Compare commits
276 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e2299e261b | ||
|
|
8a44dce326 | ||
|
|
6d9233833b | ||
|
|
d019603835 | ||
|
|
478e8194d9 | ||
|
|
1890d3dafe | ||
|
|
522a3e8493 | ||
|
|
18968405d0 | ||
|
|
71a1c1321a | ||
|
|
cf58a6d860 | ||
|
|
9adc0a2c3f | ||
|
|
16419b2834 | ||
|
|
82a2bac866 | ||
|
|
151ef48b40 | ||
|
|
a255c3a476 | ||
|
|
f4ec4fa6ad | ||
|
|
2635794727 | ||
|
|
d2f845d70d | ||
|
|
bb8aba5abf | ||
|
|
9f16c50155 | ||
|
|
25bb9f5ad9 | ||
|
|
7b985f55db | ||
|
|
fd0357a26d | ||
|
|
31f9daa362 | ||
|
|
15ea576246 | ||
|
|
19a6916d80 | ||
|
|
585c475f71 | ||
|
|
e62dae37fe | ||
|
|
11672f760d | ||
|
|
b9f84900ee | ||
|
|
5f65558088 | ||
|
|
0f54a78144 | ||
|
|
2986bef530 | ||
|
|
065f7fb5da | ||
|
|
c1d5073bd3 | ||
|
|
ee46011b34 | ||
|
|
d55f420206 | ||
|
|
fcf75633a0 | ||
|
|
e77ced045d | ||
|
|
331f53381f | ||
|
|
1d675a287d | ||
|
|
be33ef67fb | ||
|
|
f5cd17881e | ||
|
|
c09b648934 | ||
|
|
f2fd9d1b25 | ||
|
|
167342af8a | ||
|
|
76f9bd1820 | ||
|
|
a893505924 | ||
|
|
ed25e051a9 | ||
|
|
5e5fc337f9 | ||
|
|
58e9ca8aa0 | ||
|
|
a4c4b8496f | ||
|
|
38c9641777 | ||
|
|
8b8fdb3a85 | ||
|
|
290057069e | ||
|
|
46203856fc | ||
|
|
80b89978d9 | ||
|
|
5a221d91f9 | ||
|
|
3a3f4072e5 | ||
|
|
0c0cdc26bc | ||
|
|
2581cc844b | ||
|
|
d58fcd094e | ||
|
|
86063e27ea | ||
|
|
88eafd865b | ||
|
|
3f7bd98bfa | ||
|
|
b72c4bd118 | ||
|
|
808ff89a2d | ||
|
|
6d7f1299bd | ||
|
|
0420a608ca | ||
|
|
2047eab723 | ||
|
|
e11b40c344 | ||
|
|
b869506a57 | ||
|
|
72d5b06b08 | ||
|
|
94726bdc8d | ||
|
|
4d1791e905 | ||
|
|
528e06ccaa | ||
|
|
fec641ec82 | ||
|
|
8f401e37f8 | ||
|
|
9feb78e7b4 | ||
|
|
c2022431aa | ||
|
|
0817c24c04 | ||
|
|
cfb926fb84 | ||
|
|
34746d6151 | ||
|
|
5bb447b118 | ||
|
|
a28261a866 | ||
|
|
800de98dc8 | ||
|
|
222423bcef | ||
|
|
e71737351f | ||
|
|
4f298894da | ||
|
|
a8fae3869d | ||
|
|
db9b977e4f | ||
|
|
87d685b59f | ||
|
|
e4046bdd1f | ||
|
|
5baa3add8c | ||
|
|
332f637592 | ||
|
|
31daa6570b | ||
|
|
33525a34b6 | ||
|
|
3607caa2ad | ||
|
|
0fc2e19279 | ||
|
|
ef994600db | ||
|
|
7638f1070e | ||
|
|
c2120432db | ||
|
|
66184762e8 | ||
|
|
41a9e231cb | ||
|
|
1bb06e06df | ||
|
|
381f7120e6 | ||
|
|
f7857c83e1 | ||
|
|
d0da6f40b0 | ||
|
|
28d145a066 | ||
|
|
ae32c148d1 | ||
|
|
2a05941b14 | ||
|
|
11c38b9173 | ||
|
|
73c1c15b62 | ||
|
|
7f58bf984f | ||
|
|
ec552372ba | ||
|
|
17d32fb5c7 | ||
|
|
4b61610b12 | ||
|
|
07798e4aad | ||
|
|
6d6acd0213 | ||
|
|
a789e0f263 | ||
|
|
f9ee00b6b6 | ||
|
|
31bfdb08cd | ||
|
|
12c83e00fc | ||
|
|
9dc7b6c7ac | ||
|
|
627548bf7f | ||
|
|
dc65ecdf09 | ||
|
|
e577990eb2 | ||
|
|
1f3b729a4b | ||
|
|
0aa7ac210f | ||
|
|
40382f1387 | ||
|
|
75b3819e43 | ||
|
|
e63c2df0b1 | ||
|
|
25d4889789 | ||
|
|
8c0a721c4c | ||
|
|
9e972bc9ec | ||
|
|
1675712a4c | ||
|
|
e0c9012f7f | ||
|
|
a25024bd0c | ||
|
|
867980196e | ||
|
|
4e25d037c8 | ||
|
|
6ba6926221 | ||
|
|
b6b53b61f7 | ||
|
|
647c51a772 | ||
|
|
3b843ac9d4 | ||
|
|
0ef1f981da | ||
|
|
944a2aec4d | ||
|
|
4f31ad997c | ||
|
|
8683582300 | ||
|
|
5ccc607222 | ||
|
|
d8bd46f1bf | ||
|
|
8c2a712247 | ||
|
|
53e41bf2c7 | ||
|
|
0eeae9061c | ||
|
|
08729dbefc | ||
|
|
2c120aa0df | ||
|
|
cca6286b6f | ||
|
|
8516054e4d | ||
|
|
d1a8cd67d2 | ||
|
|
8a5b4bdfd4 | ||
|
|
3bceef02ee | ||
|
|
166a830938 | ||
|
|
18767fe026 | ||
|
|
18a1a4b9da | ||
|
|
6015fe700e | ||
|
|
369dae8dd3 | ||
|
|
2aaf3697d7 | ||
|
|
5504b5254c | ||
|
|
b2e4f11602 | ||
|
|
e3f95abca7 | ||
|
|
2f44f70c2c | ||
|
|
f8f05a883b | ||
|
|
5f473e2696 | ||
|
|
88b1874c04 | ||
|
|
58bc6943dc | ||
|
|
2dedf7b401 | ||
|
|
5769a553d2 | ||
|
|
552816e04b | ||
|
|
b5fa1044b8 | ||
|
|
3c55976a0e | ||
|
|
4611f67fae | ||
|
|
a5346041bb | ||
|
|
df42e438c1 | ||
|
|
7dbfd7dff6 | ||
|
|
a897d46049 | ||
|
|
adff887659 | ||
|
|
eba78f2159 | ||
|
|
ec05c8cdb4 | ||
|
|
0a869c4ed4 | ||
|
|
f792eaf8d4 | ||
|
|
8a41c96761 | ||
|
|
e5d9d8c55d | ||
|
|
3e44c8fe3a | ||
|
|
925e421bde | ||
|
|
bbb636bdba | ||
|
|
a30bdbb1c0 | ||
|
|
95b7e10a06 | ||
|
|
0385c60177 | ||
|
|
44895ebe36 | ||
|
|
44dfbf9dbd | ||
|
|
0a465fc3ca | ||
|
|
01eeae50b5 | ||
|
|
7eeeffdb8a | ||
|
|
eca06531c3 | ||
|
|
d90b40b60f | ||
|
|
1898c1e9a6 | ||
|
|
8d2f8b0dd8 | ||
|
|
df42281256 | ||
|
|
896cf476d5 | ||
|
|
37961d5f06 | ||
|
|
bb047bc844 | ||
|
|
448adedf6a | ||
|
|
469c7cd462 | ||
|
|
ebf6a07681 | ||
|
|
53f0fff513 | ||
|
|
ab7567693d | ||
|
|
1b8aab0723 | ||
|
|
30ebe61914 | ||
|
|
6f1c8dacea | ||
|
|
8881237475 | ||
|
|
584755be4b | ||
|
|
3d3324be5c | ||
|
|
4196d5b4d6 | ||
|
|
101c95ce65 | ||
|
|
19ebc0e7a2 | ||
|
|
1ce15b5d9e | ||
|
|
d670d62a66 | ||
|
|
6522467ddb | ||
|
|
aacd9642f5 | ||
|
|
4446c92517 | ||
|
|
8c65548b10 | ||
|
|
fb22651faf | ||
|
|
cfff136b2a | ||
|
|
bac2c64f87 | ||
|
|
be1ec97c8e | ||
|
|
bbd432415d | ||
|
|
1fef702382 | ||
|
|
39865d8a1f | ||
|
|
c7b27bd70b | ||
|
|
86e4fab0d5 | ||
|
|
ff3e40e4a5 | ||
|
|
ea830cad0c | ||
|
|
225e270fd5 | ||
|
|
c1768cfb14 | ||
|
|
53edd62f8b | ||
|
|
41a7e128b6 | ||
|
|
6b8c41c3ac | ||
|
|
2f09c34980 | ||
|
|
76dc69ce36 | ||
|
|
6c9d05539a | ||
|
|
b6bc17f730 | ||
|
|
c07ba8ccc0 | ||
|
|
ed86f621a0 | ||
|
|
c6a3175bbf | ||
|
|
452291417d | ||
|
|
ab9db8b7c7 | ||
|
|
877e2ea791 | ||
|
|
6ea42d5b63 | ||
|
|
31c117e696 | ||
|
|
04f057334f | ||
|
|
99a54d06ca | ||
|
|
8332c85f37 | ||
|
|
fcf1a3df62 | ||
|
|
f4f52ae67d | ||
|
|
0b08d5882a | ||
|
|
62eeafaba6 | ||
|
|
5a52e41399 | ||
|
|
e8083f8f3f | ||
|
|
338b3a03f0 | ||
|
|
c8b01b41ac | ||
|
|
6d08a418ed | ||
|
|
e3066d1489 | ||
|
|
487e3f2507 | ||
|
|
b82a53cad8 | ||
|
|
5bec82ca9d | ||
|
|
6ef0d13e42 | ||
|
|
ed5c641e8b |
@@ -4,14 +4,17 @@ API_HOST=
|
||||
API_PORT=
|
||||
API_KEY=
|
||||
API_MODEL_NAME=
|
||||
API_VERBOSE=
|
||||
FASTAPI_ROOT_PATH=
|
||||
MAX_CONCURRENT=
|
||||
# general
|
||||
DISABLE_VERSION_CHECK=
|
||||
FORCE_CHECK_IMPORTS=
|
||||
ALLOW_EXTRA_ARGS=
|
||||
LLAMAFACTORY_VERBOSITY=
|
||||
USE_MODELSCOPE_HUB=
|
||||
USE_OPENMIND_HUB=
|
||||
USE_RAY=
|
||||
RECORD_VRAM=
|
||||
# torchrun
|
||||
FORCE_TORCHRUN=
|
||||
@@ -31,7 +34,7 @@ GRADIO_SERVER_PORT=
|
||||
GRADIO_ROOT_PATH=
|
||||
GRADIO_IPV6=
|
||||
# setup
|
||||
ENABLE_SHORT_CONSOLE=1
|
||||
ENABLE_SHORT_CONSOLE=
|
||||
# reserved (do not use)
|
||||
LLAMABOARD_ENABLED=
|
||||
LLAMABOARD_WORKDIR=
|
||||
|
||||
63
.github/ISSUE_TEMPLATE/1-bug-report.yml
vendored
Normal file
63
.github/ISSUE_TEMPLATE/1-bug-report.yml
vendored
Normal file
@@ -0,0 +1,63 @@
|
||||
name: "\U0001F41B Bug / help"
|
||||
description: Create a report to help us improve the LLaMA Factory
|
||||
labels: ["bug", "pending"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Issues included in **[FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** or those with **insufficient** information may be closed without a response.
|
||||
已经包含在 **[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)** 内或提供信息**不完整**的 issues 可能不会被回复。
|
||||
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please do not create issues that are not related to framework bugs under this category, use **[Discussions](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)** instead.
|
||||
请勿在此分类下创建和框架 bug 无关的 issues,请使用 **[讨论区](https://github.com/hiyouga/LLaMA-Factory/discussions/categories/q-a)**。
|
||||
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the above rules carefully and searched the existing issues (including FAQs).
|
||||
请确保您已经认真阅读了上述规则并且搜索过现有的 issues(包括常见问题)。
|
||||
|
||||
options:
|
||||
- label: I have read the above rules and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
|
||||
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
|
||||
|
||||
placeholder: llamafactory version, platform, python version, ...
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide entry arguments, error messages and stack traces that reproduces the problem.
|
||||
请提供入口参数,错误日志以及异常堆栈以便于我们复现问题。
|
||||
Remember to wrap your log messages with \`\`\`.
|
||||
请务必使用 Markdown 标签 \`\`\` 来包裹您的日志信息。
|
||||
|
||||
value: |
|
||||
```text
|
||||
Put your message here.
|
||||
```
|
||||
|
||||
- type: textarea
|
||||
id: others
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Others
|
||||
41
.github/ISSUE_TEMPLATE/2-feature-request.yml
vendored
Normal file
41
.github/ISSUE_TEMPLATE/2-feature-request.yml
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a request for a new feature
|
||||
labels: ["enhancement", "pending"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Please do not create issues that are not related to new features under this category.
|
||||
请勿在此分类下创建和新特性无关的 issues。
|
||||
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the above rules carefully and searched the existing issues.
|
||||
请确保您已经认真阅读了上述规则并且搜索过现有的 issues。
|
||||
|
||||
options:
|
||||
- label: I have read the above rules and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: description
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Description
|
||||
description: |
|
||||
A clear and concise description of the feature proposal.
|
||||
请详细描述您希望加入的新功能特性。
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Pull Request
|
||||
description: |
|
||||
Have you already created the relevant PR and submitted the code?
|
||||
您是否已经创建了相关 PR 并提交了代码?
|
||||
66
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
66
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,66 +0,0 @@
|
||||
name: "\U0001F41B Bug / Help"
|
||||
description: Create a report to help us improve the LLaMA Factory
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Issues included in **FAQs** or those with **insufficient** information may be closed without a response.
|
||||
包含在**常见问题**内或提供信息**不完整**的 issues 可能不会被回复。
|
||||
|
||||
- type: checkboxes
|
||||
id: reminder
|
||||
attributes:
|
||||
label: Reminder
|
||||
description: |
|
||||
Please ensure you have read the README carefully and searched the existing issues (including FAQs).
|
||||
请确保您已经认真阅读了 README 并且搜索过现有的 issues(包括常见问题)。
|
||||
|
||||
options:
|
||||
- label: I have read the README and searched the existing issues.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
|
||||
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
|
||||
|
||||
placeholder: llamafactory version, platform, python version, ...
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide code snippets, error messages and stack traces that reproduces the problem.
|
||||
请提供运行参数,错误信息以及异常堆栈以便于我们复现该问题。
|
||||
Remember to use Markdown tags to correctly format your code.
|
||||
请合理使用 Markdown 标签来格式化您的文本。
|
||||
|
||||
placeholder: |
|
||||
```bash
|
||||
llamafactory-cli train ...
|
||||
```
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: |
|
||||
Please provide a clear and concise description of what you would expect to happen.
|
||||
请提供您原本的目的,即这段代码的期望行为。
|
||||
|
||||
- type: textarea
|
||||
id: others
|
||||
validations:
|
||||
required: false
|
||||
attributes:
|
||||
label: Others
|
||||
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
1
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
blank_issues_enabled: false
|
||||
8
.github/workflows/label_issue.yml
vendored
8
.github/workflows/label_issue.yml
vendored
@@ -18,13 +18,15 @@ jobs:
|
||||
ISSUE_URL: ${{ github.event.issue.html_url }}
|
||||
ISSUE_TITLE: ${{ github.event.issue.title }}
|
||||
run: |
|
||||
LABEL=pending
|
||||
LABEL=""
|
||||
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾)
|
||||
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
|
||||
for KEYWORD in ${NPU_KEYWORDS[@]}; do
|
||||
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then
|
||||
LABEL=pending,npu
|
||||
LABEL="npu"
|
||||
break
|
||||
fi
|
||||
done
|
||||
gh issue edit $ISSUE_URL --add-label $LABEL
|
||||
if [ -n "$LABEL" ]; then
|
||||
gh issue edit $ISSUE_URL --add-label $LABEL
|
||||
fi
|
||||
|
||||
2
.github/workflows/publish.yml
vendored
2
.github/workflows/publish.yml
vendored
@@ -25,7 +25,7 @@ jobs:
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
python-version: "3.9"
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
|
||||
5
.github/workflows/tests.yml
vendored
5
.github/workflows/tests.yml
vendored
@@ -22,10 +22,10 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version:
|
||||
- "3.8" # TODO: remove py38 in next transformers release
|
||||
- "3.9"
|
||||
- "3.10"
|
||||
- "3.11"
|
||||
- "3.12"
|
||||
os:
|
||||
- "ubuntu-latest"
|
||||
- "windows-latest"
|
||||
@@ -33,9 +33,6 @@ jobs:
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
environment:
|
||||
name: tests
|
||||
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||
OS_NAME: ${{ matrix.os }}
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -162,6 +162,9 @@ cython_debug/
|
||||
# vscode
|
||||
.vscode/
|
||||
|
||||
# uv
|
||||
uv.lock
|
||||
|
||||
# custom .gitignore
|
||||
ms_cache/
|
||||
hf_cache/
|
||||
@@ -171,3 +174,5 @@ config/
|
||||
saves/
|
||||
output/
|
||||
wandb/
|
||||
swanlog/
|
||||
generated_predictions.jsonl
|
||||
|
||||
311
README.md
311
README.md
@@ -1,20 +1,31 @@
|
||||

|
||||
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
||||
[](LICENSE)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
|
||||
[](https://pypi.org/project/llamafactory/)
|
||||
[](#projects-using-llama-factory)
|
||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://gitcode.com/zhengyaowei/LLaMA-Factory)
|
||||
|
||||
[](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
|
||||
[](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
|
||||
[](https://trendshift.io/repositories/4535)
|
||||
<h3 align="center">
|
||||
Easily fine-tune 100+ large language models with zero-code <a href="#quickstart">CLI</a> and <a href="#fine-tuning-with-llama-board-gui-powered-by-gradio">Web UI</a>
|
||||
</h3>
|
||||
<p align="center">
|
||||
<picture>
|
||||
<img alt="Github trend" src="https://trendshift.io/api/badge/repositories/4535">
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
|
||||
|
||||
@@ -26,16 +37,12 @@ https://github.com/user-attachments/assets/7c96b465-9df7-45f4-8053-bf03e58386d3
|
||||
|
||||
Choose your path:
|
||||
|
||||
- **Documentation (WIP)**: https://llamafactory.readthedocs.io/zh-cn/latest/
|
||||
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
|
||||
- **Documentation**: https://llamafactory.readthedocs.io/en/latest/
|
||||
- **Colab (free)**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
|
||||
- **Local machine**: Please refer to [usage](#getting-started)
|
||||
- **PAI-DSW**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
|
||||
- **PAI-DSW (free trial)**: [Llama3 Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill Example](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
|
||||
- **Amazon SageMaker**: [Blog](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
|
||||
Recent activities:
|
||||
|
||||
- **2024/10/18-2024/11/30**: Build a personal tour guide bot using PAI+LLaMA Factory. [[website]](https://developer.aliyun.com/topic/llamafactory2)
|
||||
|
||||
> [!NOTE]
|
||||
> Except for the above links, all other websites are unauthorized third-party websites. Please carefully use them.
|
||||
|
||||
@@ -49,6 +56,16 @@ Recent activities:
|
||||
- [Provided Datasets](#provided-datasets)
|
||||
- [Requirement](#requirement)
|
||||
- [Getting Started](#getting-started)
|
||||
- [Installation](#installation)
|
||||
- [Data Preparation](#data-preparation)
|
||||
- [Quickstart](#quickstart)
|
||||
- [Fine-Tuning with LLaMA Board GUI](#fine-tuning-with-llama-board-gui-powered-by-gradio)
|
||||
- [Build Docker](#build-docker)
|
||||
- [Deploy with OpenAI-style API and vLLM](#deploy-with-openai-style-api-and-vllm)
|
||||
- [Download from ModelScope Hub](#download-from-modelscope-hub)
|
||||
- [Download from Modelers Hub](#download-from-modelers-hub)
|
||||
- [Use W&B Logger](#use-wb-logger)
|
||||
- [Use SwanLab Logger](#use-swanlab-logger)
|
||||
- [Projects using LLaMA Factory](#projects-using-llama-factory)
|
||||
- [License](#license)
|
||||
- [Citation](#citation)
|
||||
@@ -56,14 +73,22 @@ Recent activities:
|
||||
|
||||
## Features
|
||||
|
||||
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
|
||||
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Qwen2-VL, DeepSeek, Yi, Gemma, ChatGLM, Phi, etc.
|
||||
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
|
||||
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
|
||||
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
|
||||
- **Advanced algorithms**: [GaLore](https://github.com/jiaweizzhao/GaLore), [BAdam](https://github.com/Ledzy/BAdam), [APOLLO](https://github.com/zhuhanqing/APOLLO), [Adam-mini](https://github.com/zyushun/Adam-mini), DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and PiSSA.
|
||||
- **Practical tricks**: [FlashAttention-2](https://github.com/Dao-AILab/flash-attention), [Unsloth](https://github.com/unslothai/unsloth), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), RoPE scaling, NEFTune and rsLoRA.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
|
||||
- **Wide tasks**: Multi-turn dialogue, tool using, image understanding, visual grounding, video recognition, audio understanding, etc.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, SwanLab, etc.
|
||||
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
|
||||
|
||||
### Day-N Support for Fine-Tuning Cutting-Edge Models
|
||||
|
||||
| Support Date | Model Name |
|
||||
| ------------ | ---------------------------------------------------------- |
|
||||
| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 |
|
||||
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 |
|
||||
|
||||
## Benchmark
|
||||
|
||||
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
|
||||
@@ -81,21 +106,41 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Changelog
|
||||
|
||||
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
|
||||
[25/02/24] Announcing **[EasyR1](https://github.com/hiyouga/EasyR1)**, an efficient, scalable and multi-modality RL training framework for efficient GRPO training.
|
||||
|
||||
[24/09/19] We support fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
|
||||
[25/02/11] We supported saving the **[Ollama](https://github.com/ollama/ollama)** modelfile when exporting the model checkpoints. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/08/30] We support fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
||||
[25/02/05] We supported fine-tuning the **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** and **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** on audio understanding tasks.
|
||||
|
||||
[24/08/27] We support **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
|
||||
|
||||
[24/08/09] We support **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
|
||||
[25/01/31] We supported fine-tuning the **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** and **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** model.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/07/04] We support [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
|
||||
[25/01/15] We supported **[APOLLO](https://arxiv.org/abs/2412.05270)** optimizer. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
|
||||
[25/01/14] We supported fine-tuning the **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** and **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** models. Thank [@BUAADreamer](https://github.com/BUAADreamer)'s PR.
|
||||
|
||||
[25/01/14] We supported fine-tuning the **[InternLM3](https://huggingface.co/collections/internlm/)** models. Thank [@hhaAndroid](https://github.com/hhaAndroid)'s PR.
|
||||
|
||||
[25/01/10] We supported fine-tuning the **[Phi-4](https://huggingface.co/microsoft/phi-4)** model.
|
||||
|
||||
[24/12/21] We supported using **[SwanLab](https://github.com/SwanHubX/SwanLab)** for experiment tracking and visualization. See [this section](#use-swanlab-logger) for details.
|
||||
|
||||
[24/11/27] We supported fine-tuning the **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** model and the **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** dataset.
|
||||
|
||||
[24/10/09] We supported downloading pre-trained models and datasets from the **[Modelers Hub](https://modelers.cn/models)**. See [this tutorial](#download-from-modelers-hub) for usage.
|
||||
|
||||
[24/09/19] We supported fine-tuning the **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** models.
|
||||
|
||||
[24/08/30] We supported fine-tuning the **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** models. Thank [@simonJJJ](https://github.com/simonJJJ)'s PR.
|
||||
|
||||
[24/08/27] We supported **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `enable_liger_kernel: true` for efficient training.
|
||||
|
||||
[24/08/09] We supported **[Adam-mini](https://github.com/zyushun/Adam-mini)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
|
||||
|
||||
[24/07/04] We supported [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
|
||||
|
||||
[24/06/16] We supported **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
|
||||
|
||||
@@ -173,40 +218,51 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
## Supported Models
|
||||
|
||||
| Model | Model size | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
|
||||
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||
| [Phi-3](https://huggingface.co/microsoft) | 4B/14B | phi |
|
||||
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
|
||||
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
|
||||
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
|
||||
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
|
||||
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
|
||||
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||
| Model | Model size | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ------------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
|
||||
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseek3 |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
|
||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
|
||||
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
|
||||
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
|
||||
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
|
||||
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
|
||||
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
|
||||
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
|
||||
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
|
||||
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
|
||||
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
|
||||
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
|
||||
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||
|
||||
> [!NOTE]
|
||||
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
|
||||
@@ -290,9 +346,13 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
|
||||
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
|
||||
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
|
||||
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
|
||||
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
|
||||
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
|
||||
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
|
||||
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
|
||||
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
|
||||
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
|
||||
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
|
||||
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||
@@ -332,35 +392,34 @@ huggingface-cli login
|
||||
|
||||
| Mandatory | Minimum | Recommend |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.8 | 3.11 |
|
||||
| torch | 1.13.1 | 2.4.0 |
|
||||
| transformers | 4.41.2 | 4.43.4 |
|
||||
| datasets | 2.16.0 | 2.20.0 |
|
||||
| accelerate | 0.30.1 | 0.32.0 |
|
||||
| python | 3.9 | 3.10 |
|
||||
| torch | 1.13.1 | 2.5.1 |
|
||||
| transformers | 4.41.2 | 4.49.0 |
|
||||
| datasets | 2.16.0 | 3.2.0 |
|
||||
| accelerate | 0.34.0 | 1.2.1 |
|
||||
| peft | 0.11.1 | 0.12.0 |
|
||||
| trl | 0.8.6 | 0.9.6 |
|
||||
|
||||
| Optional | Minimum | Recommend |
|
||||
| ------------ | ------- | --------- |
|
||||
| CUDA | 11.6 | 12.2 |
|
||||
| deepspeed | 0.10.0 | 0.14.0 |
|
||||
| deepspeed | 0.10.0 | 0.16.4 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||
| vllm | 0.4.3 | 0.5.0 |
|
||||
| flash-attn | 2.3.0 | 2.6.3 |
|
||||
| vllm | 0.4.3 | 0.7.3 |
|
||||
| flash-attn | 2.3.0 | 2.7.2 |
|
||||
|
||||
### Hardware Requirement
|
||||
|
||||
\* *estimated*
|
||||
|
||||
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||
| Method | Bits | 7B | 14B | 30B | 70B | `x`B |
|
||||
| ------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
|
||||
| Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB |
|
||||
| Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB |
|
||||
| Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
|
||||
|
||||
## Getting Started
|
||||
|
||||
@@ -375,47 +434,67 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, openmind, quality
|
||||
Extra dependencies available: torch, torch-npu, metrics, deepspeed, liger-kernel, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, apollo, badam, adam-mini, qwen, minicpm_v, modelscope, openmind, swanlab, quality
|
||||
|
||||
> [!TIP]
|
||||
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||
|
||||
<details><summary>Setting up a virtual environment with <b>uv</b></summary>
|
||||
|
||||
Create an isolated Python environment with [uv](https://github.com/astral-sh/uv):
|
||||
|
||||
```bash
|
||||
uv sync --extra torch --extra metrics --prerelease=allow
|
||||
```
|
||||
|
||||
Run LLaMA-Factory in the isolated environment:
|
||||
|
||||
```bash
|
||||
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>For Windows users</summary>
|
||||
|
||||
#### Install BitsAndBytes
|
||||
|
||||
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
|
||||
|
||||
```bash
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||
```
|
||||
|
||||
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
|
||||
#### Install Flash Attention-2
|
||||
|
||||
To enable FlashAttention-2 on the Windows platform, please use the script from [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) to compile and install it by yourself.
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>For Ascend NPU users</summary>
|
||||
|
||||
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
|
||||
To install LLaMA Factory on Ascend NPU devices, please upgrade Python to version 3.10 or higher and specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
|
||||
|
||||
```bash
|
||||
# replace the url according to your CANN version and devices
|
||||
# install CANN Toolkit
|
||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
||||
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run
|
||||
bash Ascend-cann-toolkit_8.0.0.alpha002_linux-"$(uname -i)".run --install
|
||||
|
||||
# install CANN Kernels
|
||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
||||
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C20SPC702/Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run
|
||||
bash Ascend-cann-kernels-910b_8.0.0.alpha002_linux-"$(uname -i)".run --install
|
||||
|
||||
# set env variables
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
```
|
||||
|
||||
| Requirement | Minimum | Recommend |
|
||||
| ------------ | ------- | ----------- |
|
||||
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||
| torch | 2.1.0 | 2.1.0 |
|
||||
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
| Requirement | Minimum | Recommend |
|
||||
| ------------ | ------- | -------------- |
|
||||
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
|
||||
| torch | 2.1.0 | 2.4.0 |
|
||||
| torch-npu | 2.1.0 | 2.4.0.post2 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
|
||||
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
|
||||
|
||||
@@ -423,6 +502,40 @@ If you cannot infer model on NPU devices, try setting `do_sample: false` in the
|
||||
|
||||
Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
||||
|
||||
#### Install BitsAndBytes
|
||||
|
||||
To use QLoRA based on bitsandbytes on Ascend NPU, please follow these 3 steps:
|
||||
|
||||
1. Manually compile bitsandbytes: Refer to [the installation documentation](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU) for the NPU version of bitsandbytes to complete the compilation and installation. The compilation requires a cmake version of at least 3.22.1 and a g++ version of at least 12.x.
|
||||
|
||||
```bash
|
||||
# Install bitsandbytes from source
|
||||
# Clone bitsandbytes repo, Ascend NPU backend is currently enabled on multi-backend-refactor branch
|
||||
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
|
||||
cd bitsandbytes/
|
||||
|
||||
# Install dependencies
|
||||
pip install -r requirements-dev.txt
|
||||
|
||||
# Install the dependencies for the compilation tools. Note that the commands for this step may vary depending on the operating system. The following are provided for reference
|
||||
apt-get install -y build-essential cmake
|
||||
|
||||
# Compile & install
|
||||
cmake -DCOMPUTE_BACKEND=npu -S .
|
||||
make
|
||||
pip install .
|
||||
```
|
||||
|
||||
2. Install transformers from the main branch.
|
||||
|
||||
```bash
|
||||
git clone -b main https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
pip install .
|
||||
```
|
||||
|
||||
3. Set `double_quantization: false` in the configuration. You can refer to the [example](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml).
|
||||
|
||||
</details>
|
||||
|
||||
### Data Preparation
|
||||
@@ -446,6 +559,8 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
|
||||
|
||||
> [!TIP]
|
||||
> Use `llamafactory-cli help` to show help information.
|
||||
>
|
||||
> Read [FAQs](https://github.com/hiyouga/LLaMA-Factory/issues/4614) first if you encounter any problems.
|
||||
|
||||
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
|
||||
|
||||
@@ -590,7 +705,7 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||
> [!TIP]
|
||||
> Visit [this page](https://platform.openai.com/docs/api-reference/chat/create) for API document.
|
||||
>
|
||||
> Examples: [Image understanding](scripts/test_image.py) | [Function calling](scripts/test_toolcall.py)
|
||||
> Examples: [Image understanding](scripts/api_example/test_image.py) | [Function calling](scripts/api_example/test_toolcall.py)
|
||||
|
||||
### Download from ModelScope Hub
|
||||
|
||||
@@ -623,6 +738,21 @@ run_name: test_run # optional
|
||||
|
||||
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
|
||||
|
||||
### Use SwanLab Logger
|
||||
|
||||
To use [SwanLab](https://github.com/SwanHubX/SwanLab) for logging experimental results, you need to add the following arguments to yaml files.
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_run_name: test_run # optional
|
||||
```
|
||||
|
||||
When launching training tasks, you can log in to SwanLab in three ways:
|
||||
|
||||
1. Add `swanlab_api_key=<your_api_key>` to the yaml file, and set it to your [API key](https://swanlab.cn/settings).
|
||||
2. Set the environment variable `SWANLAB_API_KEY` to your [API key](https://swanlab.cn/settings).
|
||||
3. Use the `swanlab login` command to complete the login.
|
||||
|
||||
## Projects using LLaMA Factory
|
||||
|
||||
If you have a project that should be incorporated, please contact via email or create a pull request.
|
||||
@@ -722,7 +852,8 @@ If you have a project that should be incorporated, please contact via email or c
|
||||
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
|
||||
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
|
||||
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**: A full pipeline for RAG retrieval model fine-tuning, inference, and distillation. [[blog]](https://zhuanlan.zhihu.com/p/987727357)
|
||||
|
||||
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**: A modified library that supports long sequence SFT & DPO using ring attention.
|
||||
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**: An o1-like model fine-tuned by NovaSky AI with very small cost.
|
||||
|
||||
</details>
|
||||
|
||||
@@ -730,7 +861,7 @@ If you have a project that should be incorporated, please contact via email or c
|
||||
|
||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## Citation
|
||||
|
||||
|
||||
291
README_zh.md
291
README_zh.md
@@ -1,20 +1,32 @@
|
||||

|
||||
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
||||
[](LICENSE)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/graphs/contributors)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/actions/workflows/tests.yml)
|
||||
[](https://pypi.org/project/llamafactory/)
|
||||
[](#使用了-llama-factory-的项目)
|
||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://gitcode.com/zhengyaowei/LLaMA-Factory)
|
||||
|
||||
[](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
|
||||
[](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
|
||||
[](https://trendshift.io/repositories/4535)
|
||||
<h3 align="center">
|
||||
使用零代码<a href="#快速开始">命令行</a>与 <a href="#llama-board-可视化微调由-gradio-驱动">Web UI</a> 轻松微调百余种大模型
|
||||
</h3>
|
||||
<p align="center">
|
||||
<picture>
|
||||
<img alt="Github trend" src="https://trendshift.io/api/badge/repositories/4535">
|
||||
</picture>
|
||||
</p>
|
||||
|
||||
|
||||
👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。
|
||||
|
||||
@@ -28,15 +40,11 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
- **入门教程**:https://zhuanlan.zhihu.com/p/695287607
|
||||
- **框架文档**:https://llamafactory.readthedocs.io/zh-cn/latest/
|
||||
- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
|
||||
- **Colab(免费)**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
|
||||
- **本地机器**:请见[如何使用](#如何使用)
|
||||
- **PAI-DSW**:[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl)
|
||||
- **PAI-DSW(免费试用)**:[Llama3 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory) | [Qwen2-VL 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_qwen2vl) | [DeepSeek-R1-Distill 案例](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory_deepseek_r1_distill_7b)
|
||||
- **Amazon SageMaker**:[博客](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
|
||||
近期活动:
|
||||
|
||||
- **2024/10/18-2024/11/30**:使用 PAI+LLaMA Factory 构建个性化导游机器人。[[活动页面]](https://developer.aliyun.com/topic/llamafactory2)
|
||||
|
||||
> [!NOTE]
|
||||
> 除上述链接以外的其他网站均为未经许可的第三方网站,请小心甄别。
|
||||
|
||||
@@ -50,6 +58,16 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
- [数据集](#数据集)
|
||||
- [软硬件依赖](#软硬件依赖)
|
||||
- [如何使用](#如何使用)
|
||||
- [安装 LLaMA Factory](#安装-llama-factory)
|
||||
- [数据准备](#数据准备)
|
||||
- [快速开始](#快速开始)
|
||||
- [LLaMA Board 可视化微调](#llama-board-可视化微调由-gradio-驱动)
|
||||
- [构建 Docker](#构建-docker)
|
||||
- [利用 vLLM 部署 OpenAI API](#利用-vllm-部署-openai-api)
|
||||
- [从魔搭社区下载](#从魔搭社区下载)
|
||||
- [从魔乐社区下载](#从魔乐社区下载)
|
||||
- [使用 W&B 面板](#使用-wb-面板)
|
||||
- [使用 SwanLab 面板](#使用-swanlab-面板)
|
||||
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
|
||||
- [协议](#协议)
|
||||
- [引用](#引用)
|
||||
@@ -57,14 +75,22 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 项目特色
|
||||
|
||||
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
|
||||
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
|
||||
- **先进算法**:[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
|
||||
- **先进算法**:[GaLore](https://github.com/jiaweizzhao/GaLore)、[BAdam](https://github.com/Ledzy/BAdam)、[APOLLO](https://github.com/zhuhanqing/APOLLO)、[Adam-mini](https://github.com/zyushun/Adam-mini)、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
|
||||
- **实用技巧**:[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)、[Unsloth](https://github.com/unslothai/unsloth)、[Liger Kernel](https://github.com/linkedin/Liger-Kernel)、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||
- **广泛任务**:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
|
||||
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||
|
||||
### 最新模型的 Day-N 微调适配
|
||||
|
||||
| 适配时间 | 模型名称 |
|
||||
| ------------ | ---------------------------------------------------------- |
|
||||
| Day 0 | Qwen2.5 / Qwen2-VL / QwQ / QvQ / InternLM3 / MiniCPM-o-2.6 |
|
||||
| Day 1 | Llama 3 / GLM-4 / Mistral Small / PaliGemma2 |
|
||||
|
||||
## 性能指标
|
||||
|
||||
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
|
||||
@@ -82,6 +108,28 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 更新日志
|
||||
|
||||
[25/02/24] 我们宣布开源 **[EasyR1](https://github.com/hiyouga/EasyR1)**,一个高效可扩展的多模态强化学习框架,支持高效的 GRPO 训练。
|
||||
|
||||
[25/02/11] 我们支持了在导出模型时保存 **[Ollama](https://github.com/ollama/ollama)** 配置文件。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[25/02/05] 我们支持了在语音理解任务上微调 **[Qwen2-Audio](Qwen/Qwen2-Audio-7B-Instruct)** 和 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 模型。
|
||||
|
||||
[25/01/31] 我们支持了 **[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)** 和 **[Qwen2.5-VL](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)** 模型的微调。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[25/01/15] 我们支持了 **[APOLLO](https://arxiv.org/abs/2412.05270)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[25/01/14] 我们支持了 **[MiniCPM-o-2.6](https://huggingface.co/openbmb/MiniCPM-o-2_6)** 和 **[MiniCPM-V-2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6)** 模型的微调。 感谢 [@BUAADreamer](https://github.com/BUAADreamer) 的 PR.
|
||||
|
||||
[25/01/14] 我们支持了 **[InternLM3](https://huggingface.co/collections/internlm/)** 模型的微调。感谢 [@hhaAndroid](https://github.com/hhaAndroid) 的 PR。
|
||||
|
||||
[25/01/10] 我们支持了 **[Phi-4](https://huggingface.co/microsoft/phi-4)** 模型的微调。
|
||||
|
||||
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)。
|
||||
|
||||
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
|
||||
|
||||
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
|
||||
|
||||
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
|
||||
@@ -92,8 +140,6 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
[24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/07/04] 我们支持了[无污染打包训练](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)。请使用 `neat_packing: true` 参数。感谢 [@chuan298](https://github.com/chuan298) 的 PR。
|
||||
|
||||
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
@@ -174,39 +220,51 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 模型
|
||||
|
||||
| 模型名 | 模型大小 | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ---------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM2/InternLM2.5](https://huggingface.co/internlm) | 7B/20B | intern2 |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.2](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
| [PaliGemma](https://huggingface.co/google) | 3B | paligemma |
|
||||
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
|
||||
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
|
||||
| [Qwen (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
|
||||
| [Qwen2-VL](https://huggingface.co/Qwen) | 2B/7B/72B | qwen2_vl |
|
||||
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
|
||||
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||
| 模型名 | 参数量 | Template |
|
||||
| ----------------------------------------------------------------- | -------------------------------- | ------------------- |
|
||||
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||
| [DeepSeek 2.5/3](https://huggingface.co/deepseek-ai) | 236B/671B | deepseek3 |
|
||||
| [DeepSeek R1 (Distill)](https://huggingface.co/deepseek-ai) | 1.5B/7B/8B/14B/32B/70B/671B | deepseek3 |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||
| [GPT-2](https://huggingface.co/openai-community) | 0.1B/0.4B/0.8B/1.5B | - |
|
||||
| [Granite 3.0-3.1](https://huggingface.co/ibm-granite) | 1B/2B/3B/8B | granite3 |
|
||||
| [Index](https://huggingface.co/IndexTeam) | 1.9B | index |
|
||||
| [InternLM 2-3](https://huggingface.co/internlm) | 7B/8B/20B | intern2 |
|
||||
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||
| [Llama 3-3.3](https://huggingface.co/meta-llama) | 1B/3B/8B/70B | llama3 |
|
||||
| [Llama 3.2 Vision](https://huggingface.co/meta-llama) | 11B/90B | mllama |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | llava |
|
||||
| [LLaVA-NeXT](https://huggingface.co/llava-hf) | 7B/8B/13B/34B/72B/110B | llava_next |
|
||||
| [LLaVA-NeXT-Video](https://huggingface.co/llava-hf) | 7B/34B | llava_next_video |
|
||||
| [MiniCPM](https://huggingface.co/openbmb) | 1B/2B/4B | cpm/cpm3 |
|
||||
| [MiniCPM-o-2.6/MiniCPM-V-2.6](https://huggingface.co/openbmb) | 8B | minicpm_o/minicpm_v |
|
||||
| [Ministral/Mistral-Nemo](https://huggingface.co/mistralai) | 8B/12B | ministral |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||
| [Mistral Small](https://huggingface.co/mistralai) | 24B | mistral_small |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||
| [PaliGemma/PaliGemma2](https://huggingface.co/google) | 3B/10B/28B | paligemma |
|
||||
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||
| [Phi-3/Phi-3.5](https://huggingface.co/microsoft) | 4B/14B | phi |
|
||||
| [Phi-3-small](https://huggingface.co/microsoft) | 7B | phi_small |
|
||||
| [Phi-4](https://huggingface.co/microsoft) | 14B | phi4 |
|
||||
| [Pixtral](https://huggingface.co/mistralai) | 12B | pixtral |
|
||||
| [Qwen/QwQ (1-2.5) (Code/Math/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/3B/7B/14B/32B/72B/110B | qwen |
|
||||
| [Qwen2-Audio](https://huggingface.co/Qwen) | 7B | qwen2_audio |
|
||||
| [Qwen2-VL/Qwen2.5-VL/QVQ](https://huggingface.co/Qwen) | 2B/3B/7B/72B | qwen2_vl |
|
||||
| [Skywork o1](https://huggingface.co/Skywork) | 8B | skywork_o1 |
|
||||
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||
| [TeleChat2](https://huggingface.co/Tele-AI) | 3B/7B/35B/115B | telechat2 |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||
| [Yi/Yi-1.5 (Code)](https://huggingface.co/01-ai) | 1.5B/6B/9B/34B | yi |
|
||||
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||
|
||||
> [!NOTE]
|
||||
> 对于所有“基座”(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
|
||||
@@ -220,7 +278,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
## 训练方法
|
||||
|
||||
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
|
||||
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
||||
| --------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
||||
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
@@ -290,9 +348,13 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
|
||||
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
|
||||
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
|
||||
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
|
||||
- [Magpie-ultra-v0.1 (en)](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1)
|
||||
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||
- [OpenO1-SFT (en&zh)](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)
|
||||
- [Open-Thoughts (en)](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)
|
||||
- [Open-R1-Math (en)](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k)
|
||||
- [Chinese-DeepSeek-R1-Distill (zh)](https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT)
|
||||
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||
- [Pokemon-gpt4o-captions (en&zh)](https://huggingface.co/datasets/jugg1024/pokemon-gpt4o-captions)
|
||||
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||
@@ -332,35 +394,34 @@ huggingface-cli login
|
||||
|
||||
| 必需项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.8 | 3.11 |
|
||||
| torch | 1.13.1 | 2.4.0 |
|
||||
| transformers | 4.41.2 | 4.43.4 |
|
||||
| datasets | 2.16.0 | 2.20.0 |
|
||||
| accelerate | 0.30.1 | 0.32.0 |
|
||||
| python | 3.9 | 3.10 |
|
||||
| torch | 1.13.1 | 2.5.1 |
|
||||
| transformers | 4.41.2 | 4.49.0 |
|
||||
| datasets | 2.16.0 | 3.2.0 |
|
||||
| accelerate | 0.34.0 | 1.2.1 |
|
||||
| peft | 0.11.1 | 0.12.0 |
|
||||
| trl | 0.8.6 | 0.9.6 |
|
||||
|
||||
| 可选项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | --------- |
|
||||
| CUDA | 11.6 | 12.2 |
|
||||
| deepspeed | 0.10.0 | 0.14.0 |
|
||||
| deepspeed | 0.10.0 | 0.16.4 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||
| vllm | 0.4.3 | 0.5.0 |
|
||||
| flash-attn | 2.3.0 | 2.6.3 |
|
||||
| vllm | 0.4.3 | 0.7.3 |
|
||||
| flash-attn | 2.3.0 | 2.7.2 |
|
||||
|
||||
### 硬件依赖
|
||||
|
||||
\* *估算值*
|
||||
|
||||
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||
| 方法 | 精度 | 7B | 14B | 30B | 70B | `x`B |
|
||||
| ------------------------------- | ---- | ----- | ----- | ----- | ------ | ------- |
|
||||
| Full (`bf16` or `fp16`) | 32 | 120GB | 240GB | 600GB | 1200GB | `18x`GB |
|
||||
| Full (`pure_bf16`) | 16 | 60GB | 120GB | 300GB | 600GB | `8x`GB |
|
||||
| Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | `2x`GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | `x`GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | `x/2`GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | `x/4`GB |
|
||||
|
||||
## 如何使用
|
||||
|
||||
@@ -375,26 +436,47 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、quality
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、apollo、badam、adam-mini、qwen、minicpm_v、modelscope、openmind、swanlab、quality
|
||||
|
||||
> [!TIP]
|
||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||
|
||||
<details><summary>使用 <b>uv</b> 构建虚拟环境</summary>
|
||||
|
||||
使用 [uv](https://github.com/astral-sh/uv) 创建隔离的 Python 环境:
|
||||
|
||||
```bash
|
||||
uv sync --extra torch --extra metrics --prerelease=allow
|
||||
```
|
||||
|
||||
在环境中运行 LLaMA-Factory:
|
||||
|
||||
```bash
|
||||
uv run --prerelease=allow llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details><summary>Windows 用户指南</summary>
|
||||
|
||||
#### 安装 BitsAndBytes
|
||||
|
||||
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
|
||||
|
||||
```bash
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||
```
|
||||
|
||||
如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。
|
||||
#### 安装 Flash Attention-2
|
||||
|
||||
如果要在 Windows 平台上开启 FlashAttention-2,请使用 [flash-attention-windows-wheel](https://huggingface.co/lldacing/flash-attention-windows-wheel) 中的脚本自行编译与安装。
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>昇腾 NPU 用户指南</summary>
|
||||
|
||||
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
|
||||
在昇腾 NPU 设备上安装 LLaMA Factory 时,请升级 Python 到 3.10 及以上,并需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
|
||||
|
||||
```bash
|
||||
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
|
||||
@@ -410,12 +492,12 @@ bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
```
|
||||
|
||||
| 依赖项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | ----------- |
|
||||
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||
| torch | 2.1.0 | 2.1.0 |
|
||||
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
| 依赖项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | -------------- |
|
||||
| CANN | 8.0.RC1 | 8.0.0.alpha002 |
|
||||
| torch | 2.1.0 | 2.4.0 |
|
||||
| torch-npu | 2.1.0 | 2.4.0.post2 |
|
||||
| deepspeed | 0.13.2 | 0.13.2 |
|
||||
|
||||
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
|
||||
|
||||
@@ -423,6 +505,40 @@ source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||
|
||||
下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
||||
|
||||
#### 安装 BitsAndBytes
|
||||
|
||||
如果要在 Ascend NPU 上进行基于 bitsandbytes 的 QLoRA 量化微调,请执行如下步骤:
|
||||
|
||||
1. 手动编译 bitsandbytes:请参考[安装文档](https://huggingface.co/docs/bitsandbytes/installation?backend=Ascend+NPU&platform=Ascend+NPU)完成 NPU 版的 bitsandbytes 安装,编译要求环境 cmake 版本不低于 3.22.1,g++ 版本不低于 12.x。
|
||||
|
||||
```bash
|
||||
# 从源码安装 bitsandbytes
|
||||
# 克隆 bitsandbytes 仓库, Ascend NPU 目前在 multi-backend-refactor 中支持
|
||||
git clone -b multi-backend-refactor https://github.com/bitsandbytes-foundation/bitsandbytes.git
|
||||
cd bitsandbytes/
|
||||
|
||||
# 安装依赖
|
||||
pip install -r requirements-dev.txt
|
||||
|
||||
# 安装编译工具依赖,该步骤在不同系统上命令有所不同,供参考
|
||||
apt-get install -y build-essential cmake
|
||||
|
||||
# 编译 & 安装
|
||||
cmake -DCOMPUTE_BACKEND=npu -S .
|
||||
make
|
||||
pip install .
|
||||
```
|
||||
|
||||
2. 安装 transformers 的 main 分支版本。
|
||||
|
||||
```bash
|
||||
git clone -b main https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
pip install .
|
||||
```
|
||||
|
||||
3. 在训练参数中设置 `double_quantization: false`,可参考[示例](examples/train_qlora/llama3_lora_sft_bnb_npu.yaml)。
|
||||
|
||||
</details>
|
||||
|
||||
### 数据准备
|
||||
@@ -446,6 +562,8 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||
|
||||
> [!TIP]
|
||||
> 使用 `llamafactory-cli help` 显示帮助信息。
|
||||
>
|
||||
> 遇到报错请先看[常见问题](https://github.com/hiyouga/LLaMA-Factory/issues/4614)。
|
||||
|
||||
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
|
||||
|
||||
@@ -590,7 +708,7 @@ API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||
> [!TIP]
|
||||
> API 文档请查阅[这里](https://platform.openai.com/docs/api-reference/chat/create)。
|
||||
>
|
||||
> 示例:[图像理解](scripts/test_image.py) | [工具调用](scripts/test_toolcall.py)
|
||||
> 示例:[图像理解](scripts/api_example/test_image.py) | [工具调用](scripts/api_example/test_toolcall.py)
|
||||
|
||||
### 从魔搭社区下载
|
||||
|
||||
@@ -623,6 +741,21 @@ run_name: test_run # 可选
|
||||
|
||||
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
|
||||
|
||||
### 使用 SwanLab 面板
|
||||
|
||||
若要使用 [SwanLab](https://github.com/SwanHubX/SwanLab) 记录实验数据,请在 yaml 文件中添加下面的参数。
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_run_name: test_run # 可选
|
||||
```
|
||||
|
||||
在启动训练任务时,登录SwanLab账户有以下三种方式:
|
||||
|
||||
方式一:在 yaml 文件中添加 `swanlab_api_key=<your_api_key>` ,并设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式三:启动前使用 `swanlab login` 命令完成登录。
|
||||
|
||||
## 使用了 LLaMA Factory 的项目
|
||||
|
||||
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||
@@ -722,6 +855,8 @@ run_name: test_run # 可选
|
||||
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
|
||||
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.
|
||||
1. **[RAG-Retrieval](https://github.com/NLPJCL/RAG-Retrieval)**:一个全链路 RAG 检索模型微调、推理和蒸馏代码库。[[blog]](https://zhuanlan.zhihu.com/p/987727357)
|
||||
1. **[360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory)**:一个魔改后的代码库,通过 Ring Attention 支持长序列的 SFT 和 DPO 训练。
|
||||
1. **[Sky-T1](https://novasky-ai.github.io/posts/sky-t1/)**:由 NovaSky AI 微调的低成本类 o1 长推理模型。
|
||||
|
||||
</details>
|
||||
|
||||
@@ -729,7 +864,7 @@ run_name: test_run # 可选
|
||||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [GPT-2](https://github.com/openai/gpt-2/blob/master/LICENSE) / [Granite](LICENSE) / [Index](https://huggingface.co/IndexTeam/Index-1.9B/blob/main/LICENSE) / [InternLM](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [MiniCPM](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md) / [Mistral/Mixtral/Pixtral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3/Phi-4](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [Skywork](https://huggingface.co/Skywork/Skywork-13B-base/blob/main/Skywork%20Community%20License.pdf) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [TeleChat2](https://huggingface.co/Tele-AI/telechat-7B/blob/main/TeleChat%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## 引用
|
||||
|
||||
|
||||
@@ -24,6 +24,7 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
|
||||
"tools": "the column name in the dataset containing the tool description. (default: None)",
|
||||
"images": "the column name in the dataset containing the image inputs. (default: None)",
|
||||
"videos": "the column name in the dataset containing the videos inputs. (default: None)",
|
||||
"audios": "the column name in the dataset containing the audios inputs. (default: None)",
|
||||
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
|
||||
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
|
||||
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
|
||||
@@ -150,6 +151,10 @@ An additional column `images` is required. Please refer to the [sharegpt](#share
|
||||
|
||||
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
### Multimodal Audio Dataset
|
||||
|
||||
An additional column `audios` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
|
||||
|
||||
## Sharegpt Format
|
||||
|
||||
### Supervised Fine-Tuning Dataset
|
||||
@@ -296,7 +301,7 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
||||
|
||||
- [Example dataset](mllm_demo.json)
|
||||
|
||||
Multimodal image datasets require a `images` column containing the paths to the input images.
|
||||
Multimodal image datasets require an `images` column containing the paths to the input images.
|
||||
|
||||
The number of images should be identical to the `<image>` tokens in the conversations.
|
||||
|
||||
@@ -374,6 +379,47 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
||||
}
|
||||
```
|
||||
|
||||
### Multimodal Audio Dataset
|
||||
|
||||
- [Example dataset](mllm_audio_demo.json)
|
||||
|
||||
Multimodal audio datasets require an `audios` column containing the paths to the input audios.
|
||||
|
||||
The number of audios should be identical to the `<audio>` tokens in the conversations.
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<audio>human instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"audio path (required)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||
|
||||
```json
|
||||
"dataset_name": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"audios": "audios"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### OpenAI Format
|
||||
|
||||
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
|
||||
|
||||
@@ -24,6 +24,7 @@
|
||||
"tools": "数据集代表工具描述的表头名称(默认:None)",
|
||||
"images": "数据集代表图像输入的表头名称(默认:None)",
|
||||
"videos": "数据集代表视频输入的表头名称(默认:None)",
|
||||
"audios": "数据集代表音频输入的表头名称(默认:None)",
|
||||
"chosen": "数据集代表更优回答的表头名称(默认:None)",
|
||||
"rejected": "数据集代表更差回答的表头名称(默认:None)",
|
||||
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
|
||||
@@ -150,6 +151,10 @@ KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#s
|
||||
|
||||
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
### 多模态音频数据集
|
||||
|
||||
多模态音频数据集需要提供额外的 `audios` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
|
||||
|
||||
## Sharegpt 格式
|
||||
|
||||
### 指令监督微调数据集
|
||||
@@ -374,6 +379,48 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
|
||||
}
|
||||
```
|
||||
|
||||
### 多模态音频数据集
|
||||
|
||||
- [样例数据集](mllm_audio_demo.json)
|
||||
|
||||
多模态音频数据集需要额外添加一个 `audios` 列,包含输入音频的路径。
|
||||
|
||||
注意音频的数量必须与文本中所有 `<audio>` 标记的数量严格一致。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"conversations": [
|
||||
{
|
||||
"from": "human",
|
||||
"value": "<audio>人类指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"audios": [
|
||||
"音频路径(必填)"
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||
|
||||
```json
|
||||
"数据集名称": {
|
||||
"file_name": "data.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"audios": "audios"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### OpenAI 格式
|
||||
|
||||
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
|
||||
|
||||
BIN
data/mllm_demo_data/1.mp3
Normal file
BIN
data/mllm_demo_data/1.mp3
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/2.wav
Normal file
BIN
data/mllm_demo_data/2.wav
Normal file
Binary file not shown.
BIN
data/mllm_demo_data/3.flac
Normal file
BIN
data/mllm_demo_data/3.flac
Normal file
Binary file not shown.
