# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py from typing import TYPE_CHECKING, Optional, List from transformers import DataCollatorForSeq2Seq from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.misc import get_logits_processor from llmtuner.extras.ploting import plot_loss from llmtuner.tuner.core import load_model_and_tokenizer from llmtuner.tuner.sft.metric import ComputeMetrics from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments def run_sft( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft") data_collator = DataCollatorForSeq2Seq( tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id ) # Override the decoding parameters of Seq2SeqTrainer training_args.generation_max_length = training_args.generation_max_length if \ training_args.generation_max_length is not None else data_args.max_target_length training_args.generation_num_beams = data_args.eval_num_beams if \ data_args.eval_num_beams is not None else training_args.generation_num_beams # Initialize our Trainer trainer = Seq2SeqPeftTrainer( finetuning_args=finetuning_args, model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, **split_dataset(dataset, data_args, training_args) ) # Keyword arguments for `model.generate` gen_kwargs = { "do_sample": True, "top_p": 0.7, "max_new_tokens": data_args.max_target_length + 1, "temperature": 0.95, "logits_processor": get_logits_processor() } # Training if training_args.do_train: train_result = trainer.train() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled metrics.pop("eval_loss", None) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled predict_results.metrics.pop("predict_loss", None) trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(predict_results)