[misc] lint code (#9395)

This commit is contained in:
Yaowei Zheng
2025-11-03 22:08:59 +08:00
committed by GitHub
parent 215580c77d
commit 3ae15da9c0
17 changed files with 82 additions and 75 deletions

View File

@@ -16,4 +16,3 @@ from .workflow import run_dpo, run_pt, run_sft
__all__ = ["run_dpo", "run_pt", "run_sft"]

View File

@@ -75,12 +75,17 @@ def _data_collator_wrapper(data_collator: Any):
return wrapper
def _check_model_support(model_args: ModelArguments):
from transformers import AutoConfig as HfAutoConfig
config = HfAutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
config = HfAutoConfig.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if config.model_type not in MCA_SUPPORTED_MODELS:
raise ValueError(f"Model {config.model_type} is not supported by MCA.")
def run_pt(
model_args: ModelArguments,
data_args: DataArguments,
@@ -161,22 +166,23 @@ def run_sft(
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
# optional freezing for qwen2_vl, qwen2_5_vl
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_vision_tower:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["vision_model.blocks", "vision_model.patch_embed"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_multi_modal_projector:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["multi_modal_projector"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_language_model:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["embedding", "decoder", "output_layer"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"]:
params_to_freeze = []
if finetuning_args.freeze_vision_tower:
params_to_freeze.extend(["vision_model.blocks", "vision_model.patch_embed"])
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
if finetuning_args.freeze_multi_modal_projector:
params_to_freeze.extend(["multi_modal_projector"])
if finetuning_args.freeze_language_model:
params_to_freeze.extend(["embedding", "decoder", "output_layer"])
if params_to_freeze:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in params_to_freeze):
p.requires_grad_(False)
pad_to_max = training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
data_collator = SFTDataCollatorWith4DAttentionMask(
template=template,
padding="max_length" if pad_to_max else "longest",
@@ -239,9 +245,7 @@ def run_dpo(
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
data_args.cutoff_len -= 1
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
pad_to_max = training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
dpo_config = DPOConfig(
beta=finetuning_args.pref_beta,
pref_loss=finetuning_args.pref_loss,
@@ -289,4 +293,3 @@ def run_dpo(
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)

View File

@@ -71,13 +71,17 @@ def _training_function(config: dict[str, Any]) -> None:
raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
if finetuning_args.stage == "pt":
from .mca import run_pt as run_pt_mca
run_pt_mca(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":
from .mca import run_sft as run_sft_mca
run_sft_mca(model_args, data_args, training_args, finetuning_args, callbacks)
else: # dpo
elif finetuning_args.stage == "dpo":
from .mca import run_dpo as run_dpo_mca
run_dpo_mca(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft":