
|
||||
length2indexes = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
@@ -155,6 +158,7 @@ def preprocess_packed_supervised_dataset(
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -172,19 +176,21 @@ def preprocess_packed_supervised_dataset(
|
||||
batch_labels.append(labels)
|
||||
batch_images.append(examples["_images"][i] or [])
|
||||
batch_videos.append(examples["_videos"][i] or [])
|
||||
batch_audios.append(examples["_audios"][i] or [])
|
||||
valid_num += 1
|
||||
|
||||
model_inputs = defaultdict(list)
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
|
||||
packed_images, packed_videos = [], []
|
||||
packed_images, packed_videos, packed_audios = [], [], []
|
||||
for i, length in enumerate(knapsack):
|
||||
index = length2indexes[length].pop()
|
||||
packed_input_ids += batch_input_ids[index]
|
||||
packed_labels += batch_labels[index]
|
||||
packed_images += batch_images[index]
|
||||
packed_videos += batch_videos[index]
|
||||
packed_audios += batch_audios[index]
|
||||
if data_args.neat_packing:
|
||||
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
|
||||
else:
|
||||
@@ -207,6 +213,7 @@ def preprocess_packed_supervised_dataset(
|
||||
model_inputs["labels"].append(packed_labels)
|
||||
model_inputs["images"].append(packed_images or None)
|
||||
model_inputs["videos"].append(packed_videos or None)
|
||||
model_inputs["audios"].append(packed_audios or None)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..mm_plugin import ImageInput, VideoInput
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..template import Template
|
||||
|
||||
|
||||
@@ -38,6 +38,7 @@ def _encode_unsupervised_example(
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
@@ -48,12 +49,12 @@ def _encode_unsupervised_example(
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
|
||||
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
|
||||
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
|
||||
if template.efficient_eos:
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor)
|
||||
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, audios, tokenizer, processor)
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
@@ -83,6 +84,7 @@ def preprocess_unsupervised_dataset(
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -93,6 +95,7 @@ def preprocess_unsupervised_dataset(
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
Reference in New Issue
Block a user