https://github.com/huggingface/trl/pull/1491 Former-commit-id: 3b15d495264b00a4f8716bafea334778874963d7
151 lines
6.6 KiB
Python
151 lines
6.6 KiB
Python
from collections import defaultdict
|
|
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import Trainer
|
|
from trl import DPOTrainer
|
|
from trl.trainer.utils import disable_dropout_in_model
|
|
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from ..utils import create_custom_optimzer, create_custom_scheduler
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel
|
|
|
|
from ...hparams import FinetuningArguments
|
|
|
|
|
|
class CustomORPOTrainer(DPOTrainer):
|
|
def __init__(
|
|
self,
|
|
model: Union["PreTrainedModel", "torch.nn.Module"],
|
|
finetuning_args: "FinetuningArguments",
|
|
disable_dropout: bool = True,
|
|
**kwargs,
|
|
):
|
|
if disable_dropout:
|
|
disable_dropout_in_model(model)
|
|
|
|
self.finetuning_args = finetuning_args
|
|
self.reference_free = False
|
|
self.use_dpo_data_collator = True # hack to avoid warning
|
|
self.generate_during_eval = False # disable at evaluation
|
|
self.label_pad_token_id = IGNORE_INDEX
|
|
self.padding_value = 0
|
|
self.is_encoder_decoder = model.config.is_encoder_decoder
|
|
self.precompute_ref_log_probs = False
|
|
self._precomputed_train_ref_log_probs = False
|
|
self._precomputed_eval_ref_log_probs = False
|
|
self._peft_has_been_casted_to_bf16 = False
|
|
|
|
self.beta = finetuning_args.orpo_beta
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
|
|
|
Trainer.__init__(self, model=model, **kwargs)
|
|
|
|
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
if self.optimizer is None:
|
|
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
|
return super().create_optimizer()
|
|
|
|
def create_scheduler(
|
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
|
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
|
r"""
|
|
Computes supervised cross-entropy loss of given labels under the given logits.
|
|
|
|
Returns:
|
|
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
|
"""
|
|
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
|
return -all_logps
|
|
|
|
# Borrowed from:
|
|
# https://github.com/huggingface/trl/blob/0ee349dcd43b0f4b3169449f16751c38ac4a609f/trl/trainer/orpo_trainer.py#L592
|
|
def odds_ratio_loss(
|
|
self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor"
|
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
|
r"""
|
|
Computes ORPO's odds ratio (OR) loss.
|
|
|
|
Args:
|
|
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
|
|
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
|
|
|
|
Returns:
|
|
A tuple of five tensors: (losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen).
|
|
"""
|
|
|
|
# Derived from Eqs. (4) and (7) from https://arxiv.org/abs/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x)
|
|
log_odds = (chosen_logps - rejected_logps) - (
|
|
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
|
)
|
|
ratio = F.logsigmoid(log_odds)
|
|
losses = self.beta * ratio
|
|
|
|
chosen_rewards = self.beta * chosen_logps.detach()
|
|
rejected_rewards = self.beta * rejected_logps.detach()
|
|
|
|
return losses, chosen_rewards, rejected_rewards, ratio, log_odds
|
|
|
|
def concatenated_forward(
|
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
|
all_logits = model(
|
|
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True
|
|
).logits.to(torch.float32)
|
|
|
|
all_logps = self.get_batch_logps(
|
|
all_logits,
|
|
batch["labels"],
|
|
average_log_prob=False,
|
|
label_pad_token_id=self.label_pad_token_id,
|
|
)
|
|
batch_size = batch["input_ids"].size(0) // 2
|
|
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
|
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
|
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
|
|
|
def get_batch_loss_metrics(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
batch: Dict[str, "torch.Tensor"],
|
|
train_eval: Literal["train", "eval"] = "train",
|
|
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
|
r"""
|
|
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
|
|
"""
|
|
metrics = {}
|
|
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
|
|
|
|
losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss(
|
|
chosen_logps, rejected_logps
|
|
)
|
|
batch_size = batch["input_ids"].size(0) // 2
|
|
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
|
sft_loss = self.sft_loss(chosen_logits, chosen_labels)
|
|
batch_loss = (sft_loss - losses).mean()
|
|
|
|
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
|
|
|
prefix = "eval_" if train_eval == "eval" else ""
|
|
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean()
|
|
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean()
|
|
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean()
|
|
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean()
|
|
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().cpu().mean()
|
|
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().cpu().mean()
|
|
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().cpu().mean()
|
|
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().cpu().mean()
|
|
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().cpu().mean()
|
|
metrics["{}log_odds_ratio".format(prefix)] = log_odds_ratio.detach().cpu().mean()
|
|
metrics["{}log_odds_chosen".format(prefix)] = log_odds_chosen.detach().cpu().mean()
|
|
|
|
return batch_loss, metrics
|