73 lines
2.6 KiB
Python
73 lines
2.6 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from types import MethodType
|
|
from typing import TYPE_CHECKING, Optional
|
|
|
|
import torch
|
|
from transformers import Trainer
|
|
from typing_extensions import override
|
|
|
|
from ...extras.packages import is_transformers_version_greater_than
|
|
from ..callbacks import SaveProcessorCallback
|
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import ProcessorMixin
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
class CustomTrainer(Trainer):
|
|
r"""Inherit Trainer for custom optimizer."""
|
|
|
|
def __init__(
|
|
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
|
) -> None:
|
|
if is_transformers_version_greater_than("4.46"):
|
|
kwargs["processing_class"] = kwargs.pop("tokenizer")
|
|
|
|
super().__init__(**kwargs)
|
|
self.finetuning_args = finetuning_args
|
|
|
|
if processor is not None:
|
|
self.add_callback(SaveProcessorCallback(processor))
|
|
|
|
if finetuning_args.use_badam:
|
|
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
|
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
|
self.add_callback(BAdamCallback)
|
|
|
|
@override
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
@override
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
@override
|
|
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
|
|
if self.finetuning_args.disable_shuffling:
|
|
return torch.utils.data.SequentialSampler(self.train_dataset)
|
|
|
|
return super()._get_train_sampler()
|