Files
LLaMA-Factory/src/llamafactory/train/mca/workflow.py
Kingsley 13170577b2 [feat] support megatron-LM training by mcore_adapter (#9237)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-26 16:21:30 +08:00

293 lines
11 KiB
Python

# Copyright 2025 the ROLL team and the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MCA (mcore_adapter) workflows for PT/SFT/DPO stages, aligned with LLaMA-Factory's workflow style."""
from __future__ import annotations
import functools
from collections.abc import Sequence
from copy import deepcopy
from typing import TYPE_CHECKING, Any
from ...data import (
SFTDataCollatorWith4DAttentionMask,
get_dataset,
get_template_and_fix_tokenizer,
)
from ...data.collator import (
PairwiseDataCollatorWithPadding,
)
from ...extras.constants import IGNORE_INDEX, MCA_SUPPORTED_MODELS
from ...extras.logging import get_logger
from ...extras.misc import calculate_tps
from ...extras.packages import is_mcore_adapter_available
from ...extras.ploting import plot_loss
from ...model import load_tokenizer
from ..callbacks import SaveProcessorCallback
if not is_mcore_adapter_available():
raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
from mcore_adapter.models import AutoConfig, AutoModel
from mcore_adapter.trainer import DPOTrainer as McaDPOTrainer
from mcore_adapter.trainer import McaTrainer
from mcore_adapter.trainer.dpo_config import DPOConfig
from mcore_adapter.training_args import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
if TYPE_CHECKING:
from transformers import DataCollatorForSeq2Seq, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
logger = get_logger(__name__)
def _data_collator_wrapper(data_collator: Any):
@functools.wraps(data_collator)
def wrapper(features: Sequence[dict[str, Any]]):
labels_key = [k for k in features[0].keys() if k.endswith("labels")]
input_ids_key = [k for k in features[0].keys() if k.endswith("input_ids")]
for feature in features:
if len(labels_key) == 0: # pt
feature["labels"] = deepcopy(feature["input_ids"])[1:]
for k in labels_key:
feature[k] = feature[k][1:]
for k in input_ids_key:
feature[k] = feature[k][:-1]
for k in ["attention_mask", "position_ids"]:
if k in feature:
feature[k] = feature[k][:-1]
return data_collator(features)
return wrapper
def _check_model_support(model_args: ModelArguments):
from transformers import AutoConfig as HfAutoConfig
config = HfAutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
if config.model_type not in MCA_SUPPORTED_MODELS:
raise ValueError(f"Model {config.model_type} is not supported by MCA.")
def run_pt(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="pt", **tokenizer_module)
data_args.cutoff_len -= 1
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
from transformers import DataCollatorForSeq2Seq
data_collator: DataCollatorForSeq2Seq = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
if training_args.do_train:
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)
def run_sft(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
# align packing flags
# TODO: FIX SequencePacking
data_args.neat_packing = training_args.sequence_packing = data_args.neat_packing or training_args.sequence_packing
data_args.packing = data_args.neat_packing or data_args.packing
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
data_args.cutoff_len -= 1
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
# optional freezing for qwen2_vl, qwen2_5_vl
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_vision_tower:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["vision_model.blocks", "vision_model.patch_embed"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_multi_modal_projector:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["multi_modal_projector"]):
p.requires_grad_(False)
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_language_model:
for name, p in model.named_parameters():
if any(name.startswith(k) for k in ["embedding", "decoder", "output_layer"]):
p.requires_grad_(False)
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
data_collator = SFTDataCollatorWith4DAttentionMask(
template=template,
padding="max_length" if pad_to_max else "longest",
max_length=data_args.cutoff_len if pad_to_max else None,
pad_to_multiple_of=64,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)
def run_dpo(
model_args: ModelArguments,
data_args: DataArguments,
training_args: McaSeq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: list[TrainerCallback] | None = None,
):
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template = get_template_and_fix_tokenizer(tokenizer, data_args)
_check_model_support(model_args)
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
if finetuning_args.use_ref_model:
ref_config = AutoConfig.from_pretrained(model_args.model_name_or_path, training_args)
ref_model = AutoModel.from_config(ref_config)
ref_model.load_state_dict(model.state_dict())
else:
ref_model = None
# dataset needs +1 then cut back due to MCA shift logic
data_args.cutoff_len += 1
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
data_args.cutoff_len -= 1
pad_to_max = (
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
)
dpo_config = DPOConfig(
beta=finetuning_args.pref_beta,
pref_loss=finetuning_args.pref_loss,
label_smoothing=finetuning_args.dpo_label_smoothing,
)
data_collator = PairwiseDataCollatorWithPadding(
template=template,
pad_to_multiple_of=64,
padding="max_length" if pad_to_max else "longest",
max_length=data_args.cutoff_len if pad_to_max else None,
label_pad_token_id=IGNORE_INDEX,
**tokenizer_module,
)
data_collator = _data_collator_wrapper(data_collator)
trainer = McaDPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_config=dpo_config,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**dataset_module,
)
if "processor" in tokenizer_module and tokenizer_module["processor"] is not None:
trainer.add_callback(SaveProcessorCallback(tokenizer_module["processor"]))
train_result = trainer.train(training_args.resume_from_checkpoint)
trainer.save_model()
if finetuning_args.include_effective_tokens_per_second:
train_result.metrics["effective_tokens_per_sec"] = calculate_tps(
dataset_module["train_dataset"], train_result.metrics, stage="rm"
)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
keys = ["loss", "rewards/accuracies"]
if isinstance(dataset_module.get("eval_dataset"), dict):
keys += [f"eval_{key}_loss" for key in dataset_module["eval_dataset"].keys()]
else:
keys += ["eval_loss"]
plot_loss(training_args.output_dir, keys=keys)