Files
LLaMA-Factory/src/llamafactory/model/model_utils/liger_kernel.py
hiyouga c62a6ca59d refactor mm training
Former-commit-id: 179c0558699e287cbf38a2d73bff47e86d589c5a
2024-08-30 02:14:31 +08:00

53 lines
2.2 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PretrainedConfig
from ...hparams import ModelArguments
logger = get_logger(__name__)
def configure_liger_kernel(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.enable_liger_kernel:
return
if getattr(config, "model_type", None) == "gemma":
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
elif getattr(config, "model_type", None) == "gemma2":
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel
elif getattr(config, "model_type", None) == "llama":
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
elif getattr(config, "model_type", None) == "mistral":
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
elif getattr(config, "model_type", None) == "mixtral":
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
elif getattr(config, "model_type", None) == "phi3":
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel
elif getattr(config, "model_type", None) == "qwen2":
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
else:
logger.warning("Current model does not support liger kernel.")
return
apply_liger_kernel()
logger.info("Liger kernel has been applied to the model.")