106 lines
4.0 KiB
Python
106 lines
4.0 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
from dataclasses import dataclass, field
|
|
from typing import Literal, Optional, Union
|
|
|
|
from transformers import Seq2SeqTrainingArguments
|
|
from transformers.training_args import _convert_str_dict
|
|
|
|
from ..extras.misc import is_env_enabled, use_ray
|
|
from ..extras.packages import is_mcore_adapter_available
|
|
|
|
|
|
if is_env_enabled("USE_MCA"):
|
|
if not is_mcore_adapter_available():
|
|
raise ImportError(
|
|
"mcore_adapter is required when USE_MCA=1. Please install `mcore_adapter` and its dependencies."
|
|
)
|
|
|
|
from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
|
|
|
|
BaseTrainingArguments = McaSeq2SeqTrainingArguments
|
|
else:
|
|
BaseTrainingArguments = Seq2SeqTrainingArguments
|
|
|
|
|
|
@dataclass
|
|
class RayArguments:
|
|
r"""Arguments pertaining to the Ray training."""
|
|
|
|
ray_run_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The training results will be saved at `<ray_storage_path>/ray_run_name`."},
|
|
)
|
|
ray_storage_path: str = field(
|
|
default="./saves",
|
|
metadata={"help": "The storage path to save training results to"},
|
|
)
|
|
ray_storage_filesystem: Optional[Literal["s3", "gs", "gcs"]] = field(
|
|
default=None,
|
|
metadata={"help": "The storage filesystem to use. If None specified, local filesystem will be used."},
|
|
)
|
|
ray_num_workers: int = field(
|
|
default=1,
|
|
metadata={"help": "The number of workers for Ray training. Default is 1 worker."},
|
|
)
|
|
resources_per_worker: Union[dict, str] = field(
|
|
default_factory=lambda: {"GPU": 1},
|
|
metadata={"help": "The resources per worker for Ray training. Default is to use 1 GPU per worker."},
|
|
)
|
|
placement_strategy: Literal["SPREAD", "PACK", "STRICT_SPREAD", "STRICT_PACK"] = field(
|
|
default="PACK",
|
|
metadata={"help": "The placement strategy for Ray training. Default is PACK."},
|
|
)
|
|
ray_init_kwargs: Optional[Union[dict, str]] = field(
|
|
default=None,
|
|
metadata={"help": "The arguments to pass to ray.init for Ray training. Default is None."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
self.use_ray = use_ray()
|
|
if isinstance(self.resources_per_worker, str) and self.resources_per_worker.startswith("{"):
|
|
self.resources_per_worker = _convert_str_dict(json.loads(self.resources_per_worker))
|
|
|
|
if isinstance(self.ray_init_kwargs, str) and self.ray_init_kwargs.startswith("{"):
|
|
self.ray_init_kwargs = _convert_str_dict(json.loads(self.ray_init_kwargs))
|
|
|
|
if self.ray_storage_filesystem is not None:
|
|
if self.ray_storage_filesystem not in ["s3", "gs", "gcs"]:
|
|
raise ValueError(
|
|
f"ray_storage_filesystem must be one of ['s3', 'gs', 'gcs'], got {self.ray_storage_filesystem}."
|
|
)
|
|
|
|
import pyarrow.fs as fs
|
|
|
|
if self.ray_storage_filesystem == "s3":
|
|
self.ray_storage_filesystem = fs.S3FileSystem()
|
|
elif self.ray_storage_filesystem == "gs" or self.ray_storage_filesystem == "gcs":
|
|
self.ray_storage_filesystem = fs.GcsFileSystem()
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments(RayArguments, BaseTrainingArguments):
|
|
r"""Arguments pertaining to the trainer."""
|
|
|
|
overwrite_output_dir: bool = field(
|
|
default=False,
|
|
metadata={"help": "deprecated"},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
RayArguments.__post_init__(self)
|
|
BaseTrainingArguments.__post_init__(self)
|