mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-01-31 20:03:39 +00:00
[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
@@ -17,13 +17,13 @@ import sys
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union
|
||||
|
||||
import numpy as np
|
||||
from datasets import DatasetDict, load_dataset, load_from_disk
|
||||
from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras import logging
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.misc import check_version, has_tokenized_data
|
||||
from .converter import align_dataset
|
||||
from .data_utils import merge_dataset, split_dataset
|
||||
from .data_utils import get_dataset_module, merge_dataset, split_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .processor import (
|
||||
FeedbackDatasetProcessor,
|
||||
@@ -292,23 +292,12 @@ def get_dataset(
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
|
||||
tokenized_data: Union["Dataset", "DatasetDict"] = load_from_disk(data_args.tokenized_path)
|
||||
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
||||
|
||||
dataset_module: Dict[str, "Dataset"] = {}
|
||||
if isinstance(tokenized_data, DatasetDict):
|
||||
if "train" in tokenized_data:
|
||||
dataset_module["train_dataset"] = tokenized_data["train"]
|
||||
|
||||
if "validation" in tokenized_data:
|
||||
dataset_module["eval_dataset"] = tokenized_data["validation"]
|
||||
|
||||
else: # single dataset
|
||||
dataset_module["train_dataset"] = tokenized_data
|
||||
|
||||
tokenized_data = load_from_disk(data_args.tokenized_path)
|
||||
dataset_module = get_dataset_module(tokenized_data)
|
||||
if data_args.streaming:
|
||||
dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}
|
||||
dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
|
||||
|
||||
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
||||
return dataset_module
|
||||
|
||||
if data_args.streaming:
|
||||
@@ -335,27 +324,7 @@ def get_dataset(
|
||||
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
|
||||
)
|
||||
|
||||
if data_args.val_size > 1e-6:
|
||||
dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
|
||||
else:
|
||||
dataset_dict = {}
|
||||
if dataset is not None:
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
|
||||
dataset_dict["train"] = dataset
|
||||
|
||||
if eval_dataset is not None:
|
||||
if isinstance(eval_dataset, dict):
|
||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||
else:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
|
||||
dataset_dict["validation"] = eval_dataset
|
||||
|
||||
dataset_dict = DatasetDict(dataset_dict)
|
||||
|
||||
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
|
||||
if data_args.tokenized_path is not None: # save tokenized dataset to disk and exit
|
||||
if training_args.should_save:
|
||||
dataset_dict.save_to_disk(data_args.tokenized_path)
|
||||
@@ -364,19 +333,4 @@ def get_dataset(
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
dataset_module = {}
|
||||
if "train" in dataset_dict:
|
||||
dataset_module["train_dataset"] = dataset_dict["train"]
|
||||
|
||||
if "validation" in dataset_dict:
|
||||
dataset_module["eval_dataset"] = dataset_dict["validation"]
|
||||
else:
|
||||
eval_dataset = {}
|
||||
for key in dataset_dict.keys():
|
||||
if key.startswith("validation_"):
|
||||
eval_dataset[key[len("validation_") :]] = dataset_dict[key]
|
||||
|
||||
if len(eval_dataset):
|
||||
dataset_module["eval_dataset"] = eval_dataset
|
||||
|
||||
return dataset_module
|
||||
return get_dataset_module(dataset_dict)
|
||||
|
||||
Reference in New Issue
Block a user