[model] support audio (#6701)

* support qwen2_audio

* improve code

* lint

* fix

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 5eacb5629e4d7733cd992a63747a1335f2c6a929
This commit is contained in:
Zhangchi Feng
2025-02-05 04:59:09 +08:00
committed by GitHub
parent 9feb78e7b4
commit 8f401e37f8
35 changed files with 675 additions and 213 deletions

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -39,6 +39,7 @@ def _encode_feedback_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -56,8 +57,8 @@ def _encode_feedback_example(
else:
kl_messages = prompt + [kl_response[1]]
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, audios, processor)
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
@@ -65,8 +66,12 @@ def _encode_feedback_example(
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(
prompt_ids, None, images, videos, audios, tokenizer, processor
)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(
kl_prompt_ids, None, images, videos, audios, tokenizer, processor
)
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -107,6 +112,7 @@ def preprocess_feedback_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -121,6 +127,7 @@ def preprocess_feedback_dataset(
model_inputs["kto_tags"].append(kto_tag)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,13 +38,14 @@ def _encode_pairwise_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
cutoff_len: int,
) -> Tuple[List[int], List[int], List[int], List[int]]:
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, processor)
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, audios, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, audios, processor)
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools)
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools)
@@ -52,7 +53,9 @@ def _encode_pairwise_example(
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(
prompt_ids, None, images, videos, audios, tokenizer, processor
)
# consider the response is more important
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -89,6 +92,7 @@ def preprocess_pairwise_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -102,6 +106,7 @@ def preprocess_pairwise_dataset(
model_inputs["rejected_labels"].append(rejected_labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,6 +38,7 @@ def _encode_supervised_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -45,8 +46,8 @@ def _encode_supervised_example(
train_on_prompt: bool,
mask_history: bool,
) -> Tuple[List[int], List[int]]:
messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor)
messages = template.mm_plugin.process_messages(prompt + response, images, videos, audios, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, audios, tokenizer, processor)
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
total_length = len(input_ids) + (1 if template.efficient_eos else 0)
if mask_history:
@@ -111,6 +112,7 @@ def preprocess_supervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -123,6 +125,7 @@ def preprocess_supervised_dataset(
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs
@@ -138,7 +141,7 @@ def preprocess_packed_supervised_dataset(
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
valid_num = 0
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], []
batch_input_ids, batch_labels, batch_images, batch_videos, batch_audios = [], [], [], [], []
lengths = []
length2indexes = defaultdict(list)
for i in range(len(examples["_prompt"])):
@@ -155,6 +158,7 @@ def preprocess_packed_supervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -172,19 +176,21 @@ def preprocess_packed_supervised_dataset(
batch_labels.append(labels)
batch_images.append(examples["_images"][i] or [])
batch_videos.append(examples["_videos"][i] or [])
batch_audios.append(examples["_audios"][i] or [])
valid_num += 1
model_inputs = defaultdict(list)
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token
for knapsack in knapsacks:
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
packed_images, packed_videos = [], []
packed_images, packed_videos, packed_audios = [], [], []
for i, length in enumerate(knapsack):
index = length2indexes[length].pop()
packed_input_ids += batch_input_ids[index]
packed_labels += batch_labels[index]
packed_images += batch_images[index]
packed_videos += batch_videos[index]
packed_audios += batch_audios[index]
if data_args.neat_packing:
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
else:
@@ -207,6 +213,7 @@ def preprocess_packed_supervised_dataset(
model_inputs["labels"].append(packed_labels)
model_inputs["images"].append(packed_images or None)
model_inputs["videos"].append(packed_videos or None)
model_inputs["audios"].append(packed_audios or None)
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..mm_plugin import AudioInput, ImageInput, VideoInput
from ..template import Template
@@ -38,6 +38,7 @@ def _encode_unsupervised_example(
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -48,12 +49,12 @@ def _encode_unsupervised_example(
else:
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, audios, processor)
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor)
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, audios, tokenizer, processor)
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
input_ids = input_ids[:source_len]
labels = labels[:target_len]
@@ -83,6 +84,7 @@ def preprocess_unsupervised_dataset(
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
audios=examples["_audios"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -93,6 +95,7 @@ def preprocess_unsupervised_dataset(
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
model_inputs["audios"].append(examples["_audios"][i])
return model_inputs