mirror of
https://github.com/hiyouga/LlamaFactory.git
synced 2026-02-03 08:53:38 +00:00
add llava and instructblip
Former-commit-id: 142fb6f4541a1acfefe66ff2574dabde53b00c06
This commit is contained in:
@@ -1,21 +1,14 @@
|
||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
|
||||
|
||||
from ...data import split_dataset, get_mm_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
|
||||
from ...model import load_tokenizer, load_processor, load_mm_model
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
|
||||
from .collator import DataCollatorForVis2Seq
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
@@ -32,28 +25,27 @@ def run_sft_mm(
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
processor = load_processor(model_args)
|
||||
tokenizer = processor.tokenizer
|
||||
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
|
||||
tokenizer.chat_template = CHAT_TEMPLATE
|
||||
processor.tokenizer = tokenizer
|
||||
use_clm = True
|
||||
if "blip" in model_args.model_name_or_path:
|
||||
use_clm = False
|
||||
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train, use_clm=use_clm)
|
||||
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
splited_dataset = split_dataset(dataset, data_args, training_args)
|
||||
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
|
||||
columns=list(splited_dataset['train_dataset'].features.keys()))
|
||||
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
|
||||
columns=list(splited_dataset['eval_dataset'].features.keys()))
|
||||
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
|
||||
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
|
||||
train_dataset = dataset
|
||||
eval_dataset = dataset
|
||||
data_collator = DataCollatorForVis2Seq(
|
||||
processor=processor,
|
||||
use_qformer=model_args.use_qformer,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
@@ -67,7 +59,6 @@ def run_sft_mm(
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
||||
|
||||
Reference in New Issue
Block a user