[v1] add accelerator (#9607)

This commit is contained in:
Yaowei Zheng
2025-12-12 19:22:06 +08:00
committed by GitHub
parent 4fd94141a4
commit 203069e11c
36 changed files with 941 additions and 443 deletions

View File

@@ -13,12 +13,13 @@
# limitations under the License.
from typing import Callable, TypedDict
from typing import Any, Literal, TypedDict
from typing_extensions import NotRequired, Required
from typing_extensions import NotRequired
from ....extras import logging
from ...extras.types import DPOSample, Sample, SFTSample
from ...utils import logging
from ...utils.plugin import BasePlugin
from ...utils.types import DPOSample, Sample, SFTSample
logger = logging.get_logger(__name__)
@@ -26,35 +27,48 @@ logger = logging.get_logger(__name__)
class AlpacaSample(TypedDict, total=False):
system: NotRequired[str]
instruction: NotRequired[str]
instruction: str
input: NotRequired[str]
output: NotRequired[str]
output: str
ShareGPTMessage = TypedDict(
"ShareGPTMessage",
{
"from": Required[str], # Role of the message sender (e.g., "human", "gpt", "system")
"value": Required[str], # Content of the message
},
SharegptMessage = TypedDict(
"SharegptMessage", {"from": Literal["human", "gpt", "system", "function_call", "observation"], "value": str}
)
class ShareGPTSample(TypedDict, total=False):
"""Type definition for raw ShareGPT sample."""
class SharegptSample(TypedDict, total=False):
conversations: list[SharegptMessage]
tools: NotRequired[str]
conversations: Required[list[ShareGPTMessage]]
class OpenaiMessage(TypedDict, total=False):
role: Literal["user", "assistant", "tool"]
content: str
class OpenaiSample(TypedDict, total=False):
messages: list[OpenaiMessage]
class PairSample(TypedDict, total=False):
prompt: NotRequired[str]
chosen: NotRequired[list[dict]]
rejected: NotRequired[list[dict]]
chosen: list[OpenaiMessage]
rejected: list[OpenaiMessage]
class DataConverterPlugin(BasePlugin):
"""Plugin for data converters."""
def __call__(self, raw_sample: dict[str, Any]) -> Sample:
return super().__call__(raw_sample)
@DataConverterPlugin("alpaca").register
def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
"""Convert Alpaca sample to SFT sample.
See raw example at: https://huggingface.co/datasets/llamafactory/alpaca_gpt4_en
Args:
raw_sample (AlpacaSample): Alpaca sample.
@@ -67,20 +81,6 @@ def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
{"role": "system", "content": [{"type": "text", "value": raw_sample["system"]}], "loss_weight": 0.0}
)
if "history" in raw_sample:
for idx, item in enumerate(raw_sample["history"]):
if len(item) != 2:
logger.warning_rank0(
f"Warning: History item at index {idx} has invalid length (expected 2, got {len(item)}). Skipping."
)
continue
old_prompt, old_response = item
messages.append({"role": "user", "content": [{"type": "text", "value": old_prompt}], "loss_weight": 0.0})
messages.append(
{"role": "assistant", "content": [{"type": "text", "value": old_response}], "loss_weight": 1.0}
)
if "instruction" in raw_sample or "input" in raw_sample:
messages.append(
{
@@ -100,149 +100,85 @@ def alpaca_converter(raw_sample: AlpacaSample) -> SFTSample:
return {"messages": messages}
def sharegpt_converter(raw_sample: ShareGPTSample) -> SFTSample:
"""Converts a raw ShareGPT sample into a formatted SFT (Supervised Fine-Tuning) sample.
@DataConverterPlugin("sharegpt").register
def sharegpt_converter(raw_sample: SharegptSample) -> SFTSample:
"""Convert ShareGPT sample to SFT sample.
Retains only SFT-relevant scenarios and removes parity checks.
See raw example at: https://huggingface.co/datasets/llamafactory/glaive_toolcall_en
Args:
raw_sample (ShareGPTSample): A raw sample in ShareGPT format.
raw_sample (SharegptSample): ShareGPT sample.
Returns:
dict: A dictionary containing the formatted 'messages' list for SFT training.
Returns an empty list if the input data is invalid.
SFTSample: SFT sample.
"""
tag_mapping = {
"system": "system",
"human": "user",
"gpt": "assistant",
"observation": "observation",
"function_call": "function",
"observation": "tool",
"function_call": "assistant",
}
messages = raw_sample.get("conversations", [])
aligned_messages = []
system_content = ""
messages = []
tools = raw_sample.get("tools", "")
# Extract system message if present (typically the first message)
if messages and messages[0]["from"] == "system":
system_content = messages[0]["value"]
messages = messages[1:]
for message in raw_sample.get("conversations", []):
tag = message["from"]
if tag not in tag_mapping:
logger.warning_rank0(f"Unsupported role tag {tag} in message: {message}")
elif tag == "function_call":
messages.append(
{
"role": "assistant",
"content": [{"type": "tool_calls", "value": message["value"]}],
"loss_weight": 1.0,
}
)
else:
messages.append(
{
"role": tag_mapping[tag],
"content": [{"type": "text", "value": message["value"]}],
"loss_weight": 1.0 if tag == "gpt" else 0.0,
}
)
if system_content:
aligned_messages.append(
{"role": "system", "content": [{"type": "text", "value": system_content}], "loss_weight": 0.0}
)
if tools:
if messages and messages[0]["role"] == "system":
messages[0]["content"].append({"type": "tools", "value": tools})
else:
messages.insert(0, {"role": "system", "content": [{"type": "tools", "value": tools}], "loss_weight": 0.0})
has_invalid_role = False
for message in messages:
sender = message["from"]
# validate sender is in supported tags
if sender not in tag_mapping:
logger.warning_rank0(f"Unsupported role tag '{sender}' in message: {message}")
has_invalid_role = True
break
aligned_messages.append(
{
"role": tag_mapping[sender],
"content": [{"type": "text", "value": message["value"]}],
"loss_weight": 0.0 if sender in ("human", "observation") else 1.0,
}
)
if has_invalid_role:
logger.warning_rank0("Skipping invalid example due to unsupported role tags.")
return {"messages": []}
return {"messages": aligned_messages}
return {"messages": messages}
@DataConverterPlugin("pair").register
def pair_converter(raw_sample: PairSample) -> DPOSample:
"""Convert Pair sample to standard DPO sample.
"""Convert Pair sample to DPO sample.
See raw example at: https://huggingface.co/datasets/HuggingFaceH4/orca_dpo_pairs
Args:
raw_sample (PairSample): pair sample with prompt, chosen, rejected fields.
see raw example at: https://huggingface.co/datasets/HuggingFaceH4/orca_dpo_pairs
raw_sample (PairSample): pair sample with chosen, rejected fields.
Returns:
DPOSample: DPO sample with chosen_messages and rejected_messages.
see the standard DPO sample at: https://huggingface.co/datasets/frozenleaves/v1-dpo-demo/raw/main/v1-dpo-demo.jsonl
"""
chosen_messages = []
assert "chosen" in raw_sample, "chosen field is required in pair sample."
assert "rejected" in raw_sample, "rejected field is required in pair sample."
assert isinstance(raw_sample["chosen"], list) and isinstance(raw_sample["rejected"], list), (
"chosen and rejected field should be a list[dict], or you may need to implement your custom converter."
)
if "chosen" in raw_sample:
value = raw_sample.get("chosen", "")
for item in value:
if item.get("role", "") == "system":
chosen_messages.append(
{
"role": "system",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 0.0,
}
)
if item.get("role", "") == "user":
chosen_messages.append(
{
"role": "user",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 0.0,
}
)
if item.get("role", "") == "assistant":
chosen_messages.append(
{
"role": "assistant",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 1.0,
}
)
def process_message(raw_messages: list[OpenaiMessage]):
messages = []
for message in raw_messages:
messages.append(
{
"role": message["role"],
"content": [{"type": "text", "value": message["content"]}],
"loss_weight": 1.0 if message["role"] == "assistant" else 0.0,
}
)
rejected_messages = []
if "rejected" in raw_sample:
value = raw_sample.get("rejected", "")
for item in value:
if item.get("role", "") == "system":
rejected_messages.append(
{
"role": "system",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 0.0,
}
)
if item.get("role", "") == "user":
rejected_messages.append(
{
"role": "user",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 0.0,
}
)
if item.get("role", "") == "assistant":
rejected_messages.append(
{
"role": "assistant",
"content": [{"type": "text", "value": item.get("content", "")}],
"loss_weight": 1.0,
}
)
return messages
chosen_messages = process_message(raw_sample.get("chosen", []))
rejected_messages = process_message(raw_sample.get("rejected", []))
return {"chosen_messages": chosen_messages, "rejected_messages": rejected_messages}
CONVERTERS = {
"alpaca": alpaca_converter,
"pair": pair_converter,
"sharegpt": sharegpt_converter,
}
def get_converter(converter_name: str) -> Callable[[dict], Sample]:
if converter_name not in CONVERTERS:
raise ValueError(f"Converter {converter_name} not found.")
return CONVERTERS[converter_name]