mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-02 08:33:38 +00:00
[misc] upgrade format to py39 (#7256)
This commit is contained in:
@@ -15,8 +15,9 @@
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
from collections.abc import AsyncGenerator, Sequence
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
@@ -76,15 +77,15 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
generating_args: dict[str, Any],
|
||||
messages: Sequence[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
input_kwargs: Optional[dict[str, Any]] = {},
|
||||
) -> tuple[dict[str, Any], int]:
|
||||
mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]}
|
||||
if images is not None:
|
||||
mm_input_dict.update({"images": images, "imglens": [len(images)]})
|
||||
@@ -130,7 +131,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None)
|
||||
|
||||
if stop is not None:
|
||||
logger.warning_rank0("Stop parameter is not supported by the huggingface engine yet.")
|
||||
@@ -217,15 +218,15 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
generating_args: dict[str, Any],
|
||||
messages: Sequence[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
input_kwargs: Optional[dict[str, Any]] = {},
|
||||
) -> list["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
model,
|
||||
tokenizer,
|
||||
@@ -272,14 +273,14 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
generating_args: dict[str, Any],
|
||||
messages: Sequence[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
input_kwargs: Optional[dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
model,
|
||||
@@ -317,12 +318,12 @@ class HuggingfaceEngine(BaseEngine):
|
||||
def _get_scores(
|
||||
model: "PreTrainedModelWrapper",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
batch_input: List[str],
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List[float]:
|
||||
batch_input: list[str],
|
||||
input_kwargs: Optional[dict[str, Any]] = {},
|
||||
) -> list[float]:
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
device = getattr(model.pretrained_model, "device", "cuda")
|
||||
inputs: Dict[str, "torch.Tensor"] = tokenizer(
|
||||
inputs: dict[str, torch.Tensor] = tokenizer(
|
||||
batch_input,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
@@ -330,21 +331,21 @@ class HuggingfaceEngine(BaseEngine):
|
||||
return_tensors="pt",
|
||||
add_special_tokens=False,
|
||||
).to(device)
|
||||
values: "torch.Tensor" = model(**inputs, return_dict=True, use_cache=False)[-1]
|
||||
values: torch.Tensor = model(**inputs, return_dict=True, use_cache=False)[-1]
|
||||
scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1))
|
||||
return scores
|
||||
|
||||
@override
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
messages: Sequence[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
) -> list["Response"]:
|
||||
if not self.can_generate:
|
||||
raise ValueError("The current model does not support `chat`.")
|
||||
|
||||
@@ -370,7 +371,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
@override
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
messages: Sequence[dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
@@ -408,9 +409,9 @@ class HuggingfaceEngine(BaseEngine):
|
||||
@override
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
batch_input: list[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
) -> list[float]:
|
||||
if self.can_generate:
|
||||
raise ValueError("Cannot get scores using an auto-regressive model.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user