@@ -17,16 +17,28 @@ ARG INSTALL_LIGER_KERNEL=false
|
||||
ARG INSTALL_HQQ=false
|
||||
ARG INSTALL_EETQ=false
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG HTTP_PROXY=
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Set http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
echo "Configuring proxy..."; \
|
||||
export http_proxy=$HTTP_PROXY; \
|
||||
export https_proxy=$HTTP_PROXY; \
|
||||
fi
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip config set global.index-url "$PIP_INDEX" && \
|
||||
pip config set global.extra-index-url "$PIP_INDEX" && \
|
||||
python -m pip install --upgrade pip && \
|
||||
python -m pip install -r requirements.txt
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
|
||||
else \
|
||||
python -m pip install -r requirements.txt; \
|
||||
fi
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
@@ -51,13 +63,30 @@ RUN EXTRA_PACKAGES="metrics"; \
|
||||
if [ "$INSTALL_EETQ" == "true" ]; then \
|
||||
EXTRA_PACKAGES="${EXTRA_PACKAGES},eetq"; \
|
||||
fi; \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
|
||||
else \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"; \
|
||||
fi
|
||||
|
||||
# Rebuild flash attention
|
||||
RUN pip uninstall -y transformer-engine flash-attn && \
|
||||
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
|
||||
pip uninstall -y ninja && pip install ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
pip uninstall -y ninja && \
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
pip install --proxy=$HTTP_PROXY ninja && \
|
||||
pip install --proxy=$HTTP_PROXY --no-cache-dir flash-attn --no-build-isolation; \
|
||||
else \
|
||||
pip install ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
fi; \
|
||||
fi
|
||||
|
||||
|
||||
# Unset http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
unset http_proxy; \
|
||||
unset https_proxy; \
|
||||
fi
|
||||
|
||||
# Set up volumes
|
||||
|
||||
@@ -4,13 +4,13 @@ services:
|
||||
dockerfile: ./docker/docker-cuda/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
INSTALL_BNB: false
|
||||
INSTALL_VLLM: false
|
||||
INSTALL_DEEPSPEED: false
|
||||
INSTALL_FLASHATTN: false
|
||||
INSTALL_LIGER_KERNEL: false
|
||||
INSTALL_HQQ: false
|
||||
INSTALL_EETQ: false
|
||||
INSTALL_BNB: "false"
|
||||
INSTALL_VLLM: "false"
|
||||
INSTALL_DEEPSPEED: "false"
|
||||
INSTALL_FLASHATTN: "false"
|
||||
INSTALL_LIGER_KERNEL: "false"
|
||||
INSTALL_HQQ: "false"
|
||||
INSTALL_EETQ: "false"
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
container_name: llamafactory
|
||||
volumes:
|
||||
@@ -24,7 +24,7 @@ services:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
shm_size: '16gb'
|
||||
shm_size: "16gb"
|
||||
stdin_open: true
|
||||
command: bash
|
||||
deploy:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Use the Ubuntu 22.04 image with CANN 8.0.rc1
|
||||
# More versions can be found at https://hub.docker.com/r/ascendai/cann/tags
|
||||
# FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8
|
||||
FROM ascendai/cann:8.0.rc1-910b-ubuntu22.04-py3.8
|
||||
FROM ascendai/cann:8.0.0-910b-ubuntu22.04-py3.10
|
||||
# FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8
|
||||
# FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8
|
||||
|
||||
@@ -12,16 +12,28 @@ ENV DEBIAN_FRONTEND=noninteractive
|
||||
ARG INSTALL_DEEPSPEED=false
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
|
||||
ARG HTTP_PROXY=
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Set http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
echo "Configuring proxy..."; \
|
||||
export http_proxy=$HTTP_PROXY; \
|
||||
export https_proxy=$HTTP_PROXY; \
|
||||
fi
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip config set global.index-url "$PIP_INDEX" && \
|
||||
pip config set global.extra-index-url "$TORCH_INDEX" && \
|
||||
python -m pip install --upgrade pip && \
|
||||
python -m pip install -r requirements.txt
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
|
||||
else \
|
||||
python -m pip install -r requirements.txt; \
|
||||
fi
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
@@ -31,7 +43,17 @@ RUN EXTRA_PACKAGES="torch-npu,metrics"; \
|
||||
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
|
||||
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
|
||||
fi; \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
|
||||
else \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"; \
|
||||
fi
|
||||
|
||||
# Unset http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
unset http_proxy; \
|
||||
unset https_proxy; \
|
||||
fi
|
||||
|
||||
# Set up volumes
|
||||
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
|
||||
|
||||
@@ -4,7 +4,7 @@ services:
|
||||
dockerfile: ./docker/docker-npu/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
INSTALL_DEEPSPEED: false
|
||||
INSTALL_DEEPSPEED: "false"
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
container_name: llamafactory
|
||||
volumes:
|
||||
@@ -22,7 +22,7 @@ services:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
shm_size: '16gb'
|
||||
shm_size: "16gb"
|
||||
stdin_open: true
|
||||
command: bash
|
||||
devices:
|
||||
|
||||
@@ -13,16 +13,28 @@ ARG INSTALL_FLASHATTN=false
|
||||
ARG INSTALL_LIGER_KERNEL=false
|
||||
ARG INSTALL_HQQ=false
|
||||
ARG PIP_INDEX=https://pypi.org/simple
|
||||
ARG HTTP_PROXY=
|
||||
|
||||
# Set the working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Set http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
echo "Configuring proxy..."; \
|
||||
export http_proxy=$HTTP_PROXY; \
|
||||
export https_proxy=$HTTP_PROXY; \
|
||||
fi
|
||||
|
||||
# Install the requirements
|
||||
COPY requirements.txt /app
|
||||
RUN pip config set global.index-url "$PIP_INDEX" && \
|
||||
pip config set global.extra-index-url "$PIP_INDEX" && \
|
||||
python -m pip install --upgrade pip && \
|
||||
python -m pip install -r requirements.txt
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
python -m pip install --proxy=$HTTP_PROXY -r requirements.txt; \
|
||||
else \
|
||||
python -m pip install -r requirements.txt; \
|
||||
fi
|
||||
|
||||
# Copy the rest of the application into the image
|
||||
COPY . /app
|
||||
@@ -44,13 +56,29 @@ RUN EXTRA_PACKAGES="metrics"; \
|
||||
if [ "$INSTALL_HQQ" == "true" ]; then \
|
||||
EXTRA_PACKAGES="${EXTRA_PACKAGES},hqq"; \
|
||||
fi; \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
pip install --proxy=$HTTP_PROXY -e ".[$EXTRA_PACKAGES]"; \
|
||||
else \
|
||||
pip install -e ".[$EXTRA_PACKAGES]"; \
|
||||
fi
|
||||
|
||||
# Rebuild flash attention
|
||||
RUN pip uninstall -y transformer-engine flash-attn && \
|
||||
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
|
||||
pip uninstall -y ninja && pip install ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
pip uninstall -y ninja && \
|
||||
if [ -n "$HTTP_PROXY" ]; then \
|
||||
pip install --proxy=$HTTP_PROXY ninja && \
|
||||
pip install --proxy=$HTTP_PROXY --no-cache-dir flash-attn --no-build-isolation; \
|
||||
else \
|
||||
pip install ninja && \
|
||||
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||
fi; \
|
||||
fi
|
||||
|
||||
# Unset http proxy
|
||||
RUN if [ -n "$HTTP_PROXY" ]; then \
|
||||
unset http_proxy; \
|
||||
unset https_proxy; \
|
||||
fi
|
||||
|
||||
# Set up volumes
|
||||
|
||||
@@ -4,12 +4,12 @@ services:
|
||||
dockerfile: ./docker/docker-rocm/Dockerfile
|
||||
context: ../..
|
||||
args:
|
||||
INSTALL_BNB: false
|
||||
INSTALL_VLLM: false
|
||||
INSTALL_DEEPSPEED: false
|
||||
INSTALL_FLASHATTN: false
|
||||
INSTALL_LIGER_KERNEL: false
|
||||
INSTALL_HQQ: false
|
||||
INSTALL_BNB: "false"
|
||||
INSTALL_VLLM: "false"
|
||||
INSTALL_DEEPSPEED: "false"
|
||||
INSTALL_FLASHATTN: "false"
|
||||
INSTALL_LIGER_KERNEL: "false"
|
||||
INSTALL_HQQ: "false"
|
||||
PIP_INDEX: https://pypi.org/simple
|
||||
container_name: llamafactory
|
||||
volumes:
|
||||
@@ -24,7 +24,7 @@ services:
|
||||
- "8000:8000"
|
||||
ipc: host
|
||||
tty: true
|
||||
shm_size: '16gb'
|
||||
shm_size: "16gb"
|
||||
stdin_open: true
|
||||
command: bash
|
||||
devices:
|
||||
|
||||
@@ -13,6 +13,8 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
|
||||
|
||||
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
|
||||
|
||||
By default, LLaMA-Factory uses all visible computing devices.
|
||||
|
||||
## Examples
|
||||
|
||||
### LoRA Fine-Tuning
|
||||
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||
```
|
||||
|
||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
```bash
|
||||
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with Ray on 4 GPUs
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA Fine-Tuning
|
||||
|
||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
|
||||
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 4-bit Bitsandbytes Quantization on Ascend NPU
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
||||
|
||||
```bash
|
||||
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||
#### Supervised Fine-Tuning on Single Node
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Multimodal Supervised Fine-Tuning
|
||||
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||
```
|
||||
|
||||
### Merging LoRA Adapters and Quantization
|
||||
|
||||
#### Merge LoRA Adapters
|
||||
@@ -168,15 +170,27 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||
```
|
||||
|
||||
### Save Ollama modelfile
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
### Inferring LoRA Fine-Tuned Models
|
||||
|
||||
#### Use CLI
|
||||
#### Batch Generation using vLLM Tensor Parallel
|
||||
|
||||
```
|
||||
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
|
||||
```
|
||||
|
||||
#### Use CLI ChatBox
|
||||
|
||||
```bash
|
||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Use Web UI
|
||||
#### Use Web UI ChatBox
|
||||
|
||||
```bash
|
||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||
@@ -196,6 +210,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using APOLLO
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### Full-Parameter Fine-Tuning using BAdam
|
||||
|
||||
```bash
|
||||
@@ -238,3 +258,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
||||
#### Computing BLEU and ROUGE Scores
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
|
||||
```
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
|
||||
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
|
||||
|
||||
LLaMA-Factory 默认使用所有可见的计算设备。
|
||||
|
||||
## 示例
|
||||
|
||||
### LoRA 微调
|
||||
@@ -80,12 +82,6 @@ llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||
```
|
||||
|
||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||
```
|
||||
|
||||
#### 多机指令监督微调
|
||||
|
||||
```bash
|
||||
@@ -99,6 +95,12 @@ FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 使用 Ray 在 4 张 GPU 上微调
|
||||
|
||||
```bash
|
||||
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
|
||||
```
|
||||
|
||||
### QLoRA 微调
|
||||
|
||||
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
|
||||
@@ -107,6 +109,12 @@ FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||
```
|
||||
|
||||
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
|
||||
```
|
||||
|
||||
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
||||
|
||||
```bash
|
||||
@@ -130,14 +138,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||
#### 在单机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 在多机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 多模态指令监督微调
|
||||
@@ -146,12 +154,6 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||
```
|
||||
|
||||
### 合并 LoRA 适配器与模型量化
|
||||
|
||||
#### 合并 LoRA 适配器
|
||||
@@ -168,15 +170,27 @@ llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||
```
|
||||
|
||||
### 保存 Ollama 配置文件
|
||||
|
||||
```bash
|
||||
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
### 推理 LoRA 模型
|
||||
|
||||
#### 使用命令行接口
|
||||
#### 使用 vLLM+TP 批量推理
|
||||
|
||||
```
|
||||
python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo
|
||||
```
|
||||
|
||||
#### 使用命令行对话框
|
||||
|
||||
```bash
|
||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用浏览器界面
|
||||
#### 使用浏览器对话框
|
||||
|
||||
```bash
|
||||
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||
@@ -196,6 +210,12 @@ llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 APOLLO 进行全参数训练
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
|
||||
```
|
||||
|
||||
#### 使用 BAdam 进行全参数训练
|
||||
|
||||
```bash
|
||||
@@ -238,3 +258,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
||||
#### 计算 BLEU 和 ROUGE 分数
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml
|
||||
```
|
||||
|
||||
@@ -14,7 +14,7 @@ fsdp_config:
|
||||
fsdp_use_orig_params: true
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16 # or bf16
|
||||
mixed_precision: bf16 # or fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 2 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-1.5B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
@@ -33,7 +34,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
45
examples/extras/apollo/llama3_full_sft.yaml
Normal file
45
examples/extras/apollo/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,45 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_apollo: true
|
||||
apollo_layerwise: true # choices: [true, false], use false for DDP training
|
||||
apollo_target: all
|
||||
apollo_rank: 128
|
||||
apollo_scale: 32.0
|
||||
apollo_scale_type: channel
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 1 # use 1 for layerwise apollo
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
pure_bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
@@ -1,5 +1,6 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
@@ -36,7 +37,7 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -34,7 +36,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
use_galore: true
|
||||
galore_layerwise: true
|
||||
galore_target: mlp,self_attn
|
||||
galore_layerwise: true # choices: [true, false], use false for DDP training
|
||||
galore_target: all
|
||||
galore_rank: 128
|
||||
galore_scale: 2.0
|
||||
|
||||
@@ -28,7 +29,7 @@ overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_accumulation_steps: 1 # use 1 for layerwise galore
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
@@ -37,7 +38,7 @@ pure_bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
### model
|
||||
model_name_or_path: models/llama3-8b-pro
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
@@ -35,7 +36,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
loraplus_lr_ratio: 16.0
|
||||
|
||||
@@ -34,7 +36,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
@@ -34,7 +35,7 @@ pure_bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
# The batch generation can be SLOW using this config.
|
||||
# For faster inference, we recommend to use `scripts/vllm_infer.py`.
|
||||
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
pissa_init: true
|
||||
pissa_iter: 16
|
||||
@@ -36,7 +38,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,2 +1,4 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
template: llama3
|
||||
infer_backend: huggingface # choices: [huggingface, vllm]
|
||||
trust_remote_code: true
|
||||
|
||||
4
examples/inference/llama3_full_sft.yaml
Normal file
4
examples/inference/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
model_name_or_path: saves/llama3-8b/full/sft
|
||||
template: llama3
|
||||
infer_backend: huggingface # choices: [huggingface, vllm]
|
||||
trust_remote_code: true
|
||||
@@ -1,4 +1,5 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
template: llama3
|
||||
finetuning_type: lora
|
||||
infer_backend: huggingface # choices: [huggingface, vllm]
|
||||
trust_remote_code: true
|
||||
|
||||
@@ -2,3 +2,4 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
template: llama3
|
||||
infer_backend: vllm
|
||||
vllm_enforce_eager: true
|
||||
trust_remote_code: true
|
||||
|
||||
@@ -1,2 +1,4 @@
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
template: llava
|
||||
infer_backend: huggingface # choices: [huggingface, vllm]
|
||||
trust_remote_code: true
|
||||
|
||||
@@ -1,2 +1,4 @@
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
template: qwen2_vl
|
||||
infer_backend: huggingface # choices: [huggingface, vllm]
|
||||
trust_remote_code: true
|
||||
|
||||
10
examples/merge_lora/llama3_full_sft.yaml
Normal file
10
examples/merge_lora/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,10 @@
|
||||
### model
|
||||
model_name_or_path: saves/llama3-8b/full/sft
|
||||
template: llama3
|
||||
trust_remote_code: true
|
||||
|
||||
### export
|
||||
export_dir: output/llama3_full_sft
|
||||
export_size: 5
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
||||
@@ -1,11 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
template: llama3
|
||||
trust_remote_code: true
|
||||
|
||||
### export
|
||||
export_dir: models/llama3_gptq
|
||||
export_dir: output/llama3_gptq
|
||||
export_quantization_bit: 4
|
||||
export_quantization_dataset: data/c4_demo.json
|
||||
export_size: 2
|
||||
export_size: 5
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
||||
|
||||
@@ -4,10 +4,10 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
template: llama3
|
||||
finetuning_type: lora
|
||||
trust_remote_code: true
|
||||
|
||||
### export
|
||||
export_dir: models/llama3_lora_sft
|
||||
export_size: 2
|
||||
export_dir: output/llama3_lora_sft
|
||||
export_size: 5
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
||||
|
||||
@@ -4,10 +4,10 @@
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
adapter_name_or_path: saves/qwen2_vl-7b/lora/sft
|
||||
template: qwen2_vl
|
||||
finetuning_type: lora
|
||||
trust_remote_code: true
|
||||
|
||||
### export
|
||||
export_dir: models/qwen2_vl_lora_sft
|
||||
export_size: 2
|
||||
export_dir: output/qwen2_vl_lora_sft
|
||||
export_size: 5
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
### model
|
||||
model_name_or_path: saves/llama3-8b/full/sft
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_predict: true
|
||||
finetuning_type: full
|
||||
|
||||
### dataset
|
||||
eval_dataset: identity,alpaca_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/predict
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 1
|
||||
predict_with_generate: true
|
||||
@@ -1,11 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
@@ -14,6 +15,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
@@ -21,6 +23,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +34,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
@@ -1,19 +1,26 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
image_max_pixels: 262144
|
||||
video_max_pixels: 16384
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
freeze_vision_tower: true # choices: [true, false]
|
||||
freeze_multi_modal_projector: true # choices: [true, false]
|
||||
freeze_language_model: false # choices: [true, false]
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
|
||||
|
||||
### dataset
|
||||
dataset: mllm_demo,identity
|
||||
dataset: mllm_demo,identity,alpaca_en_demo
|
||||
template: qwen2_vl
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2_vl-7b/full/sft
|
||||
@@ -21,6 +28,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +39,10 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
pref_beta: 0.1
|
||||
pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo]
|
||||
@@ -16,6 +18,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/dpo
|
||||
@@ -23,6 +26,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -33,9 +37,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: dpo_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
finetuning_type: lora
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: kto
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
pref_beta: 0.1
|
||||
|
||||
@@ -34,7 +36,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
reward_model: saves/llama3-8b/lora/reward
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: ppo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: pt
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -13,6 +15,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/pretrain
|
||||
@@ -20,6 +23,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -30,9 +34,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: c4_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: rm
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -14,6 +16,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/reward
|
||||
@@ -21,6 +24,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +35,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: dpo_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -14,6 +16,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
@@ -21,6 +24,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +35,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,12 +1,14 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
@@ -15,6 +17,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
@@ -22,6 +25,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -32,9 +36,11 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
54
examples/train_lora/llama3_lora_sft_ray.yaml
Normal file
54
examples/train_lora/llama3_lora_sft_ray.yaml
Normal file
@@ -0,0 +1,54 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct # or use local absolute path
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
dataset_dir: REMOTE:llamafactory/demo_data # or use local absolute path
|
||||
template: llama3
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: tmp_dir
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### ray
|
||||
ray_run_name: llama3_8b_sft_lora
|
||||
ray_storage_path: ./saves
|
||||
ray_num_workers: 4 # number of GPUs to use
|
||||
resources_per_worker:
|
||||
GPU: 1
|
||||
placement_strategy: PACK
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -14,6 +16,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/llava1_5-7b/lora/sft
|
||||
@@ -21,6 +24,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +35,10 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,14 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
image_max_pixels: 262144
|
||||
video_max_pixels: 16384
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
pref_beta: 0.1
|
||||
pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo]
|
||||
@@ -16,6 +20,7 @@ cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2_vl-7b/lora/dpo
|
||||
@@ -23,6 +28,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -33,9 +39,10 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,19 +1,24 @@
|
||||
### model
|
||||
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
|
||||
image_max_pixels: 262144
|
||||
video_max_pixels: 16384
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: mllm_demo,identity # video: mllm_video_demo
|
||||
dataset: mllm_demo,identity,alpaca_en_demo # video: mllm_video_demo
|
||||
template: qwen2_vl
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/qwen2_vl-7b/lora/sft
|
||||
@@ -21,6 +26,7 @@ logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
@@ -31,9 +37,10 @@ lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -33,7 +35,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -33,7 +35,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
quantization_method: bitsandbytes
|
||||
double_quantization: false
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
deepspeed: examples/deepspeed/ds_z0_config.json
|
||||
|
||||
### dataset
|
||||
dataset: identity,alpaca_en_demo
|
||||
@@ -25,7 +29,7 @@ overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
@@ -34,7 +38,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
@@ -1,10 +1,12 @@
|
||||
### model
|
||||
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -33,7 +35,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -2,11 +2,13 @@
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
quantization_method: bitsandbytes # choices: [bitsandbytes (4/8), hqq (2/3/4/5/6/8), eetq (8)]
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
@@ -35,7 +37,7 @@ bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
|
||||
@@ -2,6 +2,22 @@
|
||||
requires = ["setuptools>=61.0"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "llamafactory"
|
||||
dynamic = [
|
||||
"version",
|
||||
"dependencies",
|
||||
"optional-dependencies",
|
||||
"requires-python",
|
||||
"scripts",
|
||||
"authors",
|
||||
"description",
|
||||
"readme",
|
||||
"license",
|
||||
"keywords",
|
||||
"classifiers"
|
||||
]
|
||||
|
||||
[tool.ruff]
|
||||
target-version = "py38"
|
||||
line-length = 119
|
||||
@@ -31,3 +47,19 @@ indent-style = "space"
|
||||
docstring-code-format = true
|
||||
skip-magic-trailing-comma = false
|
||||
line-ending = "auto"
|
||||
|
||||
[tool.uv]
|
||||
conflicts = [
|
||||
[
|
||||
{ extra = "torch-npu" },
|
||||
{ extra = "aqlm" },
|
||||
],
|
||||
[
|
||||
{ extra = "torch-npu" },
|
||||
{ extra = "liger-kernel" },
|
||||
],
|
||||
[
|
||||
{ extra = "torch-npu" },
|
||||
{ extra = "vllm" },
|
||||
]
|
||||
]
|
||||
|
||||
@@ -1,9 +1,11 @@
|
||||
transformers>=4.41.2,<=4.46.1
|
||||
datasets>=2.16.0,<=3.1.0
|
||||
accelerate>=0.34.0,<=1.0.1
|
||||
transformers>=4.41.2,<=4.49.0,!=4.46.*,!=4.47.*,!=4.48.*;python_version<'3.10'
|
||||
transformers>=4.41.2,<=4.49.0,!=4.46.*,!=4.47.*,!=4.48.0;python_version>='3.10'
|
||||
datasets>=2.16.0,<=3.2.0
|
||||
accelerate>=0.34.0,<=1.2.1
|
||||
peft>=0.11.1,<=0.12.0
|
||||
trl>=0.8.6,<=0.9.6
|
||||
gradio>=4.0.0,<5.0.0
|
||||
tokenizers>=0.19.0,<=0.21.0
|
||||
gradio>=4.38.0,<=5.21.0
|
||||
pandas>=2.0.0
|
||||
scipy
|
||||
einops
|
||||
@@ -20,4 +22,5 @@ packaging
|
||||
pyyaml
|
||||
numpy<2.0.0
|
||||
av
|
||||
librosa
|
||||
tyro<0.9.0
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -19,15 +19,10 @@ from typing import Any, Dict
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from huggingface_hub import split_torch_state_dict_into_shards
|
||||
from safetensors.torch import save_file
|
||||
from tqdm import tqdm
|
||||
from transformers.modeling_utils import (
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
shard_checkpoint,
|
||||
)
|
||||
from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
||||
|
||||
|
||||
CONFIG_NAME = "config.json"
|
||||
@@ -40,34 +35,42 @@ def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetenso
|
||||
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
|
||||
baichuan2_state_dict.update(shard_weight)
|
||||
|
||||
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||
llama_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||
for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
|
||||
if "W_pack" in key:
|
||||
proj_size = value.size(0) // 3
|
||||
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
|
||||
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
|
||||
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
|
||||
llama_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
|
||||
llama_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
|
||||
llama_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
|
||||
elif "lm_head" in key:
|
||||
llama2_state_dict[key] = torch.nn.functional.normalize(value)
|
||||
llama_state_dict[key] = torch.nn.functional.normalize(value)
|
||||
else:
|
||||
llama2_state_dict[key] = value
|
||||
llama_state_dict[key] = value
|
||||
|
||||
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||
|
||||
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
llama_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size
|
||||
)
|
||||
for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"):
|
||||
shard = {tensor: llama_state_dict[tensor].contiguous() for tensor in tensors}
|
||||
if save_safetensors:
|
||||
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||
|
||||
if index is None:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, WEIGHTS_NAME)}")
|
||||
if not state_dict_split.is_sharded:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.")
|
||||
else:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||
json.dump(index, f, indent=2, sort_keys=True)
|
||||
print(f"Model weights saved in {output_dir}")
|
||||
|
||||
print(f"Model weights saved in {output_dir}.")
|
||||
|
||||
|
||||
def save_config(input_dir: str, output_dir: str):
|
||||
@@ -81,6 +84,7 @@ def save_config(input_dir: str, output_dir: str):
|
||||
|
||||
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
|
||||
json.dump(llama2_config_dict, f, indent=2)
|
||||
|
||||
print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}")
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -19,16 +19,11 @@ from typing import Any, Dict
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from huggingface_hub import split_torch_state_dict_into_shards
|
||||
from safetensors import safe_open
|
||||
from safetensors.torch import save_file
|
||||
from tqdm import tqdm
|
||||
from transformers.modeling_utils import (
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
shard_checkpoint,
|
||||
)
|
||||
from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
||||
from transformers.utils import check_min_version
|
||||
|
||||
|
||||
@@ -49,60 +44,68 @@ def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetenso
|
||||
for key in f.keys():
|
||||
qwen_state_dict[key] = f.get_tensor(key)
|
||||
|
||||
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||
llama_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||
torch_dtype = None
|
||||
for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"):
|
||||
if torch_dtype is None:
|
||||
torch_dtype = value.dtype
|
||||
if "wte" in key:
|
||||
llama2_state_dict["model.embed_tokens.weight"] = value
|
||||
llama_state_dict["model.embed_tokens.weight"] = value
|
||||
elif "ln_f" in key:
|
||||
llama2_state_dict["model.norm.weight"] = value
|
||||
llama_state_dict["model.norm.weight"] = value
|
||||
else:
|
||||
key = key.replace("transformer.h", "model.layers")
|
||||
if "attn.c_attn" in key:
|
||||
proj_size = value.size(0) // 3
|
||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
|
||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[
|
||||
llama_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
|
||||
llama_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[
|
||||
proj_size : 2 * proj_size, ...
|
||||
]
|
||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...]
|
||||
llama_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...]
|
||||
elif "attn.c_proj" in key:
|
||||
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
|
||||
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like(
|
||||
llama_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
|
||||
llama_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like(
|
||||
value[:, 0]
|
||||
).squeeze()
|
||||
elif "ln_1" in key:
|
||||
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
|
||||
llama_state_dict[key.replace("ln_1", "input_layernorm")] = value
|
||||
elif "ln_2" in key:
|
||||
llama2_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value
|
||||
llama_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value
|
||||
elif "mlp.w1" in key:
|
||||
llama2_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value
|
||||
llama_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value
|
||||
elif "mlp.w2" in key:
|
||||
llama2_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value
|
||||
llama_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value
|
||||
elif "mlp.c_proj" in key:
|
||||
llama2_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value
|
||||
llama_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value
|
||||
elif "lm_head" in key:
|
||||
llama2_state_dict[key] = value
|
||||
llama_state_dict[key] = value
|
||||
else:
|
||||
raise KeyError(f"Unable to process key {key}")
|
||||
|
||||
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||
|
||||
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
llama_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size
|
||||
)
|
||||
for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"):
|
||||
shard = {tensor: llama_state_dict[tensor].contiguous() for tensor in tensors}
|
||||
if save_safetensors:
|
||||
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||
|
||||
if index is None:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}")
|
||||
if not state_dict_split.is_sharded:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.")
|
||||
else:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||
json.dump(index, f, indent=2, sort_keys=True)
|
||||
print(f"Model weights saved in {output_dir}")
|
||||
|
||||
print(f"Model weights saved in {output_dir}.")
|
||||
|
||||
return str(torch_dtype).replace("torch.", "")
|
||||
|
||||
@@ -134,6 +137,7 @@ def save_config(input_dir: str, output_dir: str, torch_dtype: str):
|
||||
|
||||
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
|
||||
json.dump(llama2_config_dict, f, indent=2)
|
||||
|
||||
print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}")
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
|
||||
# Copyright 2025 Tencent Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the Tencent's LLaMA-Pro library.
|
||||
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
|
||||
@@ -18,24 +18,19 @@
|
||||
import json
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from huggingface_hub import split_torch_state_dict_into_shards
|
||||
from safetensors.torch import save_file
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.modeling_utils import (
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
shard_checkpoint,
|
||||
)
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
|
||||
from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
def change_name(name: str, old_index: int, new_index: int) -> str:
|
||||
@@ -46,46 +41,42 @@ def block_expansion(
|
||||
model_name_or_path: str,
|
||||
output_dir: str,
|
||||
num_expand: int,
|
||||
shard_size: str = "2GB",
|
||||
shard_size: str = "5GB",
|
||||
save_safetensors: bool = True,
|
||||
):
|
||||
r"""
|
||||
Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
|
||||
Performs block expansion for LLaMA, Mistral, Qwen2 or Yi models.
|
||||
Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
|
||||
"""
|
||||
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
|
||||
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
num_layers = getattr(config, "num_hidden_layers")
|
||||
setattr(config, "num_hidden_layers", num_layers + num_expand)
|
||||
config.save_pretrained(output_dir)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||
tokenizer.save_pretrained(output_dir)
|
||||
|
||||
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one
|
||||
if save_safetensors:
|
||||
setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights
|
||||
|
||||
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
config=config,
|
||||
torch_dtype="auto",
|
||||
trust_remote_code=True,
|
||||
low_cpu_mem_usage=True,
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
|
||||
if num_layers % num_expand != 0:
|
||||
raise ValueError(f"`num_layers` {num_layers} should be divisible by `num_expand` {num_expand}.")
|
||||
|
||||
setattr(config, "num_hidden_layers", num_layers + num_expand)
|
||||
config.save_pretrained(output_dir)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
tokenizer.save_pretrained(output_dir)
|
||||
|
||||
print(f"Expanding model of {num_layers} layers to {num_layers + num_expand} layers.")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path, torch_dtype="auto", device_map="cpu", trust_remote_code=True, low_cpu_mem_usage=True
|
||||
)
|
||||
assert isinstance(model, PreTrainedModel) # type hint
|
||||
if save_safetensors and getattr(model.config, "tie_word_embeddings", False):
|
||||
del model.lm_head # safetensors does not allow shared weights
|
||||
|
||||
split = num_layers // num_expand
|
||||
layer_cnt = 0
|
||||
output_state_dict = OrderedDict()
|
||||
state_dict = model.state_dict()
|
||||
output_state_dict: Dict[str, "torch.Tensor"] = OrderedDict()
|
||||
for i in range(num_layers):
|
||||
for key, value in state_dict.items():
|
||||
if f".{i:d}." in key:
|
||||
output_state_dict[change_name(key, i, layer_cnt)] = value
|
||||
|
||||
print(f"Add layer {layer_cnt} copied from layer {i}")
|
||||
print(f"Add layer {layer_cnt} copied from layer {i}.")
|
||||
layer_cnt += 1
|
||||
if (i + 1) % split == 0:
|
||||
for key, value in state_dict.items():
|
||||
@@ -95,7 +86,7 @@ def block_expansion(
|
||||
else:
|
||||
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)
|
||||
|
||||
print(f"Add layer {layer_cnt} expanded from layer {i}")
|
||||
print(f"Add layer {layer_cnt} expanded from layer {i}.")
|
||||
layer_cnt += 1
|
||||
|
||||
for key, value in state_dict.items():
|
||||
@@ -103,21 +94,29 @@ def block_expansion(
|
||||
output_state_dict[key] = value
|
||||
|
||||
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||
|
||||
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
output_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size
|
||||
)
|
||||
for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"):
|
||||
shard = {tensor: output_state_dict[tensor].contiguous() for tensor in tensors}
|
||||
if save_safetensors:
|
||||
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||
|
||||
if index is None:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}")
|
||||
if not state_dict_split.is_sharded:
|
||||
print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.")
|
||||
else:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||
json.dump(index, f, indent=2, sort_keys=True)
|
||||
print(f"Model weights saved in {output_dir}")
|
||||
|
||||
print(f"Model weights saved in {output_dir}.")
|
||||
|
||||
print("- Fine-tune this model with:")
|
||||
print(f"model_name_or_path: {output_dir}")
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is based on the HuggingFace's PEFT library.
|
||||
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is based on the HuggingFace's PEFT library.
|
||||
# https://github.com/huggingface/peft/blob/v0.11.0/examples/pissa_finetuning/preprocess.py
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 Microsoft Corporation and the LlamaFactory team.
|
||||
# Copyright 2025 Microsoft Corporation and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the Microsoft's DeepSpeed library.
|
||||
# https://www.deepspeed.ai/tutorials/flops-profiler/
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 imoneoi and the LlamaFactory team.
|
||||
# Copyright 2025 imoneoi and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the imoneoi's OpenChat library.
|
||||
# https://github.com/imoneoi/openchat/blob/3.6.0/ochat/training_deepspeed/train.py
|
||||
@@ -22,9 +22,9 @@ import fire
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_tokenizer
|
||||
@@ -41,7 +41,7 @@ def calculate_lr(
|
||||
dataset: str = "alpaca_en_demo",
|
||||
dataset_dir: str = "data",
|
||||
template: str = "default",
|
||||
cutoff_len: int = 1024, # i.e. maximum input length during training
|
||||
cutoff_len: int = 2048, # i.e. maximum input length during training
|
||||
is_mistral_or_gemma: bool = False, # mistral and gemma models opt for a smaller learning rate,
|
||||
packing: bool = False,
|
||||
):
|
||||
@@ -59,6 +59,7 @@ def calculate_lr(
|
||||
template=template,
|
||||
cutoff_len=cutoff_len,
|
||||
packing=packing,
|
||||
preprocessing_num_workers=16,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
do_train=True,
|
||||
@@ -71,24 +72,25 @@ def calculate_lr(
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
data_collator = MultiModalDataCollatorForSeq2Seq(
|
||||
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
||||
|
||||
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||
valid_tokens, total_tokens = 0, 0
|
||||
for batch in tqdm(dataloader):
|
||||
for batch in tqdm(dataloader, desc="Collecting valid tokens"):
|
||||
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||
total_tokens += torch.numel(batch["labels"])
|
||||
|
||||
batch_max_len = cutoff_len * batch_size # max tokens in a batch
|
||||
valid_ratio = valid_tokens / total_tokens
|
||||
batch_valid_len = batch_max_len * valid_ratio
|
||||
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size)
|
||||
token_batch_size = cutoff_len * batch_size * valid_ratio
|
||||
lr = BASE_LR * math.sqrt(token_batch_size / BASE_BS) # lr ~ sqrt(batch_size)
|
||||
lr = lr / 6.0 if is_mistral_or_gemma else lr
|
||||
print(
|
||||
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
|
||||
lr, valid_ratio * 100, batch_valid_len
|
||||
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective token batch size {:.2f}".format(
|
||||
lr, valid_ratio * 100, token_batch_size
|
||||
)
|
||||
)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -142,21 +142,23 @@ def calculate_mfu(
|
||||
args["deepspeed"] = f"examples/deepspeed/ds_z{deepspeed_stage}_config.json"
|
||||
|
||||
run_exp(args)
|
||||
with open(os.path.join("saves", "test_mfu", "all_results.json"), encoding="utf-8") as f:
|
||||
result = json.load(f)
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
world_size = dist.get_world_size()
|
||||
else:
|
||||
world_size = 1
|
||||
|
||||
total_batch_size = batch_size * world_size
|
||||
mfu_value = (
|
||||
result["train_steps_per_second"]
|
||||
* compute_model_flops(model_name_or_path, total_batch_size, seq_length)
|
||||
/ compute_device_flops(world_size)
|
||||
)
|
||||
print(f"MFU: {mfu_value * 100:.2f}%")
|
||||
if int(os.getenv("LOCAL_RANK", "0")) == 0:
|
||||
with open(os.path.join("saves", "test_mfu", "all_results.json"), encoding="utf-8") as f:
|
||||
result = json.load(f)
|
||||
|
||||
total_batch_size = batch_size * world_size
|
||||
mfu_value = (
|
||||
result["train_steps_per_second"]
|
||||
* compute_model_flops(model_name_or_path, total_batch_size, seq_length)
|
||||
/ compute_device_flops(world_size)
|
||||
)
|
||||
print(f"MFU: {mfu_value * 100:.2f}%")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -20,16 +20,16 @@ import fire
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.data import MultiModalDataCollatorForSeq2Seq, get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
@@ -39,36 +39,39 @@ class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
chosen_features = []
|
||||
for feature in features:
|
||||
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
|
||||
input_ids = feature["prompt_ids"] + feature["chosen_ids"]
|
||||
attention_mask = [1] * (prompt_len + answer_len)
|
||||
labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
|
||||
chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
|
||||
chosen_features.append(
|
||||
{
|
||||
"input_ids": feature["chosen_input_ids"],
|
||||
"attention_mask": feature["chosen_attention_mask"],
|
||||
"labels": feature["chosen_input_ids"] if self.train_on_prompt else feature["chosen_labels"],
|
||||
"images": feature["images"],
|
||||
"videos": feature["videos"],
|
||||
"audios": feature["audios"],
|
||||
}
|
||||
)
|
||||
|
||||
return super().__call__(chosen_features)
|
||||
|
||||
|
||||
def calculate_ppl(
|
||||
model_name_or_path: str,
|
||||
save_name: str,
|
||||
save_name: str = "ppl.json",
|
||||
batch_size: int = 4,
|
||||
stage: Literal["pt", "sft", "rm"] = "sft",
|
||||
dataset: str = "alpaca_en_demo",
|
||||
dataset_dir: str = "data",
|
||||
template: str = "default",
|
||||
cutoff_len: int = 1024,
|
||||
cutoff_len: int = 2048,
|
||||
max_samples: Optional[int] = None,
|
||||
train_on_prompt: bool = False,
|
||||
):
|
||||
r"""
|
||||
Calculates the ppl on the dataset of the pre-trained models.
|
||||
Usage: python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
|
||||
Usage: export CUDA_VISIBLE_DEVICES=0
|
||||
python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
|
||||
"""
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
dict(
|
||||
@@ -80,6 +83,7 @@ def calculate_ppl(
|
||||
cutoff_len=cutoff_len,
|
||||
max_samples=max_samples,
|
||||
train_on_prompt=train_on_prompt,
|
||||
preprocessing_num_workers=16,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
do_train=True,
|
||||
@@ -93,10 +97,12 @@ def calculate_ppl(
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
data_collator = MultiModalDataCollatorForSeq2Seq(
|
||||
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX
|
||||
)
|
||||
elif stage == "rm":
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
||||
template=template, tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Stage does not supported: {stage}.")
|
||||
@@ -107,7 +113,7 @@ def calculate_ppl(
|
||||
perplexities = []
|
||||
batch: Dict[str, "torch.Tensor"]
|
||||
with torch.no_grad():
|
||||
for batch in tqdm(dataloader):
|
||||
for batch in tqdm(dataloader, desc="Computing perplexities"):
|
||||
batch = batch.to(model.device)
|
||||
outputs = model(**batch)
|
||||
shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -31,7 +31,8 @@ def length_cdf(
|
||||
):
|
||||
r"""
|
||||
Calculates the distribution of the input lengths in the dataset.
|
||||
Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
|
||||
Usage: export CUDA_VISIBLE_DEVICES=0
|
||||
python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
|
||||
"""
|
||||
model_args, data_args, training_args, _, _ = get_train_args(
|
||||
dict(
|
||||
@@ -41,6 +42,7 @@ def length_cdf(
|
||||
dataset_dir=dataset_dir,
|
||||
template=template,
|
||||
cutoff_len=1_000_000,
|
||||
preprocessing_num_workers=16,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
do_train=True,
|
||||
@@ -51,7 +53,7 @@ def length_cdf(
|
||||
trainset = get_dataset(template, model_args, data_args, training_args, "sft", **tokenizer_module)["train_dataset"]
|
||||
total_num = len(trainset)
|
||||
length_dict = defaultdict(int)
|
||||
for sample in tqdm(trainset["input_ids"]):
|
||||
for sample in tqdm(trainset["input_ids"], desc="Collecting lengths"):
|
||||
length_dict[len(sample) // interval * interval] += 1
|
||||
|
||||
length_tuples = list(length_dict.items())
|
||||
151
scripts/vllm_infer.py
Normal file
151
scripts/vllm_infer.py
Normal file
@@ -0,0 +1,151 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
import fire
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.extras.misc import check_version, get_device_count
|
||||
from llamafactory.extras.packages import is_vllm_available
|
||||
from llamafactory.hparams import get_infer_args
|
||||
from llamafactory.model import load_tokenizer
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
|
||||
def vllm_infer(
|
||||
model_name_or_path: str,
|
||||
adapter_name_or_path: str = None,
|
||||
dataset: str = "alpaca_en_demo",
|
||||
dataset_dir: str = "data",
|
||||
template: str = "default",
|
||||
cutoff_len: int = 2048,
|
||||
max_samples: Optional[int] = None,
|
||||
vllm_config: str = "{}",
|
||||
save_name: str = "generated_predictions.jsonl",
|
||||
temperature: float = 0.95,
|
||||
top_p: float = 0.7,
|
||||
top_k: int = 50,
|
||||
max_new_tokens: int = 1024,
|
||||
repetition_penalty: float = 1.0,
|
||||
skip_special_tokens: bool = True,
|
||||
seed: Optional[int] = None,
|
||||
pipeline_parallel_size: int = 1,
|
||||
image_max_pixels: int = 768 * 768,
|
||||
image_min_pixels: int = 32 * 32,
|
||||
):
|
||||
r"""
|
||||
Performs batch generation using vLLM engine, which supports tensor parallelism.
|
||||
Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
|
||||
"""
|
||||
check_version("vllm>=0.4.3,<=0.7.3")
|
||||
if pipeline_parallel_size > get_device_count():
|
||||
raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")
|
||||
|
||||
model_args, data_args, _, generating_args = get_infer_args(
|
||||
dict(
|
||||
model_name_or_path=model_name_or_path,
|
||||
adapter_name_or_path=adapter_name_or_path,
|
||||
dataset=dataset,
|
||||
dataset_dir=dataset_dir,
|
||||
template=template,
|
||||
cutoff_len=cutoff_len,
|
||||
max_samples=max_samples,
|
||||
preprocessing_num_workers=16,
|
||||
vllm_config=vllm_config,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
max_new_tokens=max_new_tokens,
|
||||
repetition_penalty=repetition_penalty,
|
||||
)
|
||||
)
|
||||
|
||||
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate
|
||||
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)
|
||||
|
||||
inputs, prompts, labels = [], [], []
|
||||
for sample in dataset_module["train_dataset"]:
|
||||
if sample["images"]:
|
||||
multi_modal_data = {
|
||||
"image": template_obj.mm_plugin._regularize_images(
|
||||
sample["images"], image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels
|
||||
)
|
||||
}
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data})
|
||||
prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=skip_special_tokens))
|
||||
labels.append(
|
||||
tokenizer.decode(
|
||||
list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=skip_special_tokens
|
||||
)
|
||||
)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0
|
||||
temperature=generating_args.temperature,
|
||||
top_p=generating_args.top_p or 1.0, # top_p must > 0
|
||||
top_k=generating_args.top_k or -1, # top_k must > 0
|
||||
stop_token_ids=template_obj.get_stop_token_ids(tokenizer),
|
||||
max_tokens=generating_args.max_new_tokens,
|
||||
skip_special_tokens=skip_special_tokens,
|
||||
seed=seed,
|
||||
)
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
||||
else:
|
||||
lora_request = None
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"dtype": model_args.infer_dtype,
|
||||
"max_model_len": cutoff_len + max_new_tokens,
|
||||
"tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1,
|
||||
"pipeline_parallel_size": pipeline_parallel_size,
|
||||
"disable_log_stats": True,
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
}
|
||||
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
|
||||
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
|
||||
|
||||
if isinstance(model_args.vllm_config, dict):
|
||||
engine_args.update(model_args.vllm_config)
|
||||
|
||||
results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request)
|
||||
preds = [result.outputs[0].text for result in results]
|
||||
with open(save_name, "w", encoding="utf-8") as f:
|
||||
for text, pred, label in zip(prompts, preds, labels):
|
||||
f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")
|
||||
|
||||
print("*" * 70)
|
||||
print(f"{len(prompts)} generated results have been saved at {save_name}.")
|
||||
print("*" * 70)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(vllm_infer)
|
||||
28
setup.py
28
setup.py
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -36,7 +36,7 @@ def get_requires() -> List[str]:
|
||||
|
||||
def get_console_scripts() -> List[str]:
|
||||
console_scripts = ["llamafactory-cli = llamafactory.cli:main"]
|
||||
if os.environ.get("ENABLE_SHORT_CONSOLE", "1").lower() in ["true", "1"]:
|
||||
if os.getenv("ENABLE_SHORT_CONSOLE", "1").lower() in ["true", "y", "1"]:
|
||||
console_scripts.append("lmf = llamafactory.cli:main")
|
||||
|
||||
return console_scripts
|
||||
@@ -44,9 +44,9 @@ def get_console_scripts() -> List[str]:
|
||||
|
||||
extra_require = {
|
||||
"torch": ["torch>=1.13.1"],
|
||||
"torch-npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
|
||||
"torch-npu": ["torch==2.4.0", "torch-npu==2.4.0.post2", "decorator"],
|
||||
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||
"deepspeed": ["deepspeed>=0.10.0,<=0.14.4"],
|
||||
"deepspeed": ["deepspeed>=0.10.0,<=0.16.4"],
|
||||
"liger-kernel": ["liger-kernel"],
|
||||
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
||||
"hqq": ["hqq"],
|
||||
@@ -54,13 +54,25 @@ extra_require = {
|
||||
"gptq": ["optimum>=1.17.0", "auto-gptq>=0.5.0"],
|
||||
"awq": ["autoawq"],
|
||||
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
||||
"vllm": ["vllm>=0.4.3,<0.6.4"],
|
||||
"vllm": ["vllm>=0.4.3,<=0.7.3"],
|
||||
"galore": ["galore-torch"],
|
||||
"apollo": ["apollo-torch"],
|
||||
"badam": ["badam>=1.2.1"],
|
||||
"adam-mini": ["adam-mini"],
|
||||
"qwen": ["transformers_stream_generator"],
|
||||
"minicpm_v": [
|
||||
"soundfile",
|
||||
"torchvision",
|
||||
"torchaudio",
|
||||
"vector_quantize_pytorch",
|
||||
"vocos",
|
||||
"msgpack",
|
||||
"referencing",
|
||||
"jsonschema_specifications",
|
||||
],
|
||||
"modelscope": ["modelscope"],
|
||||
"openmind": ["openmind"],
|
||||
"swanlab": ["swanlab"],
|
||||
"dev": ["pre-commit", "ruff", "pytest"],
|
||||
}
|
||||
|
||||
@@ -70,7 +82,7 @@ def main():
|
||||
name="llamafactory",
|
||||
version=get_version(),
|
||||
author="hiyouga",
|
||||
author_email="hiyouga" "@" "buaa.edu.cn",
|
||||
author_email="hiyouga AT buaa.edu.cn",
|
||||
description="Easy-to-use LLM fine-tuning framework",
|
||||
long_description=open("README.md", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
@@ -79,7 +91,7 @@ def main():
|
||||
url="https://github.com/hiyouga/LLaMA-Factory",
|
||||
package_dir={"": "src"},
|
||||
packages=find_packages("src"),
|
||||
python_requires=">=3.8.0",
|
||||
python_requires=">=3.9.0",
|
||||
install_requires=get_requires(),
|
||||
extras_require=extra_require,
|
||||
entry_points={"console_scripts": get_console_scripts()},
|
||||
@@ -91,10 +103,10 @@ def main():
|
||||
"License :: OSI Approved :: Apache Software License",
|
||||
"Operating System :: OS Independent",
|
||||
"Programming Language :: Python :: 3",
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Programming Language :: Python :: 3.12",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
],
|
||||
)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -20,17 +20,17 @@ Level:
|
||||
|
||||
Dependency graph:
|
||||
main:
|
||||
transformers>=4.41.2,<=4.46.1
|
||||
datasets>=2.16.0,<=3.1.0
|
||||
accelerate>=0.34.0,<=1.0.1
|
||||
transformers>=4.41.2,<=4.49.0,!=4.46.*,!=4.47.*,!=4.48.0
|
||||
datasets>=2.16.0,<=3.2.0
|
||||
accelerate>=0.34.0,<=1.2.1
|
||||
peft>=0.11.1,<=0.12.0
|
||||
trl>=0.8.6,<=0.9.6
|
||||
attention:
|
||||
transformers>=4.42.4 (gemma+fa2)
|
||||
longlora:
|
||||
transformers>=4.41.2,<=4.46.1
|
||||
transformers>=4.41.2,<4.48.0
|
||||
packing:
|
||||
transformers>=4.41.2,<=4.46.1
|
||||
transformers>=4.43.0
|
||||
|
||||
Disable version checking: DISABLE_VERSION_CHECK=1
|
||||
Enable VRAM recording: RECORD_VRAM=1
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -21,6 +21,7 @@ from typing import Optional
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..extras.constants import EngineName
|
||||
from ..extras.misc import torch_gc
|
||||
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||
from .chat import (
|
||||
@@ -60,7 +61,7 @@ async def sweeper() -> None:
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: "FastAPI", chat_model: "ChatModel"): # collects GPU memory
|
||||
if chat_model.engine_type == "huggingface":
|
||||
if chat_model.engine.name == EngineName.HF:
|
||||
asyncio.create_task(sweeper())
|
||||
|
||||
yield
|
||||
@@ -106,7 +107,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
|
||||
if request.stream:
|
||||
generate = create_stream_chat_completion_response(request, chat_model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
return EventSourceResponse(generate, media_type="text/event-stream", sep="\n")
|
||||
else:
|
||||
return await create_chat_completion_response(request, chat_model)
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -22,6 +22,8 @@ from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||
|
||||
from ..data import Role as DataRole
|
||||
from ..extras import logging
|
||||
from ..extras.constants import IMAGE_PLACEHOLDER
|
||||
from ..extras.misc import is_env_enabled
|
||||
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
|
||||
from .common import dictify, jsonify
|
||||
from .protocol import (
|
||||
@@ -70,7 +72,8 @@ ROLE_MAPPING = {
|
||||
def _process_request(
|
||||
request: "ChatCompletionRequest",
|
||||
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional[List["ImageInput"]]]:
|
||||
logger.info_rank0(f"==== request ====\n{json.dumps(dictify(request), indent=2, ensure_ascii=False)}")
|
||||
if is_env_enabled("API_VERBOSE", "1"):
|
||||
logger.info_rank0(f"==== request ====\n{json.dumps(dictify(request), indent=2, ensure_ascii=False)}")
|
||||
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||
@@ -99,10 +102,12 @@ def _process_request(
|
||||
content = json.dumps(tool_calls, ensure_ascii=False)
|
||||
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||
elif isinstance(message.content, list):
|
||||
text_content = ""
|
||||
for input_item in message.content:
|
||||
if input_item.type == "text":
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
|
||||
text_content += input_item.text
|
||||
else:
|
||||
text_content += IMAGE_PLACEHOLDER
|
||||
image_url = input_item.image_url.url
|
||||
if re.match(r"^data:image\/(png|jpg|jpeg|gif|bmp);base64,(.+)$", image_url): # base64 image
|
||||
image_stream = io.BytesIO(base64.b64decode(image_url.split(",", maxsplit=1)[1]))
|
||||
@@ -112,6 +117,8 @@ def _process_request(
|
||||
image_stream = requests.get(image_url, stream=True).raw
|
||||
|
||||
images.append(Image.open(image_stream).convert("RGB"))
|
||||
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": text_content})
|
||||
else:
|
||||
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||
|
||||
@@ -168,7 +175,7 @@ async def create_chat_completion_response(
|
||||
if isinstance(result, list):
|
||||
tool_calls = []
|
||||
for tool in result:
|
||||
function = Function(name=tool[0], arguments=tool[1])
|
||||
function = Function(name=tool.name, arguments=tool.arguments)
|
||||
tool_calls.append(FunctionCall(id=f"call_{uuid.uuid4().hex}", function=function))
|
||||
|
||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=tool_calls)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -22,7 +22,8 @@ if TYPE_CHECKING:
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
from ..data import Template
|
||||
from ..data.mm_plugin import ImageInput, VideoInput
|
||||
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..extras.constants import EngineName
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
@@ -41,6 +42,7 @@ class BaseEngine(ABC):
|
||||
Must implements async methods: chat(), stream_chat() and get_scores().
|
||||
"""
|
||||
|
||||
name: "EngineName"
|
||||
model: Union["PreTrainedModel", "AsyncLLMEngine"]
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
can_generate: bool
|
||||
@@ -68,6 +70,7 @@ class BaseEngine(ABC):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
r"""
|
||||
@@ -83,6 +86,7 @@ class BaseEngine(ABC):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
r"""
|
||||
|
||||
@@ -20,6 +20,7 @@ import os
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||
|
||||
from ..extras.constants import EngineName
|
||||
from ..extras.misc import torch_gc
|
||||
from ..hparams import get_infer_args
|
||||
from .hf_engine import HuggingfaceEngine
|
||||
@@ -27,7 +28,7 @@ from .vllm_engine import VllmEngine
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..data.mm_plugin import ImageInput, VideoInput
|
||||
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
@@ -47,10 +48,9 @@ class ChatModel:
|
||||
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
|
||||
self.engine_type = model_args.infer_backend
|
||||
if model_args.infer_backend == "huggingface":
|
||||
if model_args.infer_backend == EngineName.HF:
|
||||
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
|
||||
elif model_args.infer_backend == "vllm":
|
||||
elif model_args.infer_backend == EngineName.VLLM:
|
||||
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown backend: {model_args.infer_backend}")
|
||||
@@ -66,13 +66,14 @@ class ChatModel:
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
r"""
|
||||
Gets a list of responses of the chat model.
|
||||
"""
|
||||
task = asyncio.run_coroutine_threadsafe(
|
||||
self.achat(messages, system, tools, images, videos, **input_kwargs), self._loop
|
||||
self.achat(messages, system, tools, images, videos, audios, **input_kwargs), self._loop
|
||||
)
|
||||
return task.result()
|
||||
|
||||
@@ -83,12 +84,13 @@ class ChatModel:
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
r"""
|
||||
Asynchronously gets a list of responses of the chat model.
|
||||
"""
|
||||
return await self.engine.chat(messages, system, tools, images, videos, **input_kwargs)
|
||||
return await self.engine.chat(messages, system, tools, images, videos, audios, **input_kwargs)
|
||||
|
||||
def stream_chat(
|
||||
self,
|
||||
@@ -97,12 +99,13 @@ class ChatModel:
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> Generator[str, None, None]:
|
||||
r"""
|
||||
Gets the response token-by-token of the chat model.
|
||||
"""
|
||||
generator = self.astream_chat(messages, system, tools, images, videos, **input_kwargs)
|
||||
generator = self.astream_chat(messages, system, tools, images, videos, audios, **input_kwargs)
|
||||
while True:
|
||||
try:
|
||||
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
||||
@@ -117,12 +120,15 @@ class ChatModel:
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
r"""
|
||||
Asynchronously gets the response token-by-token of the chat model.
|
||||
"""
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, images, videos, **input_kwargs):
|
||||
async for new_token in self.engine.stream_chat(
|
||||
messages, system, tools, images, videos, audios, **input_kwargs
|
||||
):
|
||||
yield new_token
|
||||
|
||||
def get_scores(
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -24,7 +24,7 @@ from typing_extensions import override
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras import logging
|
||||
from ..extras.constants import IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
|
||||
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
@@ -35,7 +35,7 @@ if TYPE_CHECKING:
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data import Template
|
||||
from ..data.mm_plugin import ImageInput, VideoInput
|
||||
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
@@ -50,6 +50,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.name = EngineName.HF
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
@@ -63,7 +64,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
try:
|
||||
asyncio.get_event_loop()
|
||||
except RuntimeError:
|
||||
logger.warning_once("There is no current event loop, creating a new one.")
|
||||
logger.warning_rank0_once("There is no current event loop, creating a new one.")
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
|
||||
@@ -81,9 +82,10 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
mm_input_dict = {"images": [], "videos": [], "imglens": [0], "vidlens": [0]}
|
||||
mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]}
|
||||
if images is not None:
|
||||
mm_input_dict.update({"images": images, "imglens": [len(images)]})
|
||||
if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
|
||||
@@ -94,14 +96,25 @@ class HuggingfaceEngine(BaseEngine):
|
||||
if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
|
||||
messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
|
||||
|
||||
if audios is not None:
|
||||
mm_input_dict.update({"audios": audios, "audlens": [len(audios)]})
|
||||
if not any(AUDIO_PLACEHOLDER in message["content"] for message in messages):
|
||||
messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"]
|
||||
|
||||
messages = template.mm_plugin.process_messages(
|
||||
messages, mm_input_dict["images"], mm_input_dict["videos"], processor
|
||||
messages, mm_input_dict["images"], mm_input_dict["videos"], mm_input_dict["audios"], processor
|
||||
)
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or generating_args["default_system"]
|
||||
prompt_ids, _ = template.encode_oneturn(tokenizer, paired_messages, system, tools)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(
|
||||
prompt_ids, None, mm_input_dict["images"], mm_input_dict["videos"], tokenizer, processor
|
||||
prompt_ids,
|
||||
None,
|
||||
mm_input_dict["images"],
|
||||
mm_input_dict["videos"],
|
||||
mm_input_dict["audios"],
|
||||
tokenizer,
|
||||
processor,
|
||||
)
|
||||
prompt_length = len(prompt_ids)
|
||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||
@@ -114,6 +127,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
@@ -133,7 +147,10 @@ class HuggingfaceEngine(BaseEngine):
|
||||
if repetition_penalty is not None
|
||||
else generating_args["repetition_penalty"],
|
||||
length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"],
|
||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||
skip_special_tokens=skip_special_tokens
|
||||
if skip_special_tokens is not None
|
||||
else generating_args["skip_special_tokens"],
|
||||
eos_token_id=template.get_stop_token_ids(tokenizer),
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
@@ -166,12 +183,30 @@ class HuggingfaceEngine(BaseEngine):
|
||||
|
||||
mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, batch_ids=[prompt_ids], processor=processor)
|
||||
for key, value in mm_inputs.items():
|
||||
if isinstance(value, list) and all(isinstance(v, torch.Tensor) for v in value): # for pixtral inputs
|
||||
if isinstance(value, list) and isinstance(value[0], torch.Tensor): # for pixtral inputs
|
||||
value = torch.stack(value) # assume they have same sizes
|
||||
elif (
|
||||
isinstance(value, list) and isinstance(value[0], list) and isinstance(value[0][0], torch.Tensor)
|
||||
): # for minicpmv inputs
|
||||
value = torch.stack([torch.stack(v) for v in value])
|
||||
elif not isinstance(value, torch.Tensor):
|
||||
value = torch.tensor(value)
|
||||
|
||||
gen_kwargs[key] = value.to(model.device)
|
||||
if torch.is_floating_point(value): # cast data dtype for paligemma
|
||||
value = value.to(model.dtype)
|
||||
|
||||
if key == "second_per_grid_ts": # qwen2.5vl special case
|
||||
gen_kwargs[key] = value.tolist()
|
||||
else:
|
||||
gen_kwargs[key] = value.to(model.device)
|
||||
|
||||
if getattr(model.config, "model_type", None) in ["minicpmv", "minicpmo"]:
|
||||
gen_kwargs["input_ids"] = inputs
|
||||
gen_kwargs["tokenizer"] = tokenizer
|
||||
if "audio_feature_lens" in mm_inputs:
|
||||
gen_kwargs["audio_feature_lens"] = mm_inputs["audio_feature_lens"]
|
||||
|
||||
gen_kwargs.pop("image_sizes", None)
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@@ -188,6 +223,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
@@ -201,11 +237,19 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools,
|
||||
images,
|
||||
videos,
|
||||
audios,
|
||||
input_kwargs,
|
||||
)
|
||||
generate_output = model.generate(**gen_kwargs)
|
||||
if isinstance(generate_output, tuple):
|
||||
generate_output = generate_output[1][0] # post-process the minicpm_o output
|
||||
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
response = tokenizer.batch_decode(
|
||||
response_ids,
|
||||
skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True),
|
||||
clean_up_tokenization_spaces=True,
|
||||
)
|
||||
results = []
|
||||
for i in range(len(response)):
|
||||
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
|
||||
@@ -234,6 +278,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
@@ -247,9 +292,14 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools,
|
||||
images,
|
||||
videos,
|
||||
audios,
|
||||
input_kwargs,
|
||||
)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
streamer = TextIteratorStreamer(
|
||||
tokenizer,
|
||||
skip_prompt=True,
|
||||
skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True),
|
||||
)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
|
||||
thread.start()
|
||||
@@ -292,6 +342,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
if not self.can_generate:
|
||||
@@ -309,6 +360,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools,
|
||||
images,
|
||||
videos,
|
||||
audios,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self.semaphore:
|
||||
@@ -323,6 +375,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
@@ -340,6 +393,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||
tools,
|
||||
images,
|
||||
videos,
|
||||
audios,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self.semaphore:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -19,27 +19,22 @@ from typing_extensions import override
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras import logging
|
||||
from ..extras.constants import IMAGE_PLACEHOLDER
|
||||
from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName
|
||||
from ..extras.misc import get_device_count
|
||||
from ..extras.packages import is_pillow_available, is_vllm_available
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..model import load_config, load_tokenizer
|
||||
from ..model.model_utils.quantization import QuantizationMethod
|
||||
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
from PIL.Image import Image as ImageObject
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..data.mm_plugin import ImageInput, VideoInput
|
||||
from ..data.mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
@@ -54,6 +49,8 @@ class VllmEngine(BaseEngine):
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.name = EngineName.VLLM
|
||||
self.model_args = model_args
|
||||
config = load_config(model_args) # may download model from ms hub
|
||||
if getattr(config, "quantization_config", None): # gptq models should use float16
|
||||
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
|
||||
@@ -67,11 +64,12 @@ class VllmEngine(BaseEngine):
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args)
|
||||
self.template.mm_plugin.expand_mm_tokens = False # for vllm generate
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"trust_remote_code": model_args.trust_remote_code,
|
||||
"download_dir": model_args.cache_dir,
|
||||
"dtype": model_args.infer_dtype,
|
||||
"max_model_len": model_args.vllm_maxlen,
|
||||
@@ -83,6 +81,9 @@ class VllmEngine(BaseEngine):
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
"max_lora_rank": model_args.vllm_max_lora_rank,
|
||||
}
|
||||
if self.template.mm_plugin.__class__.__name__ != "BasePlugin":
|
||||
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
|
||||
|
||||
if isinstance(model_args.vllm_config, dict):
|
||||
engine_args.update(model_args.vllm_config)
|
||||
|
||||
@@ -105,22 +106,30 @@ class VllmEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncIterator["RequestOutput"]:
|
||||
request_id = f"chatcmpl-{uuid.uuid4().hex}"
|
||||
mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]}
|
||||
if images is not None:
|
||||
mm_input_dict.update({"images": images, "imglens": [len(images)]})
|
||||
if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages):
|
||||
messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"]
|
||||
|
||||
if self.template.mm_plugin.__class__.__name__ == "Qwen2vlPlugin": # temporary solution
|
||||
image_str = f"<|vision_start|>{self.template.mm_plugin.image_token}<|vision_end|>"
|
||||
else:
|
||||
image_str = self.template.mm_plugin.image_token or ""
|
||||
if videos is not None:
|
||||
mm_input_dict.update({"videos": videos, "vidlens": [len(videos)]})
|
||||
if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages):
|
||||
messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"]
|
||||
|
||||
paired_messages = [
|
||||
{"role": message["role"], "content": message["content"].replace(IMAGE_PLACEHOLDER, image_str)}
|
||||
for message in messages
|
||||
] + [{"role": "assistant", "content": ""}]
|
||||
if audios is not None:
|
||||
mm_input_dict.update({"audios": audios, "audlens": [len(audios)]})
|
||||
if not any(AUDIO_PLACEHOLDER in message["content"] for message in messages):
|
||||
messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"]
|
||||
|
||||
messages = self.template.mm_plugin.process_messages(
|
||||
messages, mm_input_dict["images"], mm_input_dict["videos"], mm_input_dict["audios"], self.processor
|
||||
)
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
system = system or self.generating_args["default_system"]
|
||||
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
|
||||
prompt_length = len(prompt_ids)
|
||||
@@ -131,6 +140,7 @@ class VllmEngine(BaseEngine):
|
||||
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
||||
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
||||
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
||||
skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None)
|
||||
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
||||
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
||||
@@ -160,25 +170,23 @@ class VllmEngine(BaseEngine):
|
||||
or 1.0, # repetition_penalty must > 0
|
||||
temperature=temperature if temperature is not None else self.generating_args["temperature"],
|
||||
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
||||
top_k=top_k if top_k is not None else self.generating_args["top_k"],
|
||||
top_k=(top_k if top_k is not None else self.generating_args["top_k"]) or -1, # top_k must > 0
|
||||
stop=stop,
|
||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
stop_token_ids=self.template.get_stop_token_ids(self.tokenizer),
|
||||
max_tokens=max_tokens,
|
||||
skip_special_tokens=True,
|
||||
skip_special_tokens=skip_special_tokens
|
||||
if skip_special_tokens is not None
|
||||
else self.generating_args["skip_special_tokens"],
|
||||
)
|
||||
|
||||
if images is not None: # add image features
|
||||
image_data = []
|
||||
for image in images:
|
||||
if not isinstance(image, (str, ImageObject)):
|
||||
raise ValueError(f"Expected image input is a path or PIL.Image, but got {type(image)}.")
|
||||
|
||||
if isinstance(image, str):
|
||||
image = Image.open(image).convert("RGB")
|
||||
|
||||
image_data.append(image)
|
||||
|
||||
multi_modal_data = {"image": image_data}
|
||||
multi_modal_data = {
|
||||
"image": self.template.mm_plugin._regularize_images(
|
||||
images,
|
||||
image_max_pixels=self.model_args.image_max_pixels,
|
||||
image_min_pixels=self.model_args.image_min_pixels,
|
||||
)
|
||||
}
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
@@ -198,10 +206,11 @@ class VllmEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
final_output = None
|
||||
generator = await self._generate(messages, system, tools, images, videos, **input_kwargs)
|
||||
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
|
||||
async for request_output in generator:
|
||||
final_output = request_output
|
||||
|
||||
@@ -226,10 +235,11 @@ class VllmEngine(BaseEngine):
|
||||
tools: Optional[str] = None,
|
||||
images: Optional[Sequence["ImageInput"]] = None,
|
||||
videos: Optional[Sequence["VideoInput"]] = None,
|
||||
audios: Optional[Sequence["AudioInput"]] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
generated_text = ""
|
||||
generator = await self._generate(messages, system, tools, images, videos, **input_kwargs)
|
||||
generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs)
|
||||
async for result in generator:
|
||||
delta_text = result.outputs[0].text[len(generated_text) :]
|
||||
generated_text = result.outputs[0].text
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -24,7 +24,7 @@ from .chat.chat_model import run_chat
|
||||
from .eval.evaluator import run_eval
|
||||
from .extras import logging
|
||||
from .extras.env import VERSION, print_env
|
||||
from .extras.misc import get_device_count
|
||||
from .extras.misc import get_device_count, is_env_enabled, use_ray
|
||||
from .train.tuner import export_model, run_exp
|
||||
from .webui.interface import run_web_demo, run_web_ui
|
||||
|
||||
@@ -86,20 +86,26 @@ def main():
|
||||
elif command == Command.EXPORT:
|
||||
export_model()
|
||||
elif command == Command.TRAIN:
|
||||
force_torchrun = os.getenv("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
|
||||
if force_torchrun or get_device_count() > 1:
|
||||
force_torchrun = is_env_enabled("FORCE_TORCHRUN")
|
||||
if force_torchrun or (get_device_count() > 1 and not use_ray()):
|
||||
nnodes = os.getenv("NNODES", "1")
|
||||
node_rank = os.getenv("NODE_RANK", "0")
|
||||
nproc_per_node = os.getenv("NPROC_PER_NODE", str(get_device_count()))
|
||||
master_addr = os.getenv("MASTER_ADDR", "127.0.0.1")
|
||||
master_port = os.getenv("MASTER_PORT", str(random.randint(20001, 29999)))
|
||||
logger.info_rank0(f"Initializing distributed tasks at: {master_addr}:{master_port}")
|
||||
logger.info_rank0(f"Initializing {nproc_per_node} distributed tasks at: {master_addr}:{master_port}")
|
||||
if int(nnodes) > 1:
|
||||
print(f"Multi-node training enabled: num nodes: {nnodes}, node rank: {node_rank}")
|
||||
|
||||
process = subprocess.run(
|
||||
(
|
||||
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
|
||||
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
|
||||
)
|
||||
.format(
|
||||
nnodes=os.getenv("NNODES", "1"),
|
||||
node_rank=os.getenv("NODE_RANK", "0"),
|
||||
nproc_per_node=os.getenv("NPROC_PER_NODE", str(get_device_count())),
|
||||
nnodes=nnodes,
|
||||
node_rank=node_rank,
|
||||
nproc_per_node=nproc_per_node,
|
||||
master_addr=master_addr,
|
||||
master_port=master_port,
|
||||
file_name=launcher.__file__,
|
||||
@@ -119,4 +125,8 @@ def main():
|
||||
elif command == Command.HELP:
|
||||
print(USAGE)
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown command: {command}.")
|
||||
print(f"Unknown command: {command}.\n{USAGE}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
||||
@@ -1,264 +0,0 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
|
||||
|
||||
from ..extras import logging
|
||||
from .data_utils import Role
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .mm_plugin import ImageInput, VideoInput
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def _convert_images(
|
||||
images: Union["ImageInput", Sequence["ImageInput"]],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
) -> Optional[List["ImageInput"]]:
|
||||
r"""
|
||||
Optionally concatenates image path to dataset dir when loading from local disk.
|
||||
"""
|
||||
if not isinstance(images, list):
|
||||
images = [images]
|
||||
elif len(images) == 0:
|
||||
return None
|
||||
else:
|
||||
images = images[:]
|
||||
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for i in range(len(images)):
|
||||
if isinstance(images[i], str) and os.path.isfile(os.path.join(data_args.image_dir, images[i])):
|
||||
images[i] = os.path.join(data_args.image_dir, images[i])
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def _convert_videos(
|
||||
videos: Union["VideoInput", Sequence["VideoInput"]],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
) -> Optional[List["VideoInput"]]:
|
||||
r"""
|
||||
Optionally concatenates video path to dataset dir when loading from local disk.
|
||||
"""
|
||||
if not isinstance(videos, list):
|
||||
videos = [videos]
|
||||
elif len(videos) == 0:
|
||||
return None
|
||||
else:
|
||||
videos = videos[:]
|
||||
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for i in range(len(videos)):
|
||||
if isinstance(videos[i], str) and os.path.isfile(os.path.join(data_args.image_dir, videos[i])):
|
||||
videos[i] = os.path.join(data_args.image_dir, videos[i])
|
||||
|
||||
return videos
|
||||
|
||||
|
||||
def convert_alpaca(
|
||||
example: Dict[str, Any],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, Any]:
|
||||
r"""
|
||||
Converts alpaca format dataset to the standard format.
|
||||
"""
|
||||
prompt = []
|
||||
if dataset_attr.history and isinstance(example[dataset_attr.history], list):
|
||||
for old_prompt, old_response in example[dataset_attr.history]:
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
query = []
|
||||
if dataset_attr.prompt and example[dataset_attr.prompt]:
|
||||
query.append(example[dataset_attr.prompt])
|
||||
|
||||
if dataset_attr.query and example[dataset_attr.query]:
|
||||
query.append(example[dataset_attr.query])
|
||||
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(query)}) # "prompt\nquery"
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}]
|
||||
if example[dataset_attr.kto_tag]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(example[dataset_attr.chosen], str)
|
||||
and isinstance(example[dataset_attr.rejected], str)
|
||||
): # pairwise example
|
||||
response = [
|
||||
{"role": Role.ASSISTANT.value, "content": example[dataset_attr.chosen]},
|
||||
{"role": Role.ASSISTANT.value, "content": example[dataset_attr.rejected]},
|
||||
]
|
||||
elif dataset_attr.response and isinstance(example[dataset_attr.response], str): # normal example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}]
|
||||
else: # unsupervised
|
||||
response = []
|
||||
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
|
||||
output = {
|
||||
"_prompt": prompt,
|
||||
"_response": response,
|
||||
"_system": example[dataset_attr.system] if dataset_attr.system else "",
|
||||
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
|
||||
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
|
||||
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
def convert_sharegpt(
|
||||
example: Dict[str, Any],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, Any]:
|
||||
r"""
|
||||
Converts sharegpt format dataset to the standard format.
|
||||
"""
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER.value,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
||||
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
messages = example[dataset_attr.messages]
|
||||
if (
|
||||
dataset_attr.system_tag
|
||||
and len(messages) != 0
|
||||
and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag
|
||||
):
|
||||
system = messages[0][dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = example[dataset_attr.system] if dataset_attr.system else ""
|
||||
|
||||
aligned_messages = []
|
||||
broken_data = False
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
logger.warning_rank0(f"Invalid role tag in {messages}.")
|
||||
broken_data = True
|
||||
|
||||
aligned_messages.append(
|
||||
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
||||
)
|
||||
|
||||
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
|
||||
dataset_attr.ranking and len(aligned_messages) % 2 == 0
|
||||
):
|
||||
logger.warning_rank0(f"Invalid message count in {messages}.")
|
||||
broken_data = True
|
||||
|
||||
if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
if example[dataset_attr.kto_tag]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
dataset_attr.ranking
|
||||
and isinstance(example[dataset_attr.chosen], dict)
|
||||
and isinstance(example[dataset_attr.rejected], dict)
|
||||
): # pairwise example
|
||||
chosen = example[dataset_attr.chosen]
|
||||
rejected = example[dataset_attr.rejected]
|
||||
if (
|
||||
chosen[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
or rejected[dataset_attr.role_tag] not in accept_tags[-1]
|
||||
):
|
||||
logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
|
||||
broken_data = True
|
||||
|
||||
prompt = aligned_messages
|
||||
response = [
|
||||
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
|
||||
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
|
||||
]
|
||||
else: # normal example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
|
||||
if broken_data:
|
||||
logger.warning_rank0("Skipping this abnormal example.")
|
||||
prompt, response = [], []
|
||||
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
|
||||
output = {
|
||||
"_prompt": prompt,
|
||||
"_response": response,
|
||||
"_system": system,
|
||||
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
|
||||
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
|
||||
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
def align_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
_prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
_response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
_system: "..."
|
||||
_tools: "...",
|
||||
_images: [],
|
||||
_videos: [],
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
|
||||
else:
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
return dataset.map(
|
||||
convert_func,
|
||||
batched=False,
|
||||
remove_columns=column_names,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -18,9 +18,18 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
|
||||
from ..extras.packages import is_pillow_available
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
@@ -72,25 +81,85 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator that supports VLMs.
|
||||
|
||||
Features should contain input_ids, attention_mask, labels and images.
|
||||
Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
|
||||
"""
|
||||
|
||||
template: Optional["Template"] = None
|
||||
processor: Optional["ProcessorMixin"] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.template is None:
|
||||
raise ValueError("Template is required for MultiModalDataCollator.")
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
|
||||
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids = [], [], [], [], []
|
||||
batch_images, batch_videos, batch_audios = [], [], []
|
||||
batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
|
||||
for feature in features:
|
||||
images = feature.pop("images", None) or []
|
||||
videos = feature.pop("videos", None) or []
|
||||
audios = feature.pop("audios", None) or []
|
||||
batch_images.extend(images)
|
||||
batch_videos.extend(videos)
|
||||
batch_audios.extend(audios)
|
||||
batch_imglens.append(len(images))
|
||||
batch_vidlens.append(len(videos))
|
||||
batch_audlens.append(len(audios))
|
||||
batch_input_ids.append(feature["input_ids"])
|
||||
|
||||
fake_input_ids = []
|
||||
if (
|
||||
self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
|
||||
): # avoid process hanging in zero3/fsdp case
|
||||
fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
|
||||
fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
|
||||
fake_messages = self.template.mm_plugin.process_messages(
|
||||
fake_messages, fake_images, [], [], self.processor
|
||||
)
|
||||
_fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
|
||||
_fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
_fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
|
||||
)
|
||||
fake_input_ids.extend(_fake_input_ids)
|
||||
batch_images = fake_images
|
||||
batch_imglens[0] = 1
|
||||
|
||||
if (
|
||||
self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
|
||||
): # avoid process hanging in zero3/fsdp case
|
||||
fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
|
||||
fake_audios = [np.zeros(1600)]
|
||||
fake_messages = self.template.mm_plugin.process_messages(
|
||||
fake_messages, [], [], fake_audios, self.processor
|
||||
)
|
||||
_fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
|
||||
_fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
_fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
|
||||
)
|
||||
fake_input_ids.extend(_fake_input_ids)
|
||||
batch_audios = fake_audios
|
||||
batch_audlens[0] = 1
|
||||
|
||||
if len(fake_input_ids) != 0:
|
||||
if self.tokenizer.padding_side == "right":
|
||||
features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
|
||||
features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
|
||||
features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
|
||||
else:
|
||||
features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
|
||||
features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
|
||||
features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]
|
||||
|
||||
batch_input_ids[0] = features[0]["input_ids"]
|
||||
|
||||
mm_inputs = self.template.mm_plugin.get_mm_inputs(
|
||||
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_input_ids, self.processor
|
||||
batch_images,
|
||||
batch_videos,
|
||||
batch_audios,
|
||||
batch_imglens,
|
||||
batch_vidlens,
|
||||
batch_audlens,
|
||||
batch_input_ids,
|
||||
self.processor,
|
||||
)
|
||||
if "token_type_ids" in mm_inputs:
|
||||
token_type_ids = mm_inputs.pop("token_type_ids")
|
||||
@@ -98,9 +167,31 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
||||
feature["token_type_ids"] = token_type_ids[i]
|
||||
|
||||
features: Dict[str, "torch.Tensor"] = super().__call__(features)
|
||||
|
||||
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
|
||||
rope_index_kwargs = {
|
||||
"input_ids": features["input_ids"],
|
||||
"image_grid_thw": mm_inputs.get("image_grid_thw"),
|
||||
"video_grid_thw": mm_inputs.get("video_grid_thw"),
|
||||
"attention_mask": features["attention_mask"],
|
||||
}
|
||||
if "second_per_grid_ts" in mm_inputs:
|
||||
rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
|
||||
|
||||
features["position_ids"], features["rope_deltas"] = self.model.get_rope_index(**rope_index_kwargs)
|
||||
|
||||
if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled
|
||||
cross_attention_mask = mm_inputs.pop("cross_attention_mask")
|
||||
seq_len = features["input_ids"].size(1)
|
||||
orig_len = cross_attention_mask.size(1)
|
||||
mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))
|
||||
|
||||
features.update(mm_inputs)
|
||||
if isinstance(features.get("pixel_values"), list): # for pixtral inputs
|
||||
features = features.data # use default_collate() instead of BatchEncoding.to()
|
||||
|
||||
if "image_bound" in features: # for minicpmv inputs
|
||||
bsz, seq_length = features["input_ids"].shape
|
||||
features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
|
||||
return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}
|
||||
|
||||
return features
|
||||
|
||||
@@ -120,6 +211,10 @@ class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
|
||||
if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
|
||||
features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)
|
||||
|
||||
for key, value in features.items(): # cast data dtype for paligemma
|
||||
if torch.is_tensor(value) and torch.is_floating_point(value):
|
||||
features[key] = value.to(self.compute_dtype)
|
||||
|
||||
return features
|
||||
|
||||
|
||||
@@ -145,6 +240,7 @@ class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||
"labels": feature[f"{key}_labels"],
|
||||
"images": feature["images"],
|
||||
"videos": feature["videos"],
|
||||
"audios": feature["audios"],
|
||||
}
|
||||
concatenated_features.append(target_feature)
|
||||
|
||||
@@ -168,6 +264,7 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||
"labels": feature["labels"],
|
||||
"images": feature["images"],
|
||||
"videos": feature["videos"],
|
||||
"audios": feature["audios"],
|
||||
}
|
||||
kl_feature = {
|
||||
"input_ids": feature["kl_input_ids"],
|
||||
@@ -175,6 +272,7 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||
"labels": feature["kl_labels"],
|
||||
"images": feature["images"],
|
||||
"videos": feature["videos"],
|
||||
"audios": feature["audios"],
|
||||
}
|
||||
target_features.append(target_feature)
|
||||
kl_features.append(kl_feature)
|
||||
@@ -185,6 +283,8 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
||||
batch["kl_input_ids"] = kl_batch["input_ids"]
|
||||
batch["kl_attention_mask"] = kl_batch["attention_mask"]
|
||||
batch["kl_labels"] = kl_batch["labels"]
|
||||
if "cross_attention_mask" in kl_batch: # for mllama inputs.
|
||||
batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"]
|
||||
if "token_type_ids" in kl_batch:
|
||||
batch["kl_token_type_ids"] = kl_batch["token_type_ids"]
|
||||
|
||||
|
||||
271
src/llamafactory/data/converter.py
Normal file
271
src/llamafactory/data/converter.py
Normal file
@@ -0,0 +1,271 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Type, Union
|
||||
|
||||
from ..extras import logging
|
||||
from .data_utils import Role
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .parser import DatasetAttr
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DatasetConverter:
|
||||
dataset_attr: "DatasetAttr"
|
||||
data_args: "DataArguments"
|
||||
|
||||
def _find_medias(self, medias: Union[Any, Sequence[Any]]) -> Optional[List[Any]]:
|
||||
r"""
|
||||
Optionally concatenates media path to media dir when loading from local disk.
|
||||
"""
|
||||
if not isinstance(medias, list):
|
||||
medias = [medias] if medias is not None else []
|
||||
elif len(medias) == 0:
|
||||
return None
|
||||
else:
|
||||
medias = medias[:]
|
||||
|
||||
if self.dataset_attr.load_from in ["script", "file"] and isinstance(medias[0], str):
|
||||
for i in range(len(medias)):
|
||||
if os.path.isfile(os.path.join(self.data_args.media_dir, medias[i])):
|
||||
medias[i] = os.path.join(self.data_args.media_dir, medias[i])
|
||||
else:
|
||||
logger.warning_rank0_once(f"Media {medias[i]} does not exist in `media_dir`. Use original path.")
|
||||
|
||||
return medias
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
||||
r"""
|
||||
Converts a single example in the dataset to the standard format.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
@dataclass
|
||||
class AlpacaDatasetConverter(DatasetConverter):
|
||||
def __call__(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
||||
prompt = []
|
||||
if self.dataset_attr.history and isinstance(example[self.dataset_attr.history], list):
|
||||
for old_prompt, old_response in example[self.dataset_attr.history]:
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
query = []
|
||||
if self.dataset_attr.prompt and example[self.dataset_attr.prompt]:
|
||||
query.append(example[self.dataset_attr.prompt])
|
||||
|
||||
if self.dataset_attr.query and example[self.dataset_attr.query]:
|
||||
query.append(example[self.dataset_attr.query])
|
||||
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(query)}) # "prompt\nquery"
|
||||
|
||||
if self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool): # kto example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
|
||||
if example[self.dataset_attr.kto_tag]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
self.dataset_attr.ranking
|
||||
and isinstance(example[self.dataset_attr.chosen], str)
|
||||
and isinstance(example[self.dataset_attr.rejected], str)
|
||||
): # pairwise example
|
||||
response = [
|
||||
{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.chosen]},
|
||||
{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.rejected]},
|
||||
]
|
||||
elif self.dataset_attr.response and isinstance(example[self.dataset_attr.response], str): # normal example
|
||||
response = [{"role": Role.ASSISTANT.value, "content": example[self.dataset_attr.response]}]
|
||||
else: # unsupervised
|
||||
response = []
|
||||
|
||||
output = {
|
||||
"_prompt": prompt,
|
||||
"_response": response,
|
||||
"_system": example[self.dataset_attr.system] if self.dataset_attr.system else "",
|
||||
"_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
|
||||
"_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
|
||||
"_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
|
||||
"_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
@dataclass
|
||||
class SharegptDatasetConverter(DatasetConverter):
|
||||
def __call__(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
||||
tag_mapping = {
|
||||
self.dataset_attr.user_tag: Role.USER.value,
|
||||
self.dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
self.dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
self.dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
self.dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (self.dataset_attr.user_tag, self.dataset_attr.observation_tag)
|
||||
even_tags = (self.dataset_attr.assistant_tag, self.dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
messages = example[self.dataset_attr.messages]
|
||||
if (
|
||||
self.dataset_attr.system_tag
|
||||
and len(messages) != 0
|
||||
and messages[0][self.dataset_attr.role_tag] == self.dataset_attr.system_tag
|
||||
):
|
||||
system = messages[0][self.dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = example[self.dataset_attr.system] if self.dataset_attr.system else ""
|
||||
|
||||
aligned_messages = []
|
||||
broken_data = False
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if message[self.dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
logger.warning_rank0(f"Invalid role tag in {messages}.")
|
||||
broken_data = True
|
||||
break
|
||||
|
||||
aligned_messages.append(
|
||||
{
|
||||
"role": tag_mapping[message[self.dataset_attr.role_tag]],
|
||||
"content": message[self.dataset_attr.content_tag],
|
||||
}
|
||||
)
|
||||
|
||||
if (not self.dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
|
||||
self.dataset_attr.ranking and len(aligned_messages) % 2 == 0
|
||||
):
|
||||
logger.warning_rank0(f"Invalid message count in {messages}.")
|
||||
broken_data = True
|
||||
|
||||
if broken_data:
|
||||
logger.warning_rank0("Skipping this abnormal example.")
|
||||
prompt, response = [], []
|
||||
elif self.dataset_attr.kto_tag and isinstance(example[self.dataset_attr.kto_tag], bool): # kto example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
if example[self.dataset_attr.kto_tag]:
|
||||
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
|
||||
elif (
|
||||
self.dataset_attr.ranking
|
||||
and isinstance(example[self.dataset_attr.chosen], dict)
|
||||
and isinstance(example[self.dataset_attr.rejected], dict)
|
||||
): # pairwise example
|
||||
chosen = example[self.dataset_attr.chosen]
|
||||
rejected = example[self.dataset_attr.rejected]
|
||||
if (
|
||||
chosen[self.dataset_attr.role_tag] not in accept_tags[-1]
|
||||
or rejected[self.dataset_attr.role_tag] not in accept_tags[-1]
|
||||
):
|
||||
logger.warning_rank0(f"Invalid role tag in {[chosen, rejected]}.")
|
||||
broken_data = True
|
||||
|
||||
prompt = aligned_messages
|
||||
response = [
|
||||
{
|
||||
"role": tag_mapping[chosen[self.dataset_attr.role_tag]],
|
||||
"content": chosen[self.dataset_attr.content_tag],
|
||||
},
|
||||
{
|
||||
"role": tag_mapping[rejected[self.dataset_attr.role_tag]],
|
||||
"content": rejected[self.dataset_attr.content_tag],
|
||||
},
|
||||
]
|
||||
else: # normal example
|
||||
prompt = aligned_messages[:-1]
|
||||
response = aligned_messages[-1:]
|
||||
|
||||
output = {
|
||||
"_prompt": prompt,
|
||||
"_response": response,
|
||||
"_system": system,
|
||||
"_tools": example[self.dataset_attr.tools] if self.dataset_attr.tools else "",
|
||||
"_images": self._find_medias(example[self.dataset_attr.images]) if self.dataset_attr.images else None,
|
||||
"_videos": self._find_medias(example[self.dataset_attr.videos]) if self.dataset_attr.videos else None,
|
||||
"_audios": self._find_medias(example[self.dataset_attr.audios]) if self.dataset_attr.audios else None,
|
||||
}
|
||||
return output
|
||||
|
||||
|
||||
DATASET_CONVERTERS = {
|
||||
"alpaca": AlpacaDatasetConverter,
|
||||
"sharegpt": SharegptDatasetConverter,
|
||||
}
|
||||
|
||||
|
||||
def register_dataset_converter(name: str, dataset_converter: Type["DatasetConverter"]) -> None:
|
||||
r"""
|
||||
Register a new dataset converter.
|
||||
"""
|
||||
if name in DATASET_CONVERTERS:
|
||||
raise ValueError(f"Dataset converter {name} already exists.")
|
||||
|
||||
DATASET_CONVERTERS[name] = dataset_converter
|
||||
|
||||
|
||||
def get_dataset_converter(name: str, dataset_attr: "DatasetAttr", data_args: "DataArguments") -> "DatasetConverter":
|
||||
r"""
|
||||
Gets a dataset converter.
|
||||
"""
|
||||
if name not in DATASET_CONVERTERS:
|
||||
raise ValueError(f"Dataset converter {name} not found.")
|
||||
|
||||
return DATASET_CONVERTERS[name](dataset_attr, data_args)
|
||||
|
||||
|
||||
def align_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"],
|
||||
dataset_attr: "DatasetAttr",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
_prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
_response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
_system: "..."
|
||||
_tools: "...",
|
||||
_images: [],
|
||||
_videos: [],
|
||||
_audios: [],
|
||||
"""
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
dataset_converter = get_dataset_converter(dataset_attr.formatting, dataset_attr, data_args)
|
||||
return dataset.map(
|
||||
dataset_converter,
|
||||
batched=False,
|
||||
remove_columns=column_names,
|
||||
**kwargs,
|
||||
)
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -43,7 +43,7 @@ class Role(str, Enum):
|
||||
|
||||
class DatasetModule(TypedDict):
|
||||
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]]
|
||||
|
||||
|
||||
def merge_dataset(
|
||||
@@ -54,14 +54,16 @@ def merge_dataset(
|
||||
"""
|
||||
if len(all_datasets) == 1:
|
||||
return all_datasets[0]
|
||||
|
||||
elif data_args.mix_strategy == "concat":
|
||||
if data_args.streaming:
|
||||
logger.warning_once("The samples between different datasets will not be mixed in streaming mode.")
|
||||
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
|
||||
|
||||
return concatenate_datasets(all_datasets)
|
||||
|
||||
elif data_args.mix_strategy.startswith("interleave"):
|
||||
if not data_args.streaming:
|
||||
logger.warning_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
|
||||
return interleave_datasets(
|
||||
datasets=all_datasets,
|
||||
@@ -69,24 +71,75 @@ def merge_dataset(
|
||||
seed=seed,
|
||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
|
||||
|
||||
|
||||
def split_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
|
||||
dataset: Optional[Union["Dataset", "IterableDataset"]],
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]],
|
||||
data_args: "DataArguments",
|
||||
seed: int,
|
||||
) -> "DatasetDict":
|
||||
r"""
|
||||
Splits the dataset and returns a dataset dict containing train set and validation set.
|
||||
|
||||
Supports both map dataset and iterable dataset.
|
||||
"""
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
return DatasetDict({"train": train_set, "validation": val_set})
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
|
||||
if eval_dataset is not None and data_args.val_size > 1e-6:
|
||||
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
|
||||
|
||||
dataset_dict = {}
|
||||
if dataset is not None:
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
if data_args.val_size > 1e-6:
|
||||
if data_args.streaming:
|
||||
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
|
||||
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
|
||||
else:
|
||||
dataset_dict["train"] = dataset
|
||||
|
||||
if eval_dataset is not None:
|
||||
if isinstance(eval_dataset, dict):
|
||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||
else:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
dataset_dict["validation"] = eval_dataset
|
||||
|
||||
return DatasetDict(dataset_dict)
|
||||
|
||||
|
||||
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
|
||||
r"""
|
||||
Converts dataset or dataset dict to dataset module.
|
||||
"""
|
||||
dataset_module: "DatasetModule" = {}
|
||||
if isinstance(dataset, DatasetDict): # dataset dict
|
||||
if "train" in dataset:
|
||||
dataset_module["train_dataset"] = dataset["train"]
|
||||
|
||||
if "validation" in dataset:
|
||||
dataset_module["eval_dataset"] = dataset["validation"]
|
||||
else:
|
||||
eval_dataset = {}
|
||||
for key in dataset.keys():
|
||||
if key.startswith("validation_"):
|
||||
eval_dataset[key[len("validation_") :]] = dataset[key]
|
||||
|
||||
if len(eval_dataset):
|
||||
dataset_module["eval_dataset"] = eval_dataset
|
||||
|
||||
else: # single dataset
|
||||
dataset_module["train_dataset"] = dataset
|
||||
|
||||
return dataset_module
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -16,16 +16,12 @@ import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass, field
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from typing_extensions import override
|
||||
|
||||
from .data_utils import SLOTS
|
||||
from .tool_utils import get_tool_utils
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .tool_utils import FunctionCall
|
||||
from .tool_utils import FunctionCall, get_tool_utils
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -90,43 +86,44 @@ class StringFormatter(Formatter):
|
||||
elif isinstance(slot, (dict, set)):
|
||||
elements.append(slot)
|
||||
else:
|
||||
raise RuntimeError(f"Input must be string, set[str] or dict[str, str], got {type(slot)}")
|
||||
raise RuntimeError(f"Input must be string, set[str] or dict[str, str], got {type(slot)}.")
|
||||
|
||||
return elements
|
||||
|
||||
|
||||
@dataclass
|
||||
class FunctionFormatter(Formatter):
|
||||
class FunctionFormatter(StringFormatter):
|
||||
def __post_init__(self):
|
||||
self.slots = get_tool_utils(self.tool_format).get_function_slots() + self.slots
|
||||
super().__post_init__()
|
||||
self.tool_utils = get_tool_utils(self.tool_format)
|
||||
|
||||
@override
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
content = kwargs.pop("content")
|
||||
functions: List[Tuple[str, str]] = []
|
||||
content: str = kwargs.pop("content")
|
||||
regex = re.compile(r"<think>(.*)</think>", re.DOTALL)
|
||||
thought = re.search(regex, content)
|
||||
if thought:
|
||||
content = content.replace(thought.group(0), "")
|
||||
|
||||
functions: List["FunctionCall"] = []
|
||||
try:
|
||||
tool_calls = json.loads(content)
|
||||
if not isinstance(tool_calls, list): # parallel function call
|
||||
tool_calls = [tool_calls]
|
||||
|
||||
for tool_call in tool_calls:
|
||||
functions.append((tool_call["name"], json.dumps(tool_call["arguments"], ensure_ascii=False)))
|
||||
functions.append(
|
||||
FunctionCall(tool_call["name"], json.dumps(tool_call["arguments"], ensure_ascii=False))
|
||||
)
|
||||
|
||||
except json.JSONDecodeError:
|
||||
raise RuntimeError(f"Invalid JSON format in function message: {str([content])}") # flat string
|
||||
raise RuntimeError(f"Invalid JSON format in function message: {str([content])}.") # flat string
|
||||
|
||||
elements = []
|
||||
for name, arguments in functions:
|
||||
for slot in self.slots:
|
||||
if isinstance(slot, str):
|
||||
slot = slot.replace("{{name}}", name).replace("{{arguments}}", arguments)
|
||||
elements.append(slot)
|
||||
elif isinstance(slot, (dict, set)):
|
||||
elements.append(slot)
|
||||
else:
|
||||
raise RuntimeError(f"Input must be string, set[str] or dict[str, str], got {type(slot)}")
|
||||
function_str = self.tool_utils.function_formatter(functions)
|
||||
if thought:
|
||||
function_str = thought.group(0) + function_str
|
||||
|
||||
return elements
|
||||
return super().apply(content=function_str)
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -141,7 +138,7 @@ class ToolFormatter(Formatter):
|
||||
tools = json.loads(content)
|
||||
return [self.tool_utils.tool_formatter(tools) if len(tools) != 0 else ""]
|
||||
except json.JSONDecodeError:
|
||||
raise RuntimeError(f"Invalid JSON format in tool description: {str([content])}") # flat string
|
||||
raise RuntimeError(f"Invalid JSON format in tool description: {str([content])}.") # flat string
|
||||
|
||||
@override
|
||||
def extract(self, content: str) -> Union[str, List["FunctionCall"]]:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user