from collections import defaultdict from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union import torch import torch.nn.functional as F from transformers import Trainer from trl import DPOTrainer from trl.trainer.utils import disable_dropout_in_model from ...extras.constants import IGNORE_INDEX from ..utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: from transformers import PreTrainedModel from ...hparams import FinetuningArguments class CustomORPOTrainer(DPOTrainer): def __init__( self, model: Union["PreTrainedModel", "torch.nn.Module"], finetuning_args: "FinetuningArguments", disable_dropout: bool = True, **kwargs, ): if disable_dropout: disable_dropout_in_model(model) self.finetuning_args = finetuning_args self.reference_free = False self.use_dpo_data_collator = True # hack to avoid warning self.generate_during_eval = False # disable at evaluation self.label_pad_token_id = IGNORE_INDEX self.padding_value = 0 self.is_encoder_decoder = model.config.is_encoder_decoder self.precompute_ref_log_probs = False self._precomputed_train_ref_log_probs = False self._precomputed_eval_ref_log_probs = False self._peft_has_been_casted_to_bf16 = False self.beta = finetuning_args.orpo_beta self._stored_metrics = defaultdict(lambda: defaultdict(list)) Trainer.__init__(self, model=model, **kwargs) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor": r""" Computes supervised cross-entropy loss of given labels under the given logits. Returns: A tensor of shape (batch_size,) containing the cross-entropy loss of each samples. """ all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True) return -all_logps # Borrowed from: # https://github.com/huggingface/trl/blob/0ee349dcd43b0f4b3169449f16751c38ac4a609f/trl/trainer/orpo_trainer.py#L592 def odds_ratio_loss( self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor" ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: r""" Computes ORPO's odds ratio (OR) loss. Args: policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) Returns: A tuple of five tensors: (losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen). """ # Derived from Eqs. (4) and (7) from https://arxiv.org/abs/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x) log_odds = (chosen_logps - rejected_logps) - ( torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps)) ) ratio = F.logsigmoid(log_odds) losses = self.beta * ratio chosen_rewards = self.beta * chosen_logps.detach() rejected_rewards = self.beta * rejected_logps.detach() return losses, chosen_rewards, rejected_rewards, ratio, log_odds def concatenated_forward( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: all_logits = model( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True ).logits.to(torch.float32) all_logps = self.get_batch_logps( all_logits, batch["labels"], average_log_prob=False, label_pad_token_id=self.label_pad_token_id, ) batch_size = batch["input_ids"].size(0) // 2 chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) return chosen_logps, rejected_logps, chosen_logits, rejected_logits def get_batch_loss_metrics( self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], train_eval: Literal["train", "eval"] = "train", ) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: r""" Computes the ORPO loss and other metrics for the given batch of inputs for train or test. """ metrics = {} chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch) losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss( chosen_logps, rejected_logps ) batch_size = batch["input_ids"].size(0) // 2 chosen_labels, _ = batch["labels"].split(batch_size, dim=0) sft_loss = self.sft_loss(chosen_logits, chosen_labels) batch_loss = (sft_loss - losses).mean() reward_accuracies = (chosen_rewards > rejected_rewards).float() prefix = "eval_" if train_eval == "eval" else "" metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean() metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean() metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean() metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean() metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().cpu().mean() metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().cpu().mean() metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().cpu().mean() metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().cpu().mean() metrics["{}sft_loss".format(prefix)] = sft_loss.detach().cpu().mean() metrics["{}log_odds_ratio".format(prefix)] = log_odds_ratio.detach().cpu().mean() metrics["{}log_odds_chosen".format(prefix)] = log_odds_chosen.detach().cpu().mean() return batch_loss, metrics