Files
LLaMA-Factory/src/llamafactory/data/mm_plugin.py
hiyouga bae73e676c add image num check
Former-commit-id: 15201113bf16b748c0a758c7a5b363da8272e0e6
2024-09-02 01:31:36 +08:00

263 lines
8.7 KiB
Python

from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from PIL.Image import Image
from transformers import ProcessorMixin
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.packages import is_pillow_available
if is_pillow_available():
import torch
from PIL import Image
if TYPE_CHECKING:
from PIL.Image import Image as ImageObject
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
def _regularize_images(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> List["ImageObject"]:
r"""
Regularizes images to avoid error. Including resizing and mode convert.
"""
images = images[:]
image_resolution = getattr(processor, "image_resolution", 512)
for i in range(len(images)):
if max(images[i].width, images[i].height) > image_resolution:
factor = image_resolution / max(images[i].width, images[i].height)
images[i] = images[i].resize((int(images[i].width * factor), int(images[i].height * factor)))
if images[i].mode != "RGB":
images[i] = images[i].convert("RGB")
return images
def _get_mm_inputs(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs.
Returns: (llava and paligemma)
pixel_values: tensor with shape (B, C, H, W)
Returns: (qwen2-vl)
pixel_values: tensor with shape (num_patches, patch_dim)
image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height
It holds num_patches == torch.prod(image_grid_thw)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
if len(images) != 0:
images = _regularize_images(images, processor)
image_inputs = image_processor(images=images, return_tensors="pt")
else: # add NoneType for fake images
image = Image.new("RGB", (64, 64), (255, 255, 255))
image_inputs = image_processor(images=[image], return_tensors="pt")
image_inputs = {key: None for key in image_inputs.keys()}
return image_inputs
def _get_paligemma_token_type_ids(
images: Sequence["ImageObject"], input_len: int, processor: "ProcessorMixin"
) -> List[List[int]]:
r"""
Gets paligemma token type ids for computing loss.
Returns:
token_type_ids: shape (1, seq_len)
"""
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen")
return [[0] * image_seqlen + [1] * (input_len - image_seqlen)]
class BasePlugin:
def __init__(self, image_token: str) -> None:
self.image_token = image_token
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
Pre-processes input messages before tokenization for VLMs.
"""
return messages
def process_token_ids(
self,
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageObject"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
r"""
Pre-processes token ids after tokenization for VLMs.
"""
return input_ids, labels
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
r"""
Builds batched multimodal inputs for VLMs.
"""
return {}
class LlavaPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
num_images = 0
image_seqlen = getattr(processor, "image_seqlen")
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_images += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", self.image_token * image_seqlen)
if len(images) != num_images:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
return _get_mm_inputs(images, processor)
class PaliGemmaPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
num_images = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_images += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", "")
if len(images) != num_images:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
def process_token_ids(
self,
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageObject"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen")
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
input_ids = [image_token_id] * image_seqlen + input_ids
if labels is not None:
labels = [IGNORE_INDEX] * image_seqlen + labels
return input_ids, labels
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
mm_inputs = _get_mm_inputs(images, processor)
for feature_name, feature_length in feature_seqlens.items():
mm_inputs[feature_name] = _get_paligemma_token_type_ids(images, feature_length, processor)
return mm_inputs
class Qwen2vlPlugin(BasePlugin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageObject"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if len(images) > 0:
image_grid_thw = _get_mm_inputs(images, processor)["image_grid_thw"]
else:
image_grid_thw = []
num_images = 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
if num_images >= len(image_grid_thw):
raise ValueError("`len(images)` is less than the number of {} tokens.".format(IMAGE_PLACEHOLDER))
content = content.replace(
IMAGE_PLACEHOLDER,
"<|vision_start|>{}<|vision_end|>".format(
self.image_token * (image_grid_thw[num_images].prod() // merge_length)
),
1,
)
num_images += 1
message["content"] = content
if len(images) != num_images:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
return messages
def get_mm_inputs(
self,
images: Sequence["ImageObject"],
feature_seqlens: Dict[str, int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Any]:
return _get_mm_inputs(images, processor)
PLUGINS = {
"base": BasePlugin,
"llava": LlavaPlugin,
"paligemma": PaliGemmaPlugin,
"qwen2_vl": Qwen2vlPlugin,
}
def get_mm_plugin(name: str, image_token: str) -> "BasePlugin":
plugin_class = PLUGINS.get(name, None)
if plugin_class is None:
raise ValueError("Multimodal plugin `{}` not found.".format(name))
return plugin_class(image_token)