from typing import Dict, Optional, Tuple import gradio as gr from gradio.blocks import Block from gradio.components import Component from llmtuner.webui.chat import WebChatModel def create_chat_box( chat_model: WebChatModel, visible: Optional[bool] = False ) -> Tuple[Block, Component, Component, Dict[str, Component]]: with gr.Box(visible=visible) as chat_box: chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): query = gr.Textbox(show_label=False, lines=8) with gr.Column(min_width=32, scale=1): submit_btn = gr.Button(variant="primary") with gr.Column(scale=1): clear_btn = gr.Button() max_new_tokens = gr.Slider( 10, 2048, value=chat_model.generating_args.max_new_tokens, step=1, interactive=True ) top_p = gr.Slider(0.01, 1, value=chat_model.generating_args.top_p, step=0.01, interactive=True) temperature = gr.Slider( 0.01, 1.5, value=chat_model.generating_args.temperature, step=0.01, interactive=True ) history = gr.State([]) submit_btn.click( chat_model.predict, [chatbot, query, history, max_new_tokens, top_p, temperature], [chatbot, history], show_progress=True ).then( lambda: gr.update(value=""), outputs=[query] ) clear_btn.click(lambda: ([], []), outputs=[chatbot, history], show_progress=True) return chat_box, chatbot, history, dict( query=query, submit_btn=submit_btn, clear_btn=clear_btn, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature )