[v1] add v1 launcher (#9236)

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Yaowei Zheng
2025-10-07 22:34:48 +08:00
committed by GitHub
parent 95b7188090
commit 10146029ba
26 changed files with 661 additions and 452 deletions

View File

@@ -12,46 +12,169 @@
# See the License for the specific language governing permissions and
# limitations under the License.
def run_api():
from llamafactory.api.app import run_api as _run_api
_run_api()
import os
import subprocess
import sys
from copy import deepcopy
def run_chat():
from llamafactory.chat.chat_model import run_chat as _run_chat
return _run_chat()
USAGE = (
"-" * 70
+ "\n"
+ "| Usage: |\n"
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
+ "| llamafactory-cli train -h: train models |\n"
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
+ "| llamafactory-cli env: show environment info |\n"
+ "| llamafactory-cli version: show version info |\n"
+ "| Hint: You can use `lmf` as a shortcut for `llamafactory-cli`. |\n"
+ "-" * 70
)
def run_eval():
raise NotImplementedError("Evaluation will be deprecated in the future.")
def launch():
from .extras import logging
from .extras.env import VERSION, print_env
from .extras.misc import find_available_port, get_device_count, is_env_enabled, use_ray
logger = logging.get_logger(__name__)
WELCOME = (
"-" * 58
+ "\n"
+ f"| Welcome to LLaMA Factory, version {VERSION}"
+ " " * (21 - len(VERSION))
+ "|\n|"
+ " " * 56
+ "|\n"
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
+ "-" * 58
)
def export_model():
from llamafactory.train.tuner import export_model as _export_model
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
# launch distributed training
nnodes = os.getenv("NNODES", "1")
node_rank = os.getenv("NODE_RANK", "0")
nproc_per_node = os.getenv("NPROC_PER_NODE", str(get_device_count()))
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
master_port = os.getenv("MASTER_PORT", str(find_available_port()))
logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
if int(nnodes) > 1:
logger.info_rank0(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
return _export_model()
# elastic launch support
max_restarts = os.getenv("MAX_RESTARTS", "0")
rdzv_id = os.getenv("RDZV_ID")
min_nnodes = os.getenv("MIN_NNODES")
max_nnodes = os.getenv("MAX_NNODES")
env = deepcopy(os.environ)
if is_env_enabled("OPTIM_TORCH", "1"):
# optimize DDP, see https://zhuanlan.zhihu.com/p/671834539
env["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
env["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
def run_exp():
from llamafactory.train.tuner import run_exp as _run_exp
if rdzv_id is not None:
# launch elastic job with fault tolerant support when possible
# see also https://docs.pytorch.org/docs/stable/elastic/train_script.html
rdzv_nnodes = nnodes
# elastic number of nodes if MIN_NNODES and MAX_NNODES are set
if min_nnodes is not None and max_nnodes is not None:
rdzv_nnodes = f"{min_nnodes}:{max_nnodes}"
return _run_exp() # use absolute import
process = subprocess.run(
(
"torchrun --nnodes {rdzv_nnodes} --nproc-per-node {nproc_per_node} "
"--rdzv-id {rdzv_id} --rdzv-backend c10d --rdzv-endpoint {master_addr}:{master_port} "
"--max-restarts {max_restarts} {file_name} {args}"
)
.format(
rdzv_nnodes=rdzv_nnodes,
nproc_per_node=nproc_per_node,
rdzv_id=rdzv_id,
master_addr=master_addr,
master_port=master_port,
max_restarts=max_restarts,
file_name=__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
else:
# NOTE: DO NOT USE shell=True to avoid security risk
process = subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
)
.format(
nnodes=nnodes,
node_rank=node_rank,
nproc_per_node=nproc_per_node,
master_addr=master_addr,
master_port=master_port,
file_name=__file__,
args=" ".join(sys.argv[1:]),
)
.split(),
env=env,
check=True,
)
sys.exit(process.returncode)
def run_web_demo():
from llamafactory.webui.interface import run_web_demo as _run_web_demo
elif command == "api":
from .api.app import run_api
return _run_web_demo()
run_api()
elif command == "chat":
from .chat.chat_model import run_chat
def run_web_ui():
from llamafactory.webui.interface import run_web_ui as _run_web_ui
run_chat()
return _run_web_ui()
elif command == "eval":
raise NotImplementedError("Evaluation will be deprecated in the future.")
elif command == "export":
from .train.tuner import export_model
export_model()
elif command == "train":
from .train.tuner import run_exp
run_exp()
elif command == "webchat":
from .webui.interface import run_web_demo
run_web_demo()
elif command == "webui":
from .webui.interface import run_web_ui
run_web_ui()
elif command == "env":
print_env()
elif command == "version":
print(WELCOME)
elif command == "help":
print(USAGE)
else:
print(f"Unknown command: {command}.\n{USAGE}")
if __name__ == "__main__":
from llamafactory.train.tuner import run_exp # use absolute import
run_exp()