Files
LLaMA-Factory/src/llmtuner/model/utils/visual.py
hoshi-hiyouga 36a4224bf5 Update visual.py
Former-commit-id: f5f13a995c64fc374ad05e26cde8efa6651aefa1
2024-05-15 16:39:57 +08:00

58 lines
2.3 KiB
Python

from typing import TYPE_CHECKING, Tuple
import torch
import transformers.models
from transformers.activations import ACT2FN
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
from ...hparams import ModelArguments
logger = get_logger(__name__)
class LlavaMultiModalProjector(torch.nn.Module):
def __init__(self, config: "LlavaConfig"):
super().__init__()
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_3(hidden_states)
hidden_states = self.linear_4(hidden_states)
return hidden_states
def autocast_projector_dtype(
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector"
) -> None:
def _mm_projector_forward_post_hook(
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
) -> "torch.Tensor":
return output.to(model_args.compute_dtype)
if hasattr(model, mm_projector_name) and getattr(model.config, "quantization_method", None):
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
def configure_visual_model(config: "PretrainedConfig") -> None:
if getattr(config, "model_type", None) == "llava":
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
if getattr(config, "is_yi_vl_derived_model", None):
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjector