Compare commits
137 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b2949b88e9 | ||
|
|
538c79fd8f | ||
|
|
437cc20be6 | ||
|
|
2ac972d6e7 | ||
|
|
4d7f0fbb7a | ||
|
|
40e3d3fbdd | ||
|
|
096677b989 | ||
|
|
7940b968ae | ||
|
|
36a4224bf5 | ||
|
|
d4d36e157c | ||
|
|
c4f5e49d0d | ||
|
|
8e518d6c62 | ||
|
|
79165100e5 | ||
|
|
fc82acbbd8 | ||
|
|
aead3ca8e5 | ||
|
|
b12679ad59 | ||
|
|
8061cb5671 | ||
|
|
0a7e5f2f57 | ||
|
|
812d2c25a7 | ||
|
|
51795e8db1 | ||
|
|
2c011060b1 | ||
|
|
a8c7531250 | ||
|
|
88c34d26a8 | ||
|
|
12d666a63c | ||
|
|
304a2efec8 | ||
|
|
322331df51 | ||
|
|
ba0da83031 | ||
|
|
0a82e15e7c | ||
|
|
6670b36c49 | ||
|
|
7a1d13aae2 | ||
|
|
86a048128b | ||
|
|
fe1a3b1367 | ||
|
|
84ff56c3a0 | ||
|
|
483ed64b43 | ||
|
|
dd4619e9f3 | ||
|
|
905815d878 | ||
|
|
ba72e08901 | ||
|
|
e4972c8fc4 | ||
|
|
5f5f948806 | ||
|
|
2892e5d42a | ||
|
|
542a5d15ef | ||
|
|
b1c791fb0d | ||
|
|
7589123465 | ||
|
|
f94b54b776 | ||
|
|
1e1b8899f5 | ||
|
|
7b02c83399 | ||
|
|
8f1ba07b30 | ||
|
|
1ce400bddf | ||
|
|
6bc0ec63c7 | ||
|
|
25d316b1a0 | ||
|
|
2bcd5b2b73 | ||
|
|
436afcba57 | ||
|
|
db47c53486 | ||
|
|
4efe56fd68 | ||
|
|
d54313fcf9 | ||
|
|
382f096475 | ||
|
|
0ccc76392e | ||
|
|
e2cfcb0a5f | ||
|
|
b530a798c1 | ||
|
|
fdf38b70a0 | ||
|
|
1a78b675be | ||
|
|
9b1008912c | ||
|
|
18241f4ed8 | ||
|
|
223bbd9930 | ||
|
|
9dadff90bb | ||
|
|
827a929f1d | ||
|
|
e508519e0a | ||
|
|
47892418ad | ||
|
|
2aeae4b88b | ||
|
|
c213f2a9a9 | ||
|
|
333f4a69bb | ||
|
|
172600d432 | ||
|
|
4ce4172c87 | ||
|
|
400ae144a4 | ||
|
|
0a1b6ca5a7 | ||
|
|
05ef89cfcc | ||
|
|
6d9d8b92ca | ||
|
|
3f7f1daa33 | ||
|
|
8061e92d07 | ||
|
|
0c811a7653 | ||
|
|
f6ac3796ca | ||
|
|
c1394e7dfc | ||
|
|
ebab655683 | ||
|
|
3d74f21738 | ||
|
|
8493753fab | ||
|
|
0f626a2145 | ||
|
|
5100c290c4 | ||
|
|
4bde37e7c8 | ||
|
|
e3b3a722de | ||
|
|
b9e167e6ca | ||
|
|
1ebd1e50e7 | ||
|
|
14316f6583 | ||
|
|
8e4ab2f7d0 | ||
|
|
196068fa19 | ||
|
|
da2295f8c8 | ||
|
|
ab0741b5a6 | ||
|
|
6aec446940 | ||
|
|
50c71dd29f | ||
|
|
5c9da798b5 | ||
|
|
3d1b0e1864 | ||
|
|
45becd2a45 | ||
|
|
8f1197de7e | ||
|
|
25de4ce56a | ||
|
|
d0597897bf | ||
|
|
4674f3baa7 | ||
|
|
2f5f6722cf | ||
|
|
7ef3788ff4 | ||
|
|
f9aa74715a | ||
|
|
9b187b274c | ||
|
|
68ed89f351 | ||
|
|
342d7da8d7 | ||
|
|
6eda42eb7c | ||
|
|
e9fe8815be | ||
|
|
9381fecca7 | ||
|
|
efa9140577 | ||
|
|
b1b18b2c5a | ||
|
|
37bcbf72b4 | ||
|
|
99125c8825 | ||
|
|
182b974786 | ||
|
|
7a4a6a5522 | ||
|
|
2383e5440c | ||
|
|
1fea91736a | ||
|
|
09d9fb28f9 | ||
|
|
57c6eabf83 | ||
|
|
33d440b577 | ||
|
|
ce8200ad98 | ||
|
|
2cedb59bee | ||
|
|
dd0b85580e | ||
|
|
cd4dad846b | ||
|
|
a11a04a24f | ||
|
|
eb99999ca8 | ||
|
|
ea58cf111e | ||
|
|
2d95127c33 | ||
|
|
57fcdca336 | ||
|
|
3d88589c0f | ||
|
|
dfd153cc81 | ||
|
|
7641a214d8 |
@@ -11,4 +11,4 @@ RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
|
|||||||
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
||||||
EXPOSE 7860
|
EXPOSE 7860
|
||||||
|
|
||||||
CMD [ "python", "src/train_web.py" ]
|
CMD [ "llamafactory-cli", "webui" ]
|
||||||
|
|||||||
191
README.md
191
README.md
@@ -5,7 +5,7 @@
|
|||||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llmtuner/)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llmtuner/)
|
||||||
[](#projects-using-llama-factory)
|
[](#projects-using-llama-factory)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||||
[](https://discord.gg/rKfvV9r9FK)
|
[](https://discord.gg/rKfvV9r9FK)
|
||||||
[](https://twitter.com/llamafactory_ai)
|
[](https://twitter.com/llamafactory_ai)
|
||||||
@@ -13,6 +13,8 @@
|
|||||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||||
[](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
|
[](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
|
||||||
|
|
||||||
|
[](https://trendshift.io/repositories/4535)
|
||||||
|
|
||||||
👋 Join our [WeChat](assets/wechat.jpg).
|
👋 Join our [WeChat](assets/wechat.jpg).
|
||||||
|
|
||||||
\[ English | [中文](README_zh.md) \]
|
\[ English | [中文](README_zh.md) \]
|
||||||
@@ -68,57 +70,61 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See `examples/lora_single_gpu/sft_mllm.sh` for usage.
|
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
|
||||||
|
|
||||||
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
[24/05/13] We supported fine-tuning the **Yi-1.5** series models.
|
||||||
|
|
||||||
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See `examples/extras/mod` for usage.
|
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See `examples/extras/badam` for usage.
|
|
||||||
|
|
||||||
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
|
|
||||||
|
|
||||||
<details><summary>Full Changelog</summary>
|
<details><summary>Full Changelog</summary>
|
||||||
|
|
||||||
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See `examples/lora_single_gpu` for usage.
|
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
||||||
|
|
||||||
|
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
|
||||||
|
|
||||||
|
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
|
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
|
||||||
|
|
||||||
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See `examples/extras/fsdp_qlora` for usage.
|
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See `examples/extras/loraplus` for usage.
|
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
|
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
|
||||||
|
|
||||||
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training.
|
||||||
|
|
||||||
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See `examples/extras/llama_pro` for usage.
|
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
|
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
|
||||||
|
|
||||||
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
|
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall`.
|
||||||
|
|
||||||
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
|
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
|
||||||
|
|
||||||
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
|
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
|
||||||
|
|
||||||
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
|
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
|
||||||
|
|
||||||
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
|
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
|
||||||
|
|
||||||
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
|
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention.
|
||||||
|
|
||||||
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
|
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||||
|
|
||||||
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
|
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings.
|
||||||
|
|
||||||
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
|
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
|
[23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode.
|
||||||
|
|
||||||
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
|
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
|
||||||
|
|
||||||
@@ -130,7 +136,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
|
|
||||||
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
||||||
|
|
||||||
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
|
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@@ -143,7 +149,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
||||||
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
||||||
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
|
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | q_proj,v_proj | deepseek |
|
||||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
||||||
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
||||||
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
||||||
@@ -159,7 +165,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
||||||
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
||||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
||||||
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
||||||
|
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi_vl |
|
||||||
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
@@ -205,8 +212,8 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
|
|||||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||||
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Self Cognition (zh)](data/self_cognition.json)
|
- [Identity (en&zh)](data/identity.json)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [Open Assistant (zh)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
||||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||||
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
||||||
@@ -254,11 +261,11 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
|
|||||||
<details><summary>Preference datasets</summary>
|
<details><summary>Preference datasets</summary>
|
||||||
|
|
||||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||||
|
- [Open Assistant (zh)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||||
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -276,18 +283,19 @@ huggingface-cli login
|
|||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | --------- |
|
||||||
| python | 3.8 | 3.10 |
|
| python | 3.8 | 3.10 |
|
||||||
| torch | 1.13.1 | 2.2.0 |
|
| torch | 1.13.1 | 2.2.0 |
|
||||||
| transformers | 4.37.2 | 4.39.3 |
|
| transformers | 4.37.2 | 4.40.1 |
|
||||||
| datasets | 2.14.3 | 2.18.0 |
|
| datasets | 2.14.3 | 2.19.1 |
|
||||||
| accelerate | 0.27.2 | 0.28.0 |
|
| accelerate | 0.27.2 | 0.30.0 |
|
||||||
| peft | 0.9.0 | 0.10.0 |
|
| peft | 0.9.0 | 0.10.0 |
|
||||||
| trl | 0.8.1 | 0.8.1 |
|
| trl | 0.8.1 | 0.8.6 |
|
||||||
|
|
||||||
| Optional | Minimum | Recommend |
|
| Optional | Minimum | Recommend |
|
||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | --------- |
|
||||||
| CUDA | 11.6 | 12.2 |
|
| CUDA | 11.6 | 12.2 |
|
||||||
| deepspeed | 0.10.0 | 0.14.0 |
|
| deepspeed | 0.10.0 | 0.14.0 |
|
||||||
| bitsandbytes | 0.39.0 | 0.43.0 |
|
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||||
| flash-attn | 2.3.0 | 2.5.6 |
|
| vllm | 0.4.0 | 0.4.2 |
|
||||||
|
| flash-attn | 2.3.0 | 2.5.8 |
|
||||||
|
|
||||||
### Hardware Requirement
|
### Hardware Requirement
|
||||||
|
|
||||||
@@ -305,28 +313,25 @@ huggingface-cli login
|
|||||||
|
|
||||||
## Getting Started
|
## Getting Started
|
||||||
|
|
||||||
### Data Preparation
|
### Installation
|
||||||
|
|
||||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
|
> [!IMPORTANT]
|
||||||
|
> Installation is mandatory.
|
||||||
> [!NOTE]
|
|
||||||
> Please update `data/dataset_info.json` to use your custom dataset.
|
|
||||||
|
|
||||||
### Dependence Installation
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
||||||
conda create -n llama_factory python=3.10
|
|
||||||
conda activate llama_factory
|
|
||||||
cd LLaMA-Factory
|
cd LLaMA-Factory
|
||||||
pip install -e .[metrics]
|
pip install -e .[torch,metrics]
|
||||||
```
|
```
|
||||||
|
|
||||||
Extra dependencies available: deepspeed, metrics, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
|
Extra dependencies available: torch, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||||
|
|
||||||
<details><summary>For Windows users</summary>
|
<details><summary>For Windows users</summary>
|
||||||
|
|
||||||
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
|
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||||
@@ -336,25 +341,73 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### Train with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
|
<details><summary>For Ascend NPU users</summary>
|
||||||
|
|
||||||
|
To utilize Ascend NPU devices for (distributed) training and inference, you need to install the **[torch-npu](https://gitee.com/ascend/pytorch)** library and the **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**.
|
||||||
|
|
||||||
|
| Requirement | Minimum | Recommend |
|
||||||
|
| ------------ | ------- | --------- |
|
||||||
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
|
| torch | 2.2.0 | 2.2.0 |
|
||||||
|
| torch-npu | 2.2.0 | 2.2.0 |
|
||||||
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
|
Docker image:
|
||||||
|
|
||||||
|
- 32GB: [Download page](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
|
||||||
|
- 64GB: Coming soon
|
||||||
|
|
||||||
|
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
|
||||||
|
|
||||||
|
If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Data Preparation
|
||||||
|
|
||||||
|
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Please update `data/dataset_info.json` to use your custom dataset.
|
||||||
|
|
||||||
|
### Quickstart
|
||||||
|
|
||||||
|
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> Use `llamafactory-cli help` to show help information.
|
||||||
|
|
||||||
|
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
|
||||||
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#command-line-interface) for distributed training.
|
> LLaMA Board GUI only supports training on a single GPU.
|
||||||
|
|
||||||
#### Use local environment
|
#### Use local environment
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
|
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
|
||||||
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
|
|
||||||
python src/train_web.py # or python -m llmtuner.webui.interface
|
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>For Alibaba Cloud users</summary>
|
<details><summary>For Alibaba Cloud PAI or AutoDL users</summary>
|
||||||
|
|
||||||
If you encountered display problems in LLaMA Board on Alibaba Cloud, try using the following command to set environment variables before starting LLaMA Board:
|
If you encountered display problems in LLaMA Board on Alibaba Cloud PAI, try using the following command to set environment variables before starting LLaMA Board:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are using AutoDL, please install a specific version of Gradio:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install gradio==4.10.0
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -388,20 +441,10 @@ docker compose -f ./docker-compose.yml up -d
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### Train with Command Line Interface
|
|
||||||
|
|
||||||
See [examples/README.md](examples/README.md) for usage.
|
|
||||||
|
|
||||||
Use `python src/train_bash.py -h` to display arguments description.
|
|
||||||
|
|
||||||
### Deploy with OpenAI-style API and vLLM
|
### Deploy with OpenAI-style API and vLLM
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
|
||||||
--template llama3 \
|
|
||||||
--infer_backend vllm \
|
|
||||||
--vllm_enforce_eager
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Download from ModelScope Hub
|
### Download from ModelScope Hub
|
||||||
@@ -441,6 +484,7 @@ If you have a project that should be incorporated, please contact via email or c
|
|||||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||||
|
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||||
@@ -448,12 +492,21 @@ If you have a project that should be incorporated, please contact via email or c
|
|||||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||||
|
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||||
|
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||||
|
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||||
|
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||||
|
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||||
|
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||||
|
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
||||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
||||||
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
||||||
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
||||||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
||||||
|
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||||
|
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@@ -461,7 +514,7 @@ If you have a project that should be incorporated, please contact via email or c
|
|||||||
|
|
||||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||||
|
|
||||||
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||||
|
|
||||||
## Citation
|
## Citation
|
||||||
|
|
||||||
|
|||||||
191
README_zh.md
191
README_zh.md
@@ -5,7 +5,7 @@
|
|||||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llmtuner/)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llmtuner/)
|
||||||
[](#使用了-llama-factory-的项目)
|
[](#使用了-llama-factory-的项目)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||||
[](https://discord.gg/rKfvV9r9FK)
|
[](https://discord.gg/rKfvV9r9FK)
|
||||||
[](https://twitter.com/llamafactory_ai)
|
[](https://twitter.com/llamafactory_ai)
|
||||||
@@ -13,6 +13,8 @@
|
|||||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||||
[](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
|
[](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
|
||||||
|
|
||||||
|
[](https://trendshift.io/repositories/4535)
|
||||||
|
|
||||||
👋 加入我们的[微信群](assets/wechat.jpg)。
|
👋 加入我们的[微信群](assets/wechat.jpg)。
|
||||||
|
|
||||||
\[ [English](README.md) | 中文 \]
|
\[ [English](README.md) | 中文 \]
|
||||||
@@ -68,57 +70,61 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
|
|
||||||
## 更新日志
|
## 更新日志
|
||||||
|
|
||||||
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 `examples/lora_single_gpu/sft_mllm.sh`。
|
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
|
||||||
|
|
||||||
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
[24/05/13] 我们支持了 Yi-1.5 系列模型的微调。
|
||||||
|
|
||||||
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`。
|
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 `examples/extras/badam`。
|
|
||||||
|
|
||||||
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
|
||||||
|
|
||||||
<details><summary>展开日志</summary>
|
<details><summary>展开日志</summary>
|
||||||
|
|
||||||
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`。
|
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
||||||
|
|
||||||
|
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||||
|
|
||||||
|
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
|
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
|
||||||
|
|
||||||
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 `examples/extras/fsdp_qlora`。
|
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 `examples/extras/loraplus`。
|
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 `examples/extras/galore`。
|
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
|
||||||
|
|
||||||
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
|
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。
|
||||||
|
|
||||||
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 `examples/extras/llama_pro`。
|
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
|
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
|
||||||
|
|
||||||
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力。
|
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall` 即可使模型获得工具调用能力。
|
||||||
|
|
||||||
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||||
|
|
||||||
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
|
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
|
||||||
|
|
||||||
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
|
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔搭社区下载)。
|
||||||
|
|
||||||
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune,例如 `--neftune_noise_alpha 5`。
|
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。
|
||||||
|
|
||||||
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
|
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。
|
||||||
|
|
||||||
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
|
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn fa2` 参数以启用 FlashAttention-2。
|
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。
|
||||||
|
|
||||||
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。
|
||||||
|
|
||||||
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
|
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[23/07/31] 我们支持了**数据流式加载**。请使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。
|
[23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true` 和 `max_steps: 10000` 参数来流式加载数据集。
|
||||||
|
|
||||||
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
|
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
|
||||||
|
|
||||||
@@ -130,7 +136,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
|
|
||||||
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
|
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
|
||||||
|
|
||||||
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
|
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@@ -143,7 +149,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
||||||
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
||||||
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
|
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | q_proj,v_proj | deepseek |
|
||||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
||||||
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
||||||
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
||||||
@@ -159,11 +165,12 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
||||||
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
||||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
||||||
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
||||||
|
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi_vl |
|
||||||
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以得到更好的效果。
|
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以取得更好的效果。
|
||||||
>
|
>
|
||||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
|
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
|
||||||
>
|
>
|
||||||
@@ -205,8 +212,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||||
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Self Cognition (zh)](data/self_cognition.json)
|
- [Identity (en&zh)](data/identity.json)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [Open Assistant (zh)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
||||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||||
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
||||||
@@ -254,11 +261,11 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||||||
<details><summary>偏好数据集</summary>
|
<details><summary>偏好数据集</summary>
|
||||||
|
|
||||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||||
|
- [Open Assistant (zh)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||||
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -276,18 +283,19 @@ huggingface-cli login
|
|||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | --------- |
|
||||||
| python | 3.8 | 3.10 |
|
| python | 3.8 | 3.10 |
|
||||||
| torch | 1.13.1 | 2.2.0 |
|
| torch | 1.13.1 | 2.2.0 |
|
||||||
| transformers | 4.37.2 | 4.39.3 |
|
| transformers | 4.37.2 | 4.40.1 |
|
||||||
| datasets | 2.14.3 | 2.18.0 |
|
| datasets | 2.14.3 | 2.19.1 |
|
||||||
| accelerate | 0.27.2 | 0.28.0 |
|
| accelerate | 0.27.2 | 0.30.0 |
|
||||||
| peft | 0.9.0 | 0.10.0 |
|
| peft | 0.9.0 | 0.10.0 |
|
||||||
| trl | 0.8.1 | 0.8.1 |
|
| trl | 0.8.1 | 0.8.6 |
|
||||||
|
|
||||||
| 可选项 | 至少 | 推荐 |
|
| 可选项 | 至少 | 推荐 |
|
||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | --------- |
|
||||||
| CUDA | 11.6 | 12.2 |
|
| CUDA | 11.6 | 12.2 |
|
||||||
| deepspeed | 0.10.0 | 0.14.0 |
|
| deepspeed | 0.10.0 | 0.14.0 |
|
||||||
| bitsandbytes | 0.39.0 | 0.43.0 |
|
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||||
| flash-attn | 2.3.0 | 2.5.6 |
|
| vllm | 0.4.0 | 0.4.2 |
|
||||||
|
| flash-attn | 2.3.0 | 2.5.8 |
|
||||||
|
|
||||||
### 硬件依赖
|
### 硬件依赖
|
||||||
|
|
||||||
@@ -305,24 +313,21 @@ huggingface-cli login
|
|||||||
|
|
||||||
## 如何使用
|
## 如何使用
|
||||||
|
|
||||||
### 数据准备
|
### 安装 LLaMA Factory
|
||||||
|
|
||||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
|
> [!IMPORTANT]
|
||||||
|
> 此步骤为必需。
|
||||||
> [!NOTE]
|
|
||||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
|
||||||
|
|
||||||
### 安装依赖
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
||||||
conda create -n llama_factory python=3.10
|
|
||||||
conda activate llama_factory
|
|
||||||
cd LLaMA-Factory
|
cd LLaMA-Factory
|
||||||
pip install -e .[metrics]
|
pip install -e .[torch,metrics]
|
||||||
```
|
```
|
||||||
|
|
||||||
可选的额外依赖项:deepspeed、metrics、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
|
可选的额外依赖项:torch、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||||
|
|
||||||
<details><summary>Windows 用户指南</summary>
|
<details><summary>Windows 用户指南</summary>
|
||||||
|
|
||||||
@@ -336,25 +341,73 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### 利用 LLaMA Board 可视化界面训练(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
|
<details><summary>昇腾 NPU 用户指南</summary>
|
||||||
|
|
||||||
|
如果使用昇腾 NPU 设备进行(分布式)训练或推理,需要安装 **[torch-npu](https://gitee.com/ascend/pytorch)** 库和 **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**。
|
||||||
|
|
||||||
|
| 依赖项 | 至少 | 推荐 |
|
||||||
|
| ------------ | ------- | --------- |
|
||||||
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
|
| torch | 2.2.0 | 2.2.0 |
|
||||||
|
| torch-npu | 2.2.0 | 2.2.0 |
|
||||||
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
|
Docker 镜像:
|
||||||
|
|
||||||
|
- 32GB:[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
|
||||||
|
- 64GB:敬请期待
|
||||||
|
|
||||||
|
请记得使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定您使用的设备。
|
||||||
|
|
||||||
|
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 数据准备
|
||||||
|
|
||||||
|
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
||||||
|
|
||||||
|
### 快速开始
|
||||||
|
|
||||||
|
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> 使用 `llamafactory-cli help` 显示帮助信息。
|
||||||
|
|
||||||
|
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
|
||||||
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行多 GPU 分布式训练。
|
> LLaMA Board 可视化界面目前仅支持单 GPU 训练。
|
||||||
|
|
||||||
#### 使用本地环境
|
#### 使用本地环境
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
|
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
|
||||||
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
|
|
||||||
python src/train_web.py # 或 python -m llmtuner.webui.interface
|
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>阿里云用户指南</summary>
|
<details><summary>阿里云 PAI 和 AutoDL 用户指南</summary>
|
||||||
|
|
||||||
如果您在阿里云上使用 LLaMA Board 时遇到显示问题,请尝试在启动前使用以下命令设置环境变量:
|
如果您在阿里云 PAI 上使用 LLaMA Board 时遇到显示问题,请尝试在启动前使用以下命令设置环境变量:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||||
|
```
|
||||||
|
|
||||||
|
如果您正在使用 AutoDL,请安装下述 Gradio 版本:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install gradio==4.10.0
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
@@ -388,20 +441,10 @@ docker compose -f ./docker-compose.yml up -d
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
### 利用命令行接口训练
|
|
||||||
|
|
||||||
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
|
|
||||||
|
|
||||||
您可以执行 `python src/train_bash.py -h` 来查看参数文档。
|
|
||||||
|
|
||||||
### 利用 vLLM 部署 OpenAI API
|
### 利用 vLLM 部署 OpenAI API
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
|
||||||
--template llama3 \
|
|
||||||
--infer_backend vllm \
|
|
||||||
--vllm_enforce_eager
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### 从魔搭社区下载
|
### 从魔搭社区下载
|
||||||
@@ -441,6 +484,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
|||||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||||
|
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||||
@@ -448,12 +492,21 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
|||||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||||
|
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||||
|
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||||
|
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||||
|
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||||
|
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||||
|
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||||
|
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
||||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
||||||
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
||||||
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
||||||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
||||||
|
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||||
|
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
@@ -461,7 +514,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
|||||||
|
|
||||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||||
|
|
||||||
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||||
|
|
||||||
## 引用
|
## 引用
|
||||||
|
|
||||||
|
|||||||
113
data/README.md
113
data/README.md
@@ -1,4 +1,4 @@
|
|||||||
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
|
If you are using a custom dataset, please add your **dataset description** to `dataset_info.json` according to the following format. We also provide several examples in the next section.
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
@@ -33,7 +33,7 @@ If you are using a custom dataset, please provide your dataset definition in the
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
|
After that, you can load the custom dataset by specifying `--dataset dataset_name`.
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
@@ -54,10 +54,11 @@ Currently we support dataset in **alpaca** or **sharegpt** format, the dataset i
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
Regarding the above dataset, the description in `dataset_info.json` should be:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
"columns": {
|
"columns": {
|
||||||
"prompt": "instruction",
|
"prompt": "instruction",
|
||||||
"query": "input",
|
"query": "input",
|
||||||
@@ -70,28 +71,60 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
|||||||
|
|
||||||
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
|
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
|
||||||
|
|
||||||
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
|
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training** in supervised fine-tuning.
|
||||||
|
|
||||||
For the pre-training datasets, only the `prompt` column will be used for training.
|
For the **pre-training datasets**, only the `prompt` column will be used for training, for example:
|
||||||
|
|
||||||
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
|
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
[
|
||||||
"instruction": "user instruction",
|
{"text": "document"},
|
||||||
"input": "user input",
|
{"text": "document"}
|
||||||
"output": [
|
]
|
||||||
"chosen answer",
|
```
|
||||||
"rejected answer"
|
|
||||||
]
|
Regarding the above dataset, the description in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "text"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
Remember to set `"ranking": true` for the preference datasets.
|
For the **preference datasets**, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "user instruction",
|
||||||
|
"input": "user input",
|
||||||
|
"output": [
|
||||||
|
"chosen answer",
|
||||||
|
"rejected answer"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the description in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
The dataset in sharegpt format should follow the below format:
|
The dataset in **sharegpt** format should follow the below format:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
@@ -112,10 +145,12 @@ The dataset in sharegpt format should follow the below format:
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
Regarding the above dataset, the description in `dataset_info.json` should be:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
"columns": {
|
"columns": {
|
||||||
"messages": "conversations",
|
"messages": "conversations",
|
||||||
"system": "system",
|
"system": "system",
|
||||||
@@ -132,4 +167,46 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
|||||||
|
|
||||||
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
|
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
|
||||||
|
|
||||||
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
|
We also supports the dataset in the **openai** format:
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "system prompt (optional)"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "user instruction"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "model response"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the description in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"columns": {
|
||||||
|
"messages": "messages"
|
||||||
|
},
|
||||||
|
"tags": {
|
||||||
|
"role_tag": "role",
|
||||||
|
"content_tag": "content",
|
||||||
|
"user_tag": "user",
|
||||||
|
"assistant_tag": "assistant",
|
||||||
|
"system_tag": "system"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Pre-training datasets and preference datasets are **incompatible** with the sharegpt format yet.
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
如果您使用自定义数据集,请务必在 `dataset_info.json` 文件中按照以下格式提供数据集定义。
|
如果您使用自定义数据集,请务必按照以下格式在 `dataset_info.json` 文件中添加**数据集描述**。我们在下面也提供了一些例子。
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
@@ -33,7 +33,7 @@
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
|
然后,可通过使用 `--dataset 数据集名称` 参数加载自定义数据集。
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
@@ -54,10 +54,11 @@
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
对于上述格式的数据,`dataset_info.json` 中的描述应为:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
"columns": {
|
"columns": {
|
||||||
"prompt": "instruction",
|
"prompt": "instruction",
|
||||||
"query": "input",
|
"query": "input",
|
||||||
@@ -70,28 +71,60 @@
|
|||||||
|
|
||||||
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery`。`response` 列对应的内容为模型回答。
|
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery`。`response` 列对应的内容为模型回答。
|
||||||
|
|
||||||
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意历史消息中的回答**也会被用于训练**。
|
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意在指令监督学习时,历史消息中的回答**也会被用于训练**。
|
||||||
|
|
||||||
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
|
对于**预训练数据集**,仅 `prompt` 列中的内容会用于模型训练,例如:
|
||||||
|
|
||||||
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
|
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
[
|
||||||
"instruction": "用户指令",
|
{"text": "document"},
|
||||||
"input": "用户输入",
|
{"text": "document"}
|
||||||
"output": [
|
]
|
||||||
"优质回答",
|
```
|
||||||
"劣质回答"
|
|
||||||
]
|
对于上述格式的数据,`dataset_info.json` 中的描述应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "text"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
添加偏好数据集需要额外指定 `"ranking": true`。
|
对于**偏好数据集**,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "用户指令",
|
||||||
|
"input": "用户输入",
|
||||||
|
"output": [
|
||||||
|
"优质回答",
|
||||||
|
"劣质回答"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的描述应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
----
|
----
|
||||||
|
|
||||||
而 sharegpt 格式的数据集按照以下方式组织:
|
而 **sharegpt** 格式的数据集按照以下方式组织:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
@@ -112,10 +145,12 @@
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
对于上述格式的数据,`dataset_info.json` 中的描述应为:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
"columns": {
|
"columns": {
|
||||||
"messages": "conversations",
|
"messages": "conversations",
|
||||||
"system": "system",
|
"system": "system",
|
||||||
@@ -132,4 +167,46 @@
|
|||||||
|
|
||||||
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
||||||
|
|
||||||
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
|
我们同样支持 **openai** 格式的数据集:
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "系统提示词(选填)"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "用户指令"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "模型回答"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的描述应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"columns": {
|
||||||
|
"messages": "messages"
|
||||||
|
},
|
||||||
|
"tags": {
|
||||||
|
"role_tag": "role",
|
||||||
|
"content_tag": "content",
|
||||||
|
"user_tag": "user",
|
||||||
|
"assistant_tag": "assistant",
|
||||||
|
"system_tag": "system"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
预训练数据集和偏好数据集**尚不支持** sharegpt 格式。
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
274079ea921762be356de85b18f13fa60b7ba8cb
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
57fd080be5bffe4153fe3ee26a175e3d56da30f3
|
|
||||||
@@ -19,7 +19,7 @@ import pandas as pd
|
|||||||
|
|
||||||
_CITATION = """\
|
_CITATION = """\
|
||||||
@article{huang2023ceval,
|
@article{huang2023ceval,
|
||||||
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
|
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
|
||||||
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
|
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
|
||||||
journal={arXiv preprint arXiv:2305.08322},
|
journal={arXiv preprint arXiv:2305.08322},
|
||||||
year={2023}
|
year={2023}
|
||||||
@@ -133,25 +133,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -37,73 +37,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
|
|||||||
_URL = "cmmlu.zip"
|
_URL = "cmmlu.zip"
|
||||||
|
|
||||||
task_list = [
|
task_list = [
|
||||||
'agronomy',
|
"agronomy",
|
||||||
'anatomy',
|
"anatomy",
|
||||||
'ancient_chinese',
|
"ancient_chinese",
|
||||||
'arts',
|
"arts",
|
||||||
'astronomy',
|
"astronomy",
|
||||||
'business_ethics',
|
"business_ethics",
|
||||||
'chinese_civil_service_exam',
|
"chinese_civil_service_exam",
|
||||||
'chinese_driving_rule',
|
"chinese_driving_rule",
|
||||||
'chinese_food_culture',
|
"chinese_food_culture",
|
||||||
'chinese_foreign_policy',
|
"chinese_foreign_policy",
|
||||||
'chinese_history',
|
"chinese_history",
|
||||||
'chinese_literature',
|
"chinese_literature",
|
||||||
'chinese_teacher_qualification',
|
"chinese_teacher_qualification",
|
||||||
'clinical_knowledge',
|
"clinical_knowledge",
|
||||||
'college_actuarial_science',
|
"college_actuarial_science",
|
||||||
'college_education',
|
"college_education",
|
||||||
'college_engineering_hydrology',
|
"college_engineering_hydrology",
|
||||||
'college_law',
|
"college_law",
|
||||||
'college_mathematics',
|
"college_mathematics",
|
||||||
'college_medical_statistics',
|
"college_medical_statistics",
|
||||||
'college_medicine',
|
"college_medicine",
|
||||||
'computer_science',
|
"computer_science",
|
||||||
'computer_security',
|
"computer_security",
|
||||||
'conceptual_physics',
|
"conceptual_physics",
|
||||||
'construction_project_management',
|
"construction_project_management",
|
||||||
'economics',
|
"economics",
|
||||||
'education',
|
"education",
|
||||||
'electrical_engineering',
|
"electrical_engineering",
|
||||||
'elementary_chinese',
|
"elementary_chinese",
|
||||||
'elementary_commonsense',
|
"elementary_commonsense",
|
||||||
'elementary_information_and_technology',
|
"elementary_information_and_technology",
|
||||||
'elementary_mathematics',
|
"elementary_mathematics",
|
||||||
'ethnology',
|
"ethnology",
|
||||||
'food_science',
|
"food_science",
|
||||||
'genetics',
|
"genetics",
|
||||||
'global_facts',
|
"global_facts",
|
||||||
'high_school_biology',
|
"high_school_biology",
|
||||||
'high_school_chemistry',
|
"high_school_chemistry",
|
||||||
'high_school_geography',
|
"high_school_geography",
|
||||||
'high_school_mathematics',
|
"high_school_mathematics",
|
||||||
'high_school_physics',
|
"high_school_physics",
|
||||||
'high_school_politics',
|
"high_school_politics",
|
||||||
'human_sexuality',
|
"human_sexuality",
|
||||||
'international_law',
|
"international_law",
|
||||||
'journalism',
|
"journalism",
|
||||||
'jurisprudence',
|
"jurisprudence",
|
||||||
'legal_and_moral_basis',
|
"legal_and_moral_basis",
|
||||||
'logical',
|
"logical",
|
||||||
'machine_learning',
|
"machine_learning",
|
||||||
'management',
|
"management",
|
||||||
'marketing',
|
"marketing",
|
||||||
'marxist_theory',
|
"marxist_theory",
|
||||||
'modern_chinese',
|
"modern_chinese",
|
||||||
'nutrition',
|
"nutrition",
|
||||||
'philosophy',
|
"philosophy",
|
||||||
'professional_accounting',
|
"professional_accounting",
|
||||||
'professional_law',
|
"professional_law",
|
||||||
'professional_medicine',
|
"professional_medicine",
|
||||||
'professional_psychology',
|
"professional_psychology",
|
||||||
'public_relations',
|
"public_relations",
|
||||||
'security_study',
|
"security_study",
|
||||||
'sociology',
|
"sociology",
|
||||||
'sports_science',
|
"sports_science",
|
||||||
'traditional_chinese_medicine',
|
"traditional_chinese_medicine",
|
||||||
'virology',
|
"virology",
|
||||||
'world_history',
|
"world_history",
|
||||||
'world_religions',
|
"world_religions",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -136,25 +136,19 @@ class MMLU(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "data", "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "data", "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "data", "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -1,50 +1,229 @@
|
|||||||
We provide diverse examples about fine-tuning LLMs.
|
We provide diverse examples about fine-tuning LLMs.
|
||||||
|
|
||||||
|
Make sure to execute these commands in the `LLaMA-Factory` directory.
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
|
||||||
|
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
|
||||||
|
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
|
||||||
|
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
|
||||||
|
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
|
||||||
|
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
|
||||||
|
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
|
||||||
|
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
||||||
|
- [Extras](#extras)
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### LoRA Fine-Tuning on A Single GPU
|
||||||
|
|
||||||
|
#### (Continuous) Pre-Training
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
|
||||||
```
|
```
|
||||||
examples/
|
|
||||||
├── lora_single_gpu/
|
#### Supervised Fine-Tuning
|
||||||
│ ├── pretrain.sh: Do continuous pre-training using LoRA
|
|
||||||
│ ├── sft.sh: Do supervised fine-tuning using LoRA
|
```bash
|
||||||
│ ├── reward.sh: Do reward modeling using LoRA
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
||||||
│ ├── ppo.sh: Do PPO training using LoRA
|
```
|
||||||
│ ├── dpo.sh: Do DPO training using LoRA
|
|
||||||
│ ├── orpo.sh: Do ORPO training using LoRA
|
#### Multimodal Supervised Fine-Tuning
|
||||||
│ ├── sft_mllm.sh: Do supervised fine-tuning on multimodal data using LoRA
|
|
||||||
│ ├── prepare.sh: Save tokenized dataset
|
```bash
|
||||||
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
|
||||||
├── qlora_single_gpu/
|
```
|
||||||
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models using QLoRA
|
|
||||||
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models using QLoRA
|
#### Reward Modeling
|
||||||
│ ├── awq.sh: Fine-tune 4-bit AWQ models using QLoRA
|
|
||||||
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
|
```bash
|
||||||
├── lora_multi_gpu/
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
|
||||||
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
|
```
|
||||||
│ ├── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
|
|
||||||
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA (weight sharding)
|
#### PPO Training
|
||||||
├── full_multi_gpu/
|
|
||||||
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
|
```bash
|
||||||
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
||||||
│ └── predict.sh: Do parallel batch predict and compute BLEU and ROUGE scores after full tuning
|
```
|
||||||
├── merge_lora/
|
|
||||||
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
|
#### DPO Training
|
||||||
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ
|
|
||||||
├── inference/
|
```bash
|
||||||
│ ├── cli_demo.sh: Chat with fine-tuned model in the CLI with LoRA adapters
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
||||||
│ ├── api_demo.sh: Chat with fine-tuned model in an OpenAI-style API with LoRA adapters
|
```
|
||||||
│ ├── web_demo.sh: Chat with fine-tuned model in the Web browser with LoRA adapters
|
|
||||||
│ └── evaluate.sh: Evaluate model on the MMLU/CMMLU/C-Eval benchmarks with LoRA adapters
|
#### ORPO Training
|
||||||
└── extras/
|
|
||||||
├── galore/
|
```bash
|
||||||
│ └── sft.sh: Fine-tune model with GaLore
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml
|
||||||
├── badam/
|
```
|
||||||
│ └── sft.sh: Fine-tune model with BAdam
|
|
||||||
├── loraplus/
|
#### Preprocess Dataset
|
||||||
│ └── sft.sh: Fine-tune model using LoRA+
|
|
||||||
├── mod/
|
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
||||||
│ └── sft.sh: Fine-tune model using Mixture-of-Depths
|
|
||||||
├── llama_pro/
|
```bash
|
||||||
│ ├── expand.sh: Expand layers in the model
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
|
||||||
│ └── sft.sh: Fine-tune the expanded model
|
```
|
||||||
└── fsdp_qlora/
|
|
||||||
└── sft.sh: Fine-tune quantized model with FSDP+QLoRA
|
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### QLoRA Fine-Tuning on a Single GPU
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### LoRA Fine-Tuning on Multiple GPUs
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with Accelerate on Single Node
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/single_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with Accelerate on Multiple Nodes
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/multi_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/ds_zero3.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### LoRA Fine-Tuning on Multiple NPUs
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_npu/ds_zero0.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### Full-Parameter Fine-Tuning on Multiple GPUs
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with Accelerate on Single Node
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/single_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with Accelerate on Multiple Nodes
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/multi_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/predict.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### Merging LoRA Adapters and Quantization
|
||||||
|
|
||||||
|
#### Merge LoRA Adapters
|
||||||
|
|
||||||
|
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Quantizing Model using AutoGPTQ
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Inferring LoRA Fine-Tuned Models
|
||||||
|
|
||||||
|
#### Use CLI
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Use Web UI
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch OpenAI-style API
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extras
|
||||||
|
|
||||||
|
#### Full-Parameter Fine-Tuning using GaLore
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Full-Parameter Fine-Tuning using BAdam
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LoRA+ Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Mixture-of-Depths Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LLaMA-Pro Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/llama_pro/expand.sh
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### FSDP+QLoRA Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/fsdp_qlora/single_node.sh
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -1,50 +1,229 @@
|
|||||||
我们提供了多样化的大模型微调示例脚本。
|
我们提供了多样化的大模型微调示例脚本。
|
||||||
|
|
||||||
|
请确保在 `LLaMA-Factory` 目录下执行下述命令。
|
||||||
|
|
||||||
|
## 目录
|
||||||
|
|
||||||
|
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
|
||||||
|
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
|
||||||
|
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
|
||||||
|
- [多 NPU LoRA 微调](#多-npu-lora-微调)
|
||||||
|
- [多 GPU 全参数微调](#多-gpu-全参数微调)
|
||||||
|
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
||||||
|
- [推理 LoRA 模型](#推理-lora-模型)
|
||||||
|
- [杂项](#杂项)
|
||||||
|
|
||||||
|
## 示例
|
||||||
|
|
||||||
|
### 单 GPU LoRA 微调
|
||||||
|
|
||||||
|
#### (增量)预训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
|
||||||
```
|
```
|
||||||
examples/
|
|
||||||
├── lora_single_gpu/
|
#### 指令监督微调
|
||||||
│ ├── pretrain.sh: 基于 LoRA 进行增量预训练
|
|
||||||
│ ├── sft.sh: 基于 LoRA 进行指令监督微调
|
```bash
|
||||||
│ ├── reward.sh: 基于 LoRA 进行奖励模型训练
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
||||||
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
|
```
|
||||||
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
|
|
||||||
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
|
#### 多模态指令监督微调
|
||||||
│ ├── sft_mllm.sh: 基于 LoRA 进行多模态指令监督微调
|
|
||||||
│ ├── prepare.sh: 保存预处理后的数据集
|
```bash
|
||||||
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
|
||||||
├── qlora_single_gpu/
|
```
|
||||||
│ ├── bitsandbytes.sh: 基于 QLoRA 微调 4/8 比特 BNB 模型
|
|
||||||
│ ├── gptq.sh: 基于 QLoRA 微调 4/8 比特 GPTQ 模型
|
#### 奖励模型训练
|
||||||
│ ├── awq.sh: 基于 QLoRA 微调 4 比特 AWQ 模型
|
|
||||||
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
|
```bash
|
||||||
├── lora_multi_gpu/
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
|
||||||
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
|
```
|
||||||
│ ├── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
|
|
||||||
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练(拆分权重)
|
#### PPO 训练
|
||||||
├── full_multi_gpu/
|
|
||||||
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
|
```bash
|
||||||
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
||||||
│ └── predict.sh: 基于全量训练进行多卡批量预测并计算 BLEU 和 ROUGE 分数
|
```
|
||||||
├── merge_lora/
|
|
||||||
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
|
#### DPO 训练
|
||||||
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型
|
|
||||||
├── inference/
|
```bash
|
||||||
│ ├── cli_demo.sh: 启动 LoRA 模型的命令行推理接口
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
||||||
│ ├── api_demo.sh: 启动 LoRA 模型的 OpenAI 风格 API
|
```
|
||||||
│ ├── web_demo.sh: 启动 LoRA 模型的浏览器推理接口
|
|
||||||
│ └── evaluate.sh: 在 MMLU/CMMLU/C-Eval 数据集上评测 LoRA 模型
|
#### ORPO 训练
|
||||||
└── extras/
|
|
||||||
├── galore/
|
```bash
|
||||||
│ └── sft.sh: 使用 GaLore 训练模型
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml
|
||||||
├── badam/
|
```
|
||||||
│ └── sft.sh: 使用 BAdam 训练模型
|
|
||||||
├── loraplus/
|
#### 预处理数据集
|
||||||
│ └── sft.sh: 使用 LoRA+ 训练模型
|
|
||||||
├── mod/
|
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
||||||
│ └── sft.sh: 使用深度混合训练模型
|
|
||||||
├── llama_pro/
|
```bash
|
||||||
│ ├── expand.sh: 扩展模型中的层
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
|
||||||
│ └── sft.sh: 训练扩展后的模型
|
```
|
||||||
└── fsdp_qlora/
|
|
||||||
└── sft.sh: 使用 FSDP+QLoRA 微调量化模型
|
#### 在 MMLU/CMMLU/C-Eval 上评估
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 单 GPU QLoRA 微调
|
||||||
|
|
||||||
|
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 多 GPU LoRA 微调
|
||||||
|
|
||||||
|
#### 使用 Accelerate 进行单节点训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/single_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 Accelerate 进行多节点训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/multi_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_gpu/ds_zero3.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 多 NPU LoRA 微调
|
||||||
|
|
||||||
|
#### 使用 DeepSpeed ZeRO-0 训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/lora_multi_npu/ds_zero0.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 多 GPU 全参数微调
|
||||||
|
|
||||||
|
#### 使用 DeepSpeed 进行单节点训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/single_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 DeepSpeed 进行多节点训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/multi_node.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/full_multi_gpu/predict.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
### 合并 LoRA 适配器与模型量化
|
||||||
|
|
||||||
|
#### 合并 LoRA 适配器
|
||||||
|
|
||||||
|
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 AutoGPTQ 量化模型
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 推理 LoRA 模型
|
||||||
|
|
||||||
|
#### 使用命令行接口
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用浏览器界面
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 启动 OpenAI 风格 API
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 杂项
|
||||||
|
|
||||||
|
#### 使用 GaLore 进行全参数训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 BAdam 进行全参数训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LoRA+ 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 深度混合微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LLaMA-Pro 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/llama_pro/expand.sh
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### FSDP+QLoRA 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/fsdp_qlora/single_node.sh
|
||||||
```
|
```
|
||||||
|
|||||||
41
examples/extras/badam/llama3_lora_sft.yaml
Normal file
41
examples/extras/badam/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
use_badam: true
|
||||||
|
badam_switch_mode: descending
|
||||||
|
badam_switch_interval: 50
|
||||||
|
badam_verbose: 2
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
pure_bf16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,35 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type full \
|
|
||||||
--use_badam \
|
|
||||||
--badam_switch_mode descending \
|
|
||||||
--badam_switch_block_every 50 \
|
|
||||||
--badam_verbose 2 \
|
|
||||||
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--pure_bf16
|
|
||||||
42
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
Normal file
42
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
quantization_bit: 4
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# ddp
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,41 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
|
|
||||||
|
|
||||||
pip install "transformers>=4.39.1"
|
|
||||||
pip install "accelerate>=0.28.0"
|
|
||||||
pip install "bitsandbytes>=0.43.0"
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
|
||||||
--config_file ../../accelerate/fsdp_config.yaml \
|
|
||||||
../../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-70b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--quantization_bit 4 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
10
examples/extras/fsdp_qlora/single_node.sh
Normal file
10
examples/extras/fsdp_qlora/single_node.sh
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
|
||||||
|
|
||||||
|
pip install "transformers>=4.39.1"
|
||||||
|
pip install "accelerate>=0.28.0"
|
||||||
|
pip install "bitsandbytes>=0.43.0"
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
||||||
|
--config_file examples/accelerate/fsdp_config.yaml \
|
||||||
|
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml
|
||||||
42
examples/extras/galore/llama3_full_sft.yaml
Normal file
42
examples/extras/galore/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
use_galore: true
|
||||||
|
galore_layerwise: true
|
||||||
|
galore_target: mlp,self_attn
|
||||||
|
galore_rank: 128
|
||||||
|
galore_scale: 2.0
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 1
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
pure_bf16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,36 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type full \
|
|
||||||
--use_galore \
|
|
||||||
--galore_layerwise \
|
|
||||||
--galore_target mlp,self_attn \
|
|
||||||
--galore_rank 128 \
|
|
||||||
--galore_scale 2.0 \
|
|
||||||
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 1 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--pure_bf16
|
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
python ../../../scripts/llama_pro.py \
|
python scripts/llama_pro.py \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||||
--output_dir ../../../models/llama2-7b-pro \
|
--output_dir models/llama3-8b-instruct-pro \
|
||||||
--num_expand 8
|
--num_expand 8
|
||||||
|
|||||||
40
examples/extras/llama_pro/llama3_freeze_sft.yaml
Normal file
40
examples/extras/llama_pro/llama3_freeze_sft.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: models/llama3-8b-instruct-pro
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: freeze
|
||||||
|
freeze_trainable_layers: 8
|
||||||
|
freeze_trainable_modules: all
|
||||||
|
use_llama_pro: true
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,34 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path ../../../models/llama2-7b-pro \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type freeze \
|
|
||||||
--name_module_trainable all \
|
|
||||||
--num_layer_trainable 8 \
|
|
||||||
--use_llama_pro \
|
|
||||||
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
39
examples/extras/loraplus/llama3_lora_sft.yaml
Normal file
39
examples/extras/loraplus/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
loraplus_lr_ratio: 16.0
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--loraplus_lr_ratio 16.0 \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/loraplus/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
39
examples/extras/mod/llama3_full_sft.yaml
Normal file
39
examples/extras/mod/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
mixture_of_depths: convert
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b-mod/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
optim: paged_adamw_8bit
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
pure_bf16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type full \
|
|
||||||
--mixture_of_depths convert \
|
|
||||||
--output_dir ../../../saves/LLaMA2-7B/mod/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--optim paged_adamw_8bit \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--pure_bf16
|
|
||||||
23
examples/full_multi_gpu/llama3_full_predict.yaml
Normal file
23
examples/full_multi_gpu/llama3_full_predict.yaml
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: saves/llama3-8b/full/sft
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_predict: true
|
||||||
|
finetuning_type: full
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 50
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/full/predict
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
predict_with_generate: true
|
||||||
41
examples/full_multi_gpu/llama3_full_sft.yaml
Normal file
41
examples/full_multi_gpu/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
|
||||||
|
# ddp
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,38 +1,15 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
python -m torch.distributed.run \
|
NPROC_PER_NODE=4
|
||||||
|
NNODES=2
|
||||||
|
RANK=0
|
||||||
|
MASTER_ADDR=192.168.0.1
|
||||||
|
MASTER_PORT=29500
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
|
||||||
--nproc_per_node $NPROC_PER_NODE \
|
--nproc_per_node $NPROC_PER_NODE \
|
||||||
--nnodes $NNODES \
|
--nnodes $NNODES \
|
||||||
--node_rank $RANK \
|
--node_rank $RANK \
|
||||||
--master_addr $MASTER_ADDR \
|
--master_addr $MASTER_ADDR \
|
||||||
--master_port $MASTER_PORT \
|
--master_port $MASTER_PORT \
|
||||||
../../src/train_bash.py \
|
src/train.py examples/full_multi_gpu/llama3_full_sft.yaml
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type full \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/full/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 2 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
|
|||||||
@@ -1,20 +1,5 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/single_config.yaml \
|
--config_file examples/accelerate/single_config.yaml \
|
||||||
../../src/train_bash.py \
|
src/train.py examples/full_multi_gpu/llama3_full_predict.yaml
|
||||||
--stage sft \
|
|
||||||
--do_predict \
|
|
||||||
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type full \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/full/predict \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--max_samples 20 \
|
|
||||||
--predict_with_generate
|
|
||||||
|
|||||||
@@ -1,32 +1,15 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
NPROC_PER_NODE=4
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
NNODES=1
|
||||||
--stage sft \
|
RANK=0
|
||||||
--do_train \
|
MASTER_ADDR=127.0.0.1
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
MASTER_PORT=29500
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
|
||||||
--template default \
|
--nproc_per_node $NPROC_PER_NODE \
|
||||||
--finetuning_type full \
|
--nnodes $NNODES \
|
||||||
--output_dir ../../saves/LLaMA2-7B/full/sft \
|
--node_rank $RANK \
|
||||||
--overwrite_cache \
|
--master_addr $MASTER_ADDR \
|
||||||
--overwrite_output_dir \
|
--master_port $MASTER_PORT \
|
||||||
--cutoff_len 1024 \
|
src/train.py examples/full_multi_gpu/llama3_full_sft.yaml
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 2 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
|
|||||||
@@ -1,7 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora
|
|
||||||
@@ -1,7 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora
|
|
||||||
@@ -1,12 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--template fewshot \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--task mmlu \
|
|
||||||
--split test \
|
|
||||||
--lang en \
|
|
||||||
--n_shot 5 \
|
|
||||||
--batch_size 4
|
|
||||||
2
examples/inference/llama3.yaml
Normal file
2
examples/inference/llama3.yaml
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
4
examples/inference/llama3_lora_sft.yaml
Normal file
4
examples/inference/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
template: llama3
|
||||||
|
finetuning_type: lora
|
||||||
4
examples/inference/llama3_vllm.yaml
Normal file
4
examples/inference/llama3_vllm.yaml
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
|
infer_backend: vllm
|
||||||
|
vllm_enforce_eager: true
|
||||||
@@ -1,8 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# add `--visual_inputs True` to load MLLM
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora
|
|
||||||
@@ -1,33 +1,15 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
NPROC_PER_NODE=4
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
NNODES=1
|
||||||
--stage sft \
|
RANK=0
|
||||||
--do_train \
|
MASTER_ADDR=127.0.0.1
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
MASTER_PORT=29500
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
|
||||||
--template default \
|
--nproc_per_node $NPROC_PER_NODE \
|
||||||
--finetuning_type lora \
|
--nnodes $NNODES \
|
||||||
--lora_target q_proj,v_proj \
|
--node_rank $RANK \
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
--master_addr $MASTER_ADDR \
|
||||||
--overwrite_cache \
|
--master_port $MASTER_PORT \
|
||||||
--overwrite_output_dir \
|
src/train.py examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 2 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
|
|||||||
41
examples/lora_multi_gpu/llama3_lora_sft.yaml
Normal file
41
examples/lora_multi_gpu/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# ddp
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
42
examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
Normal file
42
examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# ddp
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -2,35 +2,5 @@
|
|||||||
# also launch it on slave machine using slave_config.yaml
|
# also launch it on slave machine using slave_config.yaml
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/master_config.yaml \
|
--config_file examples/accelerate/master_config.yaml \
|
||||||
../../src/train_bash.py \
|
src/train.py examples/lora_multi_gpu/llama3_lora_sft.yaml
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 2 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
|
|||||||
@@ -1,35 +1,5 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/single_config.yaml \
|
--config_file examples/accelerate/single_config.yaml \
|
||||||
../../src/train_bash.py \
|
src/train.py examples/lora_multi_gpu/llama3_lora_sft.yaml
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 2 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--ddp_timeout 180000000 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
|
|||||||
15
examples/lora_multi_npu/ds_zero0.sh
Normal file
15
examples/lora_multi_npu/ds_zero0.sh
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
NPROC_PER_NODE=4
|
||||||
|
NNODES=1
|
||||||
|
RANK=0
|
||||||
|
MASTER_ADDR=127.0.0.1
|
||||||
|
MASTER_PORT=29500
|
||||||
|
|
||||||
|
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 torchrun \
|
||||||
|
--nproc_per_node $NPROC_PER_NODE \
|
||||||
|
--nnodes $NNODES \
|
||||||
|
--node_rank $RANK \
|
||||||
|
--master_addr $MASTER_ADDR \
|
||||||
|
--master_port $MASTER_PORT \
|
||||||
|
src/train.py examples/lora_multi_npu/llama3_lora_sft_ds.yaml
|
||||||
42
examples/lora_multi_npu/llama3_lora_sft_ds.yaml
Normal file
42
examples/lora_multi_npu/llama3_lora_sft_ds.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# ddp
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
deepspeed: examples/deepspeed/ds_z0_config.json
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,35 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage dpo \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--create_new_adapter \
|
|
||||||
--dataset orca_rlhf \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--max_samples 1000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--dpo_ftx 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
39
examples/lora_single_gpu/llama3_lora_dpo.yaml
Normal file
39
examples/lora_single_gpu/llama3_lora_dpo.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: dpo
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
dpo_ftx: 1.0
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: orca_rlhf
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/dpo
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.00001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
19
examples/lora_single_gpu/llama3_lora_eval.yaml
Normal file
19
examples/lora_single_gpu/llama3_lora_eval.yaml
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
|
||||||
|
# method
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
task: mmlu
|
||||||
|
split: test
|
||||||
|
template: fewshot
|
||||||
|
lang: en
|
||||||
|
n_shot: 5
|
||||||
|
|
||||||
|
# output
|
||||||
|
save_dir: saves/llama3-8b/lora/eval
|
||||||
|
|
||||||
|
# eval
|
||||||
|
batch_size: 4
|
||||||
38
examples/lora_single_gpu/llama3_lora_orpo.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_orpo.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: orpo
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: orca_rlhf
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/orpo
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.00001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
38
examples/lora_single_gpu/llama3_lora_ppo.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_ppo.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
reward_model: saves/llama3-8b/lora/reward
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: ppo
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/ppo
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.00001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# generate
|
||||||
|
max_new_tokens: 512
|
||||||
|
top_k: 0
|
||||||
|
top_p: 0.9
|
||||||
24
examples/lora_single_gpu/llama3_lora_predict.yaml
Normal file
24
examples/lora_single_gpu/llama3_lora_predict.yaml
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_predict: true
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 50
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/predict
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
predict_with_generate: true
|
||||||
37
examples/lora_single_gpu/llama3_lora_pretrain.yaml
Normal file
37
examples/lora_single_gpu/llama3_lora_pretrain.yaml
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: pt
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: c4_demo
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
38
examples/lora_single_gpu/llama3_lora_reward.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_reward.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: rm
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: orca_rlhf
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/reward
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.00001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
38
examples/lora_single_gpu/llama3_lora_sft.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
21
examples/lora_single_gpu/llama3_preprocess.yaml
Normal file
21
examples/lora_single_gpu/llama3_preprocess.yaml
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
tokenized_path: saves/llama3-8b/dataset/sft
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
overwrite_output_dir: true
|
||||||
39
examples/lora_single_gpu/llava1_5_lora_sft.yaml
Normal file
39
examples/lora_single_gpu/llava1_5_lora_sft.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||||
|
visual_inputs: true
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: mllm_demo
|
||||||
|
template: vicuna
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llava1_5-7b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,32 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage orpo \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset orca_rlhf \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--max_samples 1000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,32 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage ppo \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--create_new_adapter \
|
|
||||||
--dataset alpaca_gpt4_en \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--reward_model ../../saves/LLaMA2-7B/lora/reward \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 512 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--max_samples 1000 \
|
|
||||||
--top_k 0 \
|
|
||||||
--top_p 0.9 \
|
|
||||||
--max_new_tokens 256 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,19 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_predict \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/predict \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--max_samples 20 \
|
|
||||||
--predict_with_generate
|
|
||||||
@@ -1,18 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES= python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--tokenized_path ../../saves/datasets/sft
|
|
||||||
@@ -1,31 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage pt \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset c4_demo \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 10000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage rm \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--create_new_adapter \
|
|
||||||
--dataset orca_rlhf \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/reward \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--max_samples 5000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,32 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
|
||||||
--visual_inputs \
|
|
||||||
--dataset mllm_demo \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template vicuna \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--preprocessing_num_workers 16 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--warmup_steps 20 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 100.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
11
examples/merge_lora/llama3_gptq.yaml
Normal file
11
examples/merge_lora/llama3_gptq.yaml
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
|
|
||||||
|
# export
|
||||||
|
export_dir: models/llama3_gptq
|
||||||
|
export_quantization_bit: 4
|
||||||
|
export_quantization_dataset: data/c4_demo.json
|
||||||
|
export_size: 2
|
||||||
|
export_device: cpu
|
||||||
|
export_legacy_format: false
|
||||||
13
examples/merge_lora/llama3_lora_sft.yaml
Normal file
13
examples/merge_lora/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
# Note: DO NOT use quantized model or quantization_bit when merging lora adapters
|
||||||
|
|
||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
template: llama3
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
# export
|
||||||
|
export_dir: models/llama3_lora_sft
|
||||||
|
export_size: 2
|
||||||
|
export_device: cpu
|
||||||
|
export_legacy_format: false
|
||||||
@@ -1,12 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# DO NOT use quantized model or quantization_bit when merging lora weights
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--export_dir ../../models/llama2-7b-sft \
|
|
||||||
--export_size 2 \
|
|
||||||
--export_device cpu \
|
|
||||||
--export_legacy_format False
|
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# NEED TO run `merge.sh` before using this script
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
|
||||||
--model_name_or_path ../../models/llama2-7b-sft \
|
|
||||||
--template default \
|
|
||||||
--export_dir ../../models/llama2-7b-sft-int4 \
|
|
||||||
--export_quantization_bit 4 \
|
|
||||||
--export_quantization_dataset ../../data/c4_demo.json \
|
|
||||||
--export_size 2 \
|
|
||||||
--export_legacy_format False
|
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,31 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--quantization_bit 4 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--do_train \
|
|
||||||
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
|
|
||||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
|
||||||
--dataset_dir ../../data \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
|
||||||
--overwrite_cache \
|
|
||||||
--overwrite_output_dir \
|
|
||||||
--cutoff_len 1024 \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 1 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 100 \
|
|
||||||
--eval_steps 100 \
|
|
||||||
--evaluation_strategy steps \
|
|
||||||
--load_best_model_at_end \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--max_samples 3000 \
|
|
||||||
--val_size 0.1 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
38
examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
Normal file
38
examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
38
examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
Normal file
38
examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
Normal file
39
examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
quantization_bit: 4
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
38
examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
Normal file
38
examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
# model
|
||||||
|
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
|
||||||
|
|
||||||
|
# method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
dataset: identity,alpaca_gpt4_en
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
# output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
# train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 0.0001
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_steps: 0.1
|
||||||
|
fp16: true
|
||||||
|
|
||||||
|
# eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
evaluation_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,4 +1,3 @@
|
|||||||
torch>=1.13.1
|
|
||||||
transformers>=4.37.2
|
transformers>=4.37.2
|
||||||
datasets>=2.14.3
|
datasets>=2.14.3
|
||||||
accelerate>=0.27.2
|
accelerate>=0.27.2
|
||||||
@@ -13,6 +12,7 @@ uvicorn
|
|||||||
pydantic
|
pydantic
|
||||||
fastapi
|
fastapi
|
||||||
sse-starlette
|
sse-starlette
|
||||||
matplotlib
|
matplotlib>=3.7.0
|
||||||
fire
|
fire
|
||||||
packaging
|
packaging
|
||||||
|
pyyaml
|
||||||
|
|||||||
@@ -3,24 +3,22 @@
|
|||||||
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
|
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
|
||||||
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
|
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
|
||||||
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import fire
|
import fire
|
||||||
import torch
|
import torch
|
||||||
from deepspeed.accelerator import get_accelerator # type: ignore
|
from deepspeed.accelerator import get_accelerator # type: ignore
|
||||||
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
||||||
|
|
||||||
from llmtuner import ChatModel
|
from llmtuner.chat import ChatModel
|
||||||
|
|
||||||
|
|
||||||
def calculate_flops(
|
def calculate_flops(
|
||||||
model_name_or_path: str,
|
model_name_or_path: str,
|
||||||
batch_size: Optional[int] = 1,
|
batch_size: int = 1,
|
||||||
seq_length: Optional[int] = 256,
|
seq_length: int = 256,
|
||||||
flash_attn: Optional[bool] = False,
|
flash_attn: str = "auto",
|
||||||
):
|
):
|
||||||
with get_accelerator().device(0):
|
with get_accelerator().device(0):
|
||||||
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="vanilla", flash_attn=flash_attn))
|
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
|
||||||
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
|
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
|
||||||
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
|
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
|
||||||
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
|
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
|
||||||
|
|||||||
@@ -4,7 +4,7 @@
|
|||||||
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
|
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
|
||||||
|
|
||||||
import math
|
import math
|
||||||
from typing import Optional
|
from typing import Literal
|
||||||
|
|
||||||
import fire
|
import fire
|
||||||
import torch
|
import torch
|
||||||
@@ -25,12 +25,12 @@ BASE_BS = 4_000_000 # from llama paper
|
|||||||
def calculate_lr(
|
def calculate_lr(
|
||||||
model_name_or_path: str,
|
model_name_or_path: str,
|
||||||
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
|
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
|
||||||
stage: Optional[str] = "sft",
|
stage: Literal["pt", "sft"] = "sft",
|
||||||
dataset: Optional[str] = "alpaca_en",
|
dataset: str = "alpaca_en",
|
||||||
dataset_dir: Optional[str] = "data",
|
dataset_dir: str = "data",
|
||||||
template: Optional[str] = "default",
|
template: str = "default",
|
||||||
cutoff_len: Optional[int] = 1024, # i.e. maximum input length during training
|
cutoff_len: int = 1024, # i.e. maximum input length during training
|
||||||
is_mistral: Optional[bool] = False, # mistral model uses a smaller learning rate,
|
is_mistral: bool = False, # mistral model uses a smaller learning rate,
|
||||||
):
|
):
|
||||||
model_args, data_args, training_args, _, _ = get_train_args(
|
model_args, data_args, training_args, _, _ = get_train_args(
|
||||||
dict(
|
dict(
|
||||||
@@ -54,9 +54,7 @@ def calculate_lr(
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
dataloader = DataLoader(
|
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
dataset=trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, pin_memory=True
|
|
||||||
)
|
|
||||||
valid_tokens, total_tokens = 0, 0
|
valid_tokens, total_tokens = 0, 0
|
||||||
for batch in tqdm(dataloader):
|
for batch in tqdm(dataloader):
|
||||||
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||||
|
|||||||
116
scripts/cal_ppl.py
Normal file
116
scripts/cal_ppl.py
Normal file
@@ -0,0 +1,116 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Calculates the ppl on the dataset of the pre-trained models.
|
||||||
|
# Usage: python cal_ppl.py --model_name_or_path path_to_model --save_name ppl.json
|
||||||
|
|
||||||
|
import json
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Dict, Literal, Optional, Sequence
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||||
|
|
||||||
|
from llmtuner.data import get_dataset
|
||||||
|
from llmtuner.extras.constants import IGNORE_INDEX
|
||||||
|
from llmtuner.hparams import get_train_args
|
||||||
|
from llmtuner.model import load_model, load_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||||
|
r"""
|
||||||
|
Data collator for pairwise data.
|
||||||
|
"""
|
||||||
|
|
||||||
|
train_on_prompt: bool = False
|
||||||
|
|
||||||
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||||
|
r"""
|
||||||
|
Pads batched data to the longest sequence in the batch.
|
||||||
|
|
||||||
|
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||||
|
the last n examples represent rejected examples.
|
||||||
|
"""
|
||||||
|
chosen_features = []
|
||||||
|
for feature in features:
|
||||||
|
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
|
||||||
|
input_ids = feature["prompt_ids"] + feature["chosen_ids"]
|
||||||
|
attention_mask = [1] * (prompt_len + answer_len)
|
||||||
|
labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
|
||||||
|
chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
|
||||||
|
|
||||||
|
return super().__call__(chosen_features)
|
||||||
|
|
||||||
|
|
||||||
|
def cal_ppl(
|
||||||
|
model_name_or_path: str,
|
||||||
|
save_name: str,
|
||||||
|
batch_size: int = 4,
|
||||||
|
stage: Literal["pt", "sft", "rm"] = "sft",
|
||||||
|
dataset: str = "alpaca_en",
|
||||||
|
dataset_dir: str = "data",
|
||||||
|
template: str = "default",
|
||||||
|
cutoff_len: int = 1024,
|
||||||
|
max_samples: Optional[int] = None,
|
||||||
|
train_on_prompt: bool = False,
|
||||||
|
):
|
||||||
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||||
|
dict(
|
||||||
|
stage=stage,
|
||||||
|
model_name_or_path=model_name_or_path,
|
||||||
|
dataset=dataset,
|
||||||
|
dataset_dir=dataset_dir,
|
||||||
|
template=template,
|
||||||
|
cutoff_len=cutoff_len,
|
||||||
|
max_samples=max_samples,
|
||||||
|
train_on_prompt=train_on_prompt,
|
||||||
|
output_dir="dummy_dir",
|
||||||
|
overwrite_cache=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
|
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
|
||||||
|
if stage == "pt":
|
||||||
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
|
elif stage == "sft":
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||||
|
elif stage == "rm":
|
||||||
|
data_collator = PairwiseDataCollatorWithPadding(
|
||||||
|
tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss(reduction="none")
|
||||||
|
total_ppl = 0
|
||||||
|
perplexities = []
|
||||||
|
batch: Dict[str, "torch.Tensor"]
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in tqdm(dataloader):
|
||||||
|
batch = batch.to(model.device)
|
||||||
|
outputs = model(**batch)
|
||||||
|
shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
|
||||||
|
shift_labels: "torch.Tensor" = batch["labels"][..., 1:]
|
||||||
|
loss_mask = shift_labels != IGNORE_INDEX
|
||||||
|
flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1)
|
||||||
|
flatten_labels = shift_labels.contiguous().view(-1)
|
||||||
|
token_logps: "torch.Tensor" = criterion(flatten_logits, flatten_labels)
|
||||||
|
token_logps = token_logps.contiguous().view(shift_logits.size(0), -1)
|
||||||
|
sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
||||||
|
total_ppl += sentence_logps.exp().sum().item()
|
||||||
|
perplexities.extend(sentence_logps.exp().tolist())
|
||||||
|
|
||||||
|
with open(save_name, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(perplexities, f, indent=2)
|
||||||
|
|
||||||
|
print("Average perplexity is {:.2f}".format(total_ppl / len(perplexities)))
|
||||||
|
print("Perplexities have been saved at {}.".format(save_name))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(cal_ppl)
|
||||||
@@ -3,7 +3,6 @@
|
|||||||
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
|
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
|
||||||
|
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import fire
|
import fire
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@@ -15,10 +14,10 @@ from llmtuner.model import load_tokenizer
|
|||||||
|
|
||||||
def length_cdf(
|
def length_cdf(
|
||||||
model_name_or_path: str,
|
model_name_or_path: str,
|
||||||
dataset: Optional[str] = "alpaca_en",
|
dataset: str = "alpaca_en",
|
||||||
dataset_dir: Optional[str] = "data",
|
dataset_dir: str = "data",
|
||||||
template: Optional[str] = "default",
|
template: str = "default",
|
||||||
interval: Optional[int] = 1000,
|
interval: int = 1000,
|
||||||
):
|
):
|
||||||
model_args, data_args, training_args, _, _ = get_train_args(
|
model_args, data_args, training_args, _, _ = get_train_args(
|
||||||
dict(
|
dict(
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
# coding=utf-8
|
# coding=utf-8
|
||||||
# Performs block expansion for LLaMA, Mistral or Qwen1.5 models.
|
# Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
|
||||||
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
|
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
|
||||||
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
|
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
|
||||||
|
|
||||||
@@ -106,8 +106,7 @@ def block_expansion(
|
|||||||
print("Fine-tune this model with:")
|
print("Fine-tune this model with:")
|
||||||
print(" --model_name_or_path {} \\".format(output_dir))
|
print(" --model_name_or_path {} \\".format(output_dir))
|
||||||
print(" --finetuning_type freeze \\")
|
print(" --finetuning_type freeze \\")
|
||||||
print(" --name_module_trainable all \\")
|
print(" --freeze_trainable_layers {} \\".format(num_expand))
|
||||||
print(" --num_layer_trainable {} \\".format(num_expand))
|
|
||||||
print(" --use_llama_pro")
|
print(" --use_llama_pro")
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
12
setup.py
12
setup.py
@@ -5,9 +5,9 @@ from setuptools import find_packages, setup
|
|||||||
|
|
||||||
|
|
||||||
def get_version():
|
def get_version():
|
||||||
with open(os.path.join("src", "llmtuner", "__init__.py"), "r", encoding="utf-8") as f:
|
with open(os.path.join("src", "llmtuner", "cli.py"), "r", encoding="utf-8") as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
pattern = r"{0}\W*=\W*\"([^\"]+)\"".format("__version__")
|
pattern = r"{}\W*=\W*\"([^\"]+)\"".format("VERSION")
|
||||||
(version,) = re.findall(pattern, file_content)
|
(version,) = re.findall(pattern, file_content)
|
||||||
return version
|
return version
|
||||||
|
|
||||||
@@ -20,12 +20,13 @@ def get_requires():
|
|||||||
|
|
||||||
|
|
||||||
extra_require = {
|
extra_require = {
|
||||||
"deepspeed": ["deepspeed>=0.10.0"],
|
"torch": ["torch>=1.13.1"],
|
||||||
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||||
|
"deepspeed": ["deepspeed>=0.10.0,<=0.14.0"],
|
||||||
|
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
||||||
|
"vllm": ["vllm>=0.4.0"],
|
||||||
"galore": ["galore-torch"],
|
"galore": ["galore-torch"],
|
||||||
"badam": ["badam"],
|
"badam": ["badam"],
|
||||||
"vllm": ["vllm>=0.4.0"],
|
|
||||||
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
|
||||||
"gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
|
"gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
|
||||||
"awq": ["autoawq"],
|
"awq": ["autoawq"],
|
||||||
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
||||||
@@ -52,6 +53,7 @@ def main():
|
|||||||
python_requires=">=3.8.0",
|
python_requires=">=3.8.0",
|
||||||
install_requires=get_requires(),
|
install_requires=get_requires(),
|
||||||
extras_require=extra_require,
|
extras_require=extra_require,
|
||||||
|
entry_points={"console_scripts": ["llamafactory-cli = llmtuner.cli:main"]},
|
||||||
classifiers=[
|
classifiers=[
|
||||||
"Development Status :: 4 - Beta",
|
"Development Status :: 4 - Beta",
|
||||||
"Intended Audience :: Developers",
|
"Intended Audience :: Developers",
|
||||||
|
|||||||
19
src/api.py
Normal file
19
src/api.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
from llmtuner.api.app import create_app
|
||||||
|
from llmtuner.chat import ChatModel
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
chat_model = ChatModel()
|
||||||
|
app = create_app(chat_model)
|
||||||
|
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||||
|
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||||
|
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||||
|
uvicorn.run(app, host=api_host, port=api_port)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -1,16 +0,0 @@
|
|||||||
import os
|
|
||||||
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
from llmtuner import ChatModel, create_app
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
app = create_app(chat_model)
|
|
||||||
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,49 +0,0 @@
|
|||||||
from llmtuner import ChatModel
|
|
||||||
from llmtuner.extras.misc import torch_gc
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
|
||||||
import platform
|
|
||||||
|
|
||||||
if platform.system() != "Windows":
|
|
||||||
import readline # noqa: F401
|
|
||||||
except ImportError:
|
|
||||||
print("Install `readline` for a better experience.")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
messages = []
|
|
||||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
query = input("\nUser: ")
|
|
||||||
except UnicodeDecodeError:
|
|
||||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
||||||
continue
|
|
||||||
except Exception:
|
|
||||||
raise
|
|
||||||
|
|
||||||
if query.strip() == "exit":
|
|
||||||
break
|
|
||||||
|
|
||||||
if query.strip() == "clear":
|
|
||||||
messages = []
|
|
||||||
torch_gc()
|
|
||||||
print("History has been removed.")
|
|
||||||
continue
|
|
||||||
|
|
||||||
messages.append({"role": "user", "content": query})
|
|
||||||
print("Assistant: ", end="", flush=True)
|
|
||||||
|
|
||||||
response = ""
|
|
||||||
for new_text in chat_model.stream_chat(messages):
|
|
||||||
print(new_text, end="", flush=True)
|
|
||||||
response += new_text
|
|
||||||
print()
|
|
||||||
messages.append({"role": "assistant", "content": response})
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
from llmtuner import Evaluator
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
Evaluator().eval()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
from llmtuner import export_model
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
export_model()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,11 +1,6 @@
|
|||||||
# Level: api, webui > chat, eval, train > data, model > extras, hparams
|
# Level: api, webui > chat, eval, train > data, model > extras, hparams
|
||||||
|
|
||||||
from .api import create_app
|
from .cli import VERSION
|
||||||
from .chat import ChatModel
|
|
||||||
from .eval import Evaluator
|
|
||||||
from .train import export_model, run_exp
|
|
||||||
from .webui import create_ui, create_web_demo
|
|
||||||
|
|
||||||
|
|
||||||
__version__ = "0.7.0"
|
__version__ = VERSION
|
||||||
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]
|
|
||||||
|
|||||||
@@ -1,4 +0,0 @@
|
|||||||
from .app import create_app
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["create_app"]
|
|
||||||
|
|||||||
@@ -1,36 +1,31 @@
|
|||||||
import json
|
|
||||||
import os
|
import os
|
||||||
from contextlib import asynccontextmanager
|
from contextlib import asynccontextmanager
|
||||||
from typing import Any, Dict, Sequence
|
from typing import Optional
|
||||||
|
|
||||||
from pydantic import BaseModel
|
from typing_extensions import Annotated
|
||||||
|
|
||||||
from ..chat import ChatModel
|
from ..chat import ChatModel
|
||||||
from ..data import Role as DataRole
|
|
||||||
from ..extras.misc import torch_gc
|
from ..extras.misc import torch_gc
|
||||||
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
|
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||||
|
from .chat import (
|
||||||
|
create_chat_completion_response,
|
||||||
|
create_score_evaluation_response,
|
||||||
|
create_stream_chat_completion_response,
|
||||||
|
)
|
||||||
from .protocol import (
|
from .protocol import (
|
||||||
ChatCompletionMessage,
|
|
||||||
ChatCompletionRequest,
|
ChatCompletionRequest,
|
||||||
ChatCompletionResponse,
|
ChatCompletionResponse,
|
||||||
ChatCompletionResponseChoice,
|
|
||||||
ChatCompletionResponseStreamChoice,
|
|
||||||
ChatCompletionResponseUsage,
|
|
||||||
ChatCompletionStreamResponse,
|
|
||||||
Finish,
|
|
||||||
Function,
|
|
||||||
FunctionCall,
|
|
||||||
ModelCard,
|
ModelCard,
|
||||||
ModelList,
|
ModelList,
|
||||||
Role,
|
|
||||||
ScoreEvaluationRequest,
|
ScoreEvaluationRequest,
|
||||||
ScoreEvaluationResponse,
|
ScoreEvaluationResponse,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
if is_fastapi_availble():
|
if is_fastapi_available():
|
||||||
from fastapi import FastAPI, HTTPException, status
|
from fastapi import Depends, FastAPI, HTTPException, status
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
|
||||||
|
|
||||||
|
|
||||||
if is_starlette_available():
|
if is_starlette_available():
|
||||||
@@ -47,23 +42,8 @@ async def lifespan(app: "FastAPI"): # collects GPU memory
|
|||||||
torch_gc()
|
torch_gc()
|
||||||
|
|
||||||
|
|
||||||
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
|
||||||
try: # pydantic v2
|
|
||||||
return data.model_dump(exclude_unset=True)
|
|
||||||
except AttributeError: # pydantic v1
|
|
||||||
return data.dict(exclude_unset=True)
|
|
||||||
|
|
||||||
|
|
||||||
def jsonify(data: "BaseModel") -> str:
|
|
||||||
try: # pydantic v2
|
|
||||||
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
|
||||||
except AttributeError: # pydantic v1
|
|
||||||
return data.json(exclude_unset=True, ensure_ascii=False)
|
|
||||||
|
|
||||||
|
|
||||||
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||||
app = FastAPI(lifespan=lifespan)
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
|
||||||
app.add_middleware(
|
app.add_middleware(
|
||||||
CORSMiddleware,
|
CORSMiddleware,
|
||||||
allow_origins=["*"],
|
allow_origins=["*"],
|
||||||
@@ -71,160 +51,58 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
|||||||
allow_methods=["*"],
|
allow_methods=["*"],
|
||||||
allow_headers=["*"],
|
allow_headers=["*"],
|
||||||
)
|
)
|
||||||
|
api_key = os.environ.get("API_KEY")
|
||||||
|
security = HTTPBearer(auto_error=False)
|
||||||
|
|
||||||
role_mapping = {
|
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
|
||||||
Role.USER: DataRole.USER.value,
|
if api_key and (auth is None or auth.credentials != api_key):
|
||||||
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
|
||||||
Role.SYSTEM: DataRole.SYSTEM.value,
|
|
||||||
Role.FUNCTION: DataRole.FUNCTION.value,
|
|
||||||
Role.TOOL: DataRole.OBSERVATION.value,
|
|
||||||
}
|
|
||||||
|
|
||||||
@app.get("/v1/models", response_model=ModelList)
|
@app.get(
|
||||||
|
"/v1/models",
|
||||||
|
response_model=ModelList,
|
||||||
|
status_code=status.HTTP_200_OK,
|
||||||
|
dependencies=[Depends(verify_api_key)],
|
||||||
|
)
|
||||||
async def list_models():
|
async def list_models():
|
||||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||||
return ModelList(data=[model_card])
|
return ModelList(data=[model_card])
|
||||||
|
|
||||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
|
@app.post(
|
||||||
|
"/v1/chat/completions",
|
||||||
|
response_model=ChatCompletionResponse,
|
||||||
|
status_code=status.HTTP_200_OK,
|
||||||
|
dependencies=[Depends(verify_api_key)],
|
||||||
|
)
|
||||||
async def create_chat_completion(request: ChatCompletionRequest):
|
async def create_chat_completion(request: ChatCompletionRequest):
|
||||||
if not chat_model.engine.can_generate:
|
if not chat_model.engine.can_generate:
|
||||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||||
|
|
||||||
if len(request.messages) == 0:
|
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
|
||||||
|
|
||||||
if request.messages[0].role == Role.SYSTEM:
|
|
||||||
system = request.messages.pop(0).content
|
|
||||||
else:
|
|
||||||
system = ""
|
|
||||||
|
|
||||||
if len(request.messages) % 2 == 0:
|
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
|
||||||
|
|
||||||
input_messages = []
|
|
||||||
for i, message in enumerate(request.messages):
|
|
||||||
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
|
||||||
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
|
||||||
|
|
||||||
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
|
||||||
name = message.tool_calls[0].function.name
|
|
||||||
arguments = message.tool_calls[0].function.arguments
|
|
||||||
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
|
||||||
input_messages.append({"role": role_mapping[Role.FUNCTION], "content": content})
|
|
||||||
else:
|
|
||||||
input_messages.append({"role": role_mapping[message.role], "content": message.content})
|
|
||||||
|
|
||||||
tool_list = request.tools
|
|
||||||
if isinstance(tool_list, list) and len(tool_list):
|
|
||||||
try:
|
|
||||||
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
|
||||||
except Exception:
|
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
|
||||||
else:
|
|
||||||
tools = ""
|
|
||||||
|
|
||||||
if request.stream:
|
if request.stream:
|
||||||
if tools:
|
generate = create_stream_chat_completion_response(request, chat_model)
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
|
||||||
|
|
||||||
generate = stream_chat_completion(input_messages, system, tools, request)
|
|
||||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||||
|
else:
|
||||||
|
return await create_chat_completion_response(request, chat_model)
|
||||||
|
|
||||||
responses = await chat_model.achat(
|
@app.post(
|
||||||
input_messages,
|
"/v1/score/evaluation",
|
||||||
system,
|
response_model=ScoreEvaluationResponse,
|
||||||
tools,
|
status_code=status.HTTP_200_OK,
|
||||||
do_sample=request.do_sample,
|
dependencies=[Depends(verify_api_key)],
|
||||||
temperature=request.temperature,
|
)
|
||||||
top_p=request.top_p,
|
|
||||||
max_new_tokens=request.max_tokens,
|
|
||||||
num_return_sequences=request.n,
|
|
||||||
)
|
|
||||||
|
|
||||||
prompt_length, response_length = 0, 0
|
|
||||||
choices = []
|
|
||||||
for i, response in enumerate(responses):
|
|
||||||
if tools:
|
|
||||||
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
|
||||||
else:
|
|
||||||
result = response.response_text
|
|
||||||
|
|
||||||
if isinstance(result, tuple):
|
|
||||||
name, arguments = result
|
|
||||||
function = Function(name=name, arguments=arguments)
|
|
||||||
response_message = ChatCompletionMessage(
|
|
||||||
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)]
|
|
||||||
)
|
|
||||||
finish_reason = Finish.TOOL
|
|
||||||
else:
|
|
||||||
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
|
||||||
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
|
||||||
|
|
||||||
choices.append(
|
|
||||||
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)
|
|
||||||
)
|
|
||||||
prompt_length = response.prompt_length
|
|
||||||
response_length += response.response_length
|
|
||||||
|
|
||||||
usage = ChatCompletionResponseUsage(
|
|
||||||
prompt_tokens=prompt_length,
|
|
||||||
completion_tokens=response_length,
|
|
||||||
total_tokens=prompt_length + response_length,
|
|
||||||
)
|
|
||||||
|
|
||||||
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
|
|
||||||
|
|
||||||
async def stream_chat_completion(
|
|
||||||
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
|
|
||||||
):
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
|
||||||
index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None
|
|
||||||
)
|
|
||||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
||||||
yield jsonify(chunk)
|
|
||||||
|
|
||||||
async for new_token in chat_model.astream_chat(
|
|
||||||
messages,
|
|
||||||
system,
|
|
||||||
tools,
|
|
||||||
do_sample=request.do_sample,
|
|
||||||
temperature=request.temperature,
|
|
||||||
top_p=request.top_p,
|
|
||||||
max_new_tokens=request.max_tokens,
|
|
||||||
):
|
|
||||||
if len(new_token) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
|
||||||
index=0, delta=ChatCompletionMessage(content=new_token), finish_reason=None
|
|
||||||
)
|
|
||||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
||||||
yield jsonify(chunk)
|
|
||||||
|
|
||||||
choice_data = ChatCompletionResponseStreamChoice(
|
|
||||||
index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
|
||||||
)
|
|
||||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
|
||||||
yield jsonify(chunk)
|
|
||||||
yield "[DONE]"
|
|
||||||
|
|
||||||
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
|
|
||||||
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||||
if chat_model.engine.can_generate:
|
if chat_model.engine.can_generate:
|
||||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||||
|
|
||||||
if len(request.messages) == 0:
|
return await create_score_evaluation_response(request, chat_model)
|
||||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
|
||||||
|
|
||||||
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
|
||||||
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
|
||||||
|
|
||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def run_api() -> None:
|
||||||
chat_model = ChatModel()
|
chat_model = ChatModel()
|
||||||
app = create_app(chat_model)
|
app = create_app(chat_model)
|
||||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||||
|
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||||
|
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||||
|
uvicorn.run(app, host=api_host, port=api_port)
|
||||||
|
|||||||
186
src/llmtuner/api/chat.py
Normal file
186
src/llmtuner/api/chat.py
Normal file
@@ -0,0 +1,186 @@
|
|||||||
|
import json
|
||||||
|
import uuid
|
||||||
|
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
from ..data import Role as DataRole
|
||||||
|
from ..extras.logging import get_logger
|
||||||
|
from ..extras.packages import is_fastapi_available
|
||||||
|
from .common import dictify, jsonify
|
||||||
|
from .protocol import (
|
||||||
|
ChatCompletionMessage,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatCompletionResponseChoice,
|
||||||
|
ChatCompletionResponseUsage,
|
||||||
|
ChatCompletionStreamResponse,
|
||||||
|
ChatCompletionStreamResponseChoice,
|
||||||
|
Finish,
|
||||||
|
Function,
|
||||||
|
FunctionCall,
|
||||||
|
Role,
|
||||||
|
ScoreEvaluationResponse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if is_fastapi_available():
|
||||||
|
from fastapi import HTTPException, status
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from ..chat import ChatModel
|
||||||
|
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
|
||||||
|
|
||||||
|
|
||||||
|
logger = get_logger(__name__)
|
||||||
|
ROLE_MAPPING = {
|
||||||
|
Role.USER: DataRole.USER.value,
|
||||||
|
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||||
|
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||||
|
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||||
|
Role.TOOL: DataRole.OBSERVATION.value,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _process_request(request: "ChatCompletionRequest") -> Tuple[List[Dict[str, str]], str, str]:
|
||||||
|
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
|
||||||
|
|
||||||
|
if len(request.messages) == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||||
|
|
||||||
|
if request.messages[0].role == Role.SYSTEM:
|
||||||
|
system = request.messages.pop(0).content
|
||||||
|
else:
|
||||||
|
system = ""
|
||||||
|
|
||||||
|
if len(request.messages) % 2 == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||||
|
|
||||||
|
input_messages = []
|
||||||
|
for i, message in enumerate(request.messages):
|
||||||
|
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||||
|
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||||
|
|
||||||
|
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||||
|
name = message.tool_calls[0].function.name
|
||||||
|
arguments = message.tool_calls[0].function.arguments
|
||||||
|
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
||||||
|
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||||
|
else:
|
||||||
|
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||||
|
|
||||||
|
tool_list = request.tools
|
||||||
|
if isinstance(tool_list, list) and len(tool_list):
|
||||||
|
try:
|
||||||
|
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||||
|
except Exception:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||||
|
else:
|
||||||
|
tools = ""
|
||||||
|
|
||||||
|
return input_messages, system, tools
|
||||||
|
|
||||||
|
|
||||||
|
def _create_stream_chat_completion_chunk(
|
||||||
|
completion_id: str,
|
||||||
|
model: str,
|
||||||
|
delta: "ChatCompletionMessage",
|
||||||
|
index: Optional[int] = 0,
|
||||||
|
finish_reason: Optional["Finish"] = None,
|
||||||
|
) -> str:
|
||||||
|
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||||
|
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
|
||||||
|
return jsonify(chunk)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_chat_completion_response(
|
||||||
|
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||||
|
) -> "ChatCompletionResponse":
|
||||||
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||||
|
input_messages, system, tools = _process_request(request)
|
||||||
|
responses = await chat_model.achat(
|
||||||
|
input_messages,
|
||||||
|
system,
|
||||||
|
tools,
|
||||||
|
do_sample=request.do_sample,
|
||||||
|
temperature=request.temperature,
|
||||||
|
top_p=request.top_p,
|
||||||
|
max_new_tokens=request.max_tokens,
|
||||||
|
num_return_sequences=request.n,
|
||||||
|
stop=request.stop,
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_length, response_length = 0, 0
|
||||||
|
choices = []
|
||||||
|
for i, response in enumerate(responses):
|
||||||
|
if tools:
|
||||||
|
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
||||||
|
else:
|
||||||
|
result = response.response_text
|
||||||
|
|
||||||
|
if isinstance(result, tuple):
|
||||||
|
name, arguments = result
|
||||||
|
function = Function(name=name, arguments=arguments)
|
||||||
|
tool_call = FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function)
|
||||||
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=[tool_call])
|
||||||
|
finish_reason = Finish.TOOL
|
||||||
|
else:
|
||||||
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
||||||
|
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
||||||
|
|
||||||
|
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
|
||||||
|
prompt_length = response.prompt_length
|
||||||
|
response_length += response.response_length
|
||||||
|
|
||||||
|
usage = ChatCompletionResponseUsage(
|
||||||
|
prompt_tokens=prompt_length,
|
||||||
|
completion_tokens=response_length,
|
||||||
|
total_tokens=prompt_length + response_length,
|
||||||
|
)
|
||||||
|
|
||||||
|
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_stream_chat_completion_response(
|
||||||
|
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||||
|
) -> AsyncGenerator[str, None]:
|
||||||
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||||
|
input_messages, system, tools = _process_request(request)
|
||||||
|
if tools:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||||
|
|
||||||
|
if request.n > 1:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")
|
||||||
|
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
|
||||||
|
)
|
||||||
|
async for new_token in chat_model.astream_chat(
|
||||||
|
input_messages,
|
||||||
|
system,
|
||||||
|
tools,
|
||||||
|
do_sample=request.do_sample,
|
||||||
|
temperature=request.temperature,
|
||||||
|
top_p=request.top_p,
|
||||||
|
max_new_tokens=request.max_tokens,
|
||||||
|
stop=request.stop,
|
||||||
|
):
|
||||||
|
if len(new_token) != 0:
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
||||||
|
)
|
||||||
|
yield "[DONE]"
|
||||||
|
|
||||||
|
|
||||||
|
async def create_score_evaluation_response(
|
||||||
|
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
|
||||||
|
) -> "ScoreEvaluationResponse":
|
||||||
|
if len(request.messages) == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||||
|
|
||||||
|
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||||
|
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||||
20
src/llmtuner/api/common.py
Normal file
20
src/llmtuner/api/common.py
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
import json
|
||||||
|
from typing import TYPE_CHECKING, Any, Dict
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
||||||
|
try: # pydantic v2
|
||||||
|
return data.model_dump(exclude_unset=True)
|
||||||
|
except AttributeError: # pydantic v1
|
||||||
|
return data.dict(exclude_unset=True)
|
||||||
|
|
||||||
|
|
||||||
|
def jsonify(data: "BaseModel") -> str:
|
||||||
|
try: # pydantic v2
|
||||||
|
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
||||||
|
except AttributeError: # pydantic v1
|
||||||
|
return data.json(exclude_unset=True, ensure_ascii=False)
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
import time
|
import time
|
||||||
from enum import Enum, unique
|
from enum import Enum, unique
|
||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
from typing_extensions import Literal
|
from typing_extensions import Literal
|
||||||
@@ -51,7 +51,7 @@ class FunctionAvailable(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class FunctionCall(BaseModel):
|
class FunctionCall(BaseModel):
|
||||||
id: Literal["call_default"] = "call_default"
|
id: str
|
||||||
type: Literal["function"] = "function"
|
type: Literal["function"] = "function"
|
||||||
function: Function
|
function: Function
|
||||||
|
|
||||||
@@ -77,6 +77,7 @@ class ChatCompletionRequest(BaseModel):
|
|||||||
top_p: Optional[float] = None
|
top_p: Optional[float] = None
|
||||||
n: int = 1
|
n: int = 1
|
||||||
max_tokens: Optional[int] = None
|
max_tokens: Optional[int] = None
|
||||||
|
stop: Optional[Union[str, List[str]]] = None
|
||||||
stream: bool = False
|
stream: bool = False
|
||||||
|
|
||||||
|
|
||||||
@@ -86,7 +87,7 @@ class ChatCompletionResponseChoice(BaseModel):
|
|||||||
finish_reason: Finish
|
finish_reason: Finish
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
class ChatCompletionStreamResponseChoice(BaseModel):
|
||||||
index: int
|
index: int
|
||||||
delta: ChatCompletionMessage
|
delta: ChatCompletionMessage
|
||||||
finish_reason: Optional[Finish] = None
|
finish_reason: Optional[Finish] = None
|
||||||
@@ -99,7 +100,7 @@ class ChatCompletionResponseUsage(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class ChatCompletionResponse(BaseModel):
|
class ChatCompletionResponse(BaseModel):
|
||||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
id: str
|
||||||
object: Literal["chat.completion"] = "chat.completion"
|
object: Literal["chat.completion"] = "chat.completion"
|
||||||
created: int = Field(default_factory=lambda: int(time.time()))
|
created: int = Field(default_factory=lambda: int(time.time()))
|
||||||
model: str
|
model: str
|
||||||
@@ -108,11 +109,11 @@ class ChatCompletionResponse(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class ChatCompletionStreamResponse(BaseModel):
|
class ChatCompletionStreamResponse(BaseModel):
|
||||||
id: Literal["chatcmpl-default"] = "chatcmpl-default"
|
id: str
|
||||||
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||||
created: int = Field(default_factory=lambda: int(time.time()))
|
created: int = Field(default_factory=lambda: int(time.time()))
|
||||||
model: str
|
model: str
|
||||||
choices: List[ChatCompletionResponseStreamChoice]
|
choices: List[ChatCompletionStreamResponseChoice]
|
||||||
|
|
||||||
|
|
||||||
class ScoreEvaluationRequest(BaseModel):
|
class ScoreEvaluationRequest(BaseModel):
|
||||||
@@ -122,7 +123,7 @@ class ScoreEvaluationRequest(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class ScoreEvaluationResponse(BaseModel):
|
class ScoreEvaluationResponse(BaseModel):
|
||||||
id: Literal["scoreeval-default"] = "scoreeval-default"
|
id: str
|
||||||
object: Literal["score.evaluation"] = "score.evaluation"
|
object: Literal["score.evaluation"] = "score.evaluation"
|
||||||
model: str
|
model: str
|
||||||
scores: List[float]
|
scores: List[float]
|
||||||
|
|||||||
@@ -2,6 +2,7 @@ import asyncio
|
|||||||
from threading import Thread
|
from threading import Thread
|
||||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||||
|
|
||||||
|
from ..extras.misc import torch_gc
|
||||||
from ..hparams import get_infer_args
|
from ..hparams import get_infer_args
|
||||||
from .hf_engine import HuggingfaceEngine
|
from .hf_engine import HuggingfaceEngine
|
||||||
from .vllm_engine import VllmEngine
|
from .vllm_engine import VllmEngine
|
||||||
@@ -95,3 +96,45 @@ class ChatModel:
|
|||||||
**input_kwargs,
|
**input_kwargs,
|
||||||
) -> List[float]:
|
) -> List[float]:
|
||||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def run_chat() -> None:
|
||||||
|
try:
|
||||||
|
import platform
|
||||||
|
|
||||||
|
if platform.system() != "Windows":
|
||||||
|
import readline # noqa: F401
|
||||||
|
except ImportError:
|
||||||
|
print("Install `readline` for a better experience.")
|
||||||
|
|
||||||
|
chat_model = ChatModel()
|
||||||
|
messages = []
|
||||||
|
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
query = input("\nUser: ")
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||||
|
continue
|
||||||
|
except Exception:
|
||||||
|
raise
|
||||||
|
|
||||||
|
if query.strip() == "exit":
|
||||||
|
break
|
||||||
|
|
||||||
|
if query.strip() == "clear":
|
||||||
|
messages = []
|
||||||
|
torch_gc()
|
||||||
|
print("History has been removed.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
messages.append({"role": "user", "content": query})
|
||||||
|
print("Assistant: ", end="", flush=True)
|
||||||
|
|
||||||
|
response = ""
|
||||||
|
for new_text in chat_model.stream_chat(messages):
|
||||||
|
print(new_text, end="", flush=True)
|
||||||
|
response += new_text
|
||||||
|
print()
|
||||||
|
messages.append({"role": "assistant", "content": response})
|
||||||
|
|||||||
@@ -65,23 +65,30 @@ class HuggingfaceEngine(BaseEngine):
|
|||||||
prompt_length = len(prompt_ids)
|
prompt_length = len(prompt_ids)
|
||||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||||
|
|
||||||
do_sample = input_kwargs.pop("do_sample", None)
|
do_sample = input_kwargs.pop("do_sample", generating_args["do_sample"])
|
||||||
temperature = input_kwargs.pop("temperature", None)
|
temperature = input_kwargs.pop("temperature", generating_args["temperature"])
|
||||||
top_p = input_kwargs.pop("top_p", None)
|
top_p = input_kwargs.pop("top_p", generating_args["top_p"])
|
||||||
top_k = input_kwargs.pop("top_k", None)
|
top_k = input_kwargs.pop("top_k", generating_args["top_k"])
|
||||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
num_return_sequences = input_kwargs.pop("num_return_sequences", 1)
|
||||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
repetition_penalty = input_kwargs.pop("repetition_penalty", generating_args["repetition_penalty"])
|
||||||
|
length_penalty = input_kwargs.pop("length_penalty", generating_args["length_penalty"])
|
||||||
max_length = input_kwargs.pop("max_length", None)
|
max_length = input_kwargs.pop("max_length", None)
|
||||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||||
|
stop = input_kwargs.pop("stop", None)
|
||||||
|
|
||||||
|
if stop is not None:
|
||||||
|
raise ValueError("Stop parameter is not supported in Huggingface engine yet.")
|
||||||
|
|
||||||
|
generating_args = generating_args.copy()
|
||||||
generating_args.update(
|
generating_args.update(
|
||||||
dict(
|
dict(
|
||||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
do_sample=do_sample,
|
||||||
temperature=temperature or generating_args["temperature"],
|
temperature=temperature,
|
||||||
top_p=top_p or generating_args["top_p"],
|
top_p=top_p,
|
||||||
top_k=top_k or generating_args["top_k"],
|
top_k=top_k,
|
||||||
num_return_sequences=num_return_sequences or 1,
|
num_return_sequences=num_return_sequences,
|
||||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
repetition_penalty=repetition_penalty,
|
||||||
|
length_penalty=length_penalty,
|
||||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||||
pad_token_id=tokenizer.pad_token_id,
|
pad_token_id=tokenizer.pad_token_id,
|
||||||
)
|
)
|
||||||
@@ -90,6 +97,10 @@ class HuggingfaceEngine(BaseEngine):
|
|||||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||||
generating_args["do_sample"] = True
|
generating_args["do_sample"] = True
|
||||||
|
|
||||||
|
if not generating_args["do_sample"]:
|
||||||
|
generating_args.pop("temperature", None)
|
||||||
|
generating_args.pop("top_p", None)
|
||||||
|
|
||||||
if max_length:
|
if max_length:
|
||||||
generating_args.pop("max_new_tokens", None)
|
generating_args.pop("max_new_tokens", None)
|
||||||
generating_args["max_length"] = max_length
|
generating_args["max_length"] = max_length
|
||||||
|
|||||||
@@ -2,9 +2,11 @@ import uuid
|
|||||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
|
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
|
||||||
|
|
||||||
from ..data import get_template_and_fix_tokenizer
|
from ..data import get_template_and_fix_tokenizer
|
||||||
|
from ..extras.logging import get_logger
|
||||||
from ..extras.misc import get_device_count, infer_optim_dtype
|
from ..extras.misc import get_device_count, infer_optim_dtype
|
||||||
from ..extras.packages import is_vllm_available
|
from ..extras.packages import is_vllm_available
|
||||||
from ..model import load_config, load_tokenizer
|
from ..model import load_config, load_tokenizer
|
||||||
|
from ..model.utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
||||||
from .base_engine import BaseEngine, Response
|
from .base_engine import BaseEngine, Response
|
||||||
|
|
||||||
|
|
||||||
@@ -22,6 +24,9 @@ if TYPE_CHECKING:
|
|||||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||||
|
|
||||||
|
|
||||||
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class VllmEngine(BaseEngine):
|
class VllmEngine(BaseEngine):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@@ -57,13 +62,19 @@ class VllmEngine(BaseEngine):
|
|||||||
}
|
}
|
||||||
|
|
||||||
if model_args.visual_inputs:
|
if model_args.visual_inputs:
|
||||||
# TODO: auto derive from config
|
image_size = config.vision_config.image_size
|
||||||
# https://github.com/vllm-project/vllm/pull/3042#issuecomment-1984893549
|
patch_size = config.vision_config.patch_size
|
||||||
self.image_feature_size = 576
|
self.image_feature_size = (image_size // patch_size) ** 2
|
||||||
engine_args["image_input_type"] = "pixel_values"
|
engine_args["image_input_type"] = "pixel_values"
|
||||||
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids("<image>")
|
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids("<image>")
|
||||||
engine_args["image_input_shape"] = "1,3,336,336"
|
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
||||||
engine_args["image_feature_size"] = self.image_feature_size
|
engine_args["image_feature_size"] = self.image_feature_size
|
||||||
|
if getattr(config, "is_yi_vl_derived_model", None):
|
||||||
|
# bug in vllm 0.4.2, see: https://github.com/vllm-project/vllm/pull/4828
|
||||||
|
import vllm.model_executor.models.llava
|
||||||
|
|
||||||
|
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||||
|
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
||||||
|
|
||||||
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
||||||
if model_args.adapter_name_or_path is not None:
|
if model_args.adapter_name_or_path is not None:
|
||||||
@@ -89,41 +100,35 @@ class VllmEngine(BaseEngine):
|
|||||||
)
|
)
|
||||||
prompt_length = len(prompt_ids)
|
prompt_length = len(prompt_ids)
|
||||||
|
|
||||||
temperature = input_kwargs.pop("temperature", None)
|
use_beam_search = self.generating_args["num_beams"] > 1
|
||||||
top_p = input_kwargs.pop("top_p", None)
|
temperature = input_kwargs.pop("temperature", self.generating_args["temperature"])
|
||||||
top_k = input_kwargs.pop("top_k", None)
|
top_p = input_kwargs.pop("top_p", self.generating_args["top_p"])
|
||||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
top_k = input_kwargs.pop("top_k", self.generating_args["top_k"])
|
||||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
num_return_sequences = input_kwargs.pop("num_return_sequences", 1)
|
||||||
|
repetition_penalty = input_kwargs.pop("repetition_penalty", self.generating_args["repetition_penalty"])
|
||||||
|
length_penalty = input_kwargs.pop("length_penalty", self.generating_args["length_penalty"])
|
||||||
max_length = input_kwargs.pop("max_length", None)
|
max_length = input_kwargs.pop("max_length", None)
|
||||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||||
|
stop = input_kwargs.pop("stop", None)
|
||||||
|
|
||||||
generating_args = self.generating_args.copy()
|
max_tokens = self.generating_args["max_new_tokens"] or self.generating_args["max_length"]
|
||||||
generating_args.update(
|
|
||||||
dict(
|
|
||||||
temperature=temperature or generating_args["temperature"],
|
|
||||||
top_p=top_p or generating_args["top_p"],
|
|
||||||
top_k=top_k or generating_args["top_k"],
|
|
||||||
num_return_sequences=num_return_sequences or 1,
|
|
||||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
if max_length:
|
if max_length:
|
||||||
generating_args["max_new_tokens"] = max_length - prompt_length
|
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
||||||
|
|
||||||
if max_new_tokens:
|
if max_new_tokens:
|
||||||
generating_args["max_new_tokens"] = max_new_tokens
|
max_tokens = max_new_tokens
|
||||||
|
|
||||||
sampling_params = SamplingParams(
|
sampling_params = SamplingParams(
|
||||||
n=generating_args["num_return_sequences"],
|
n=num_return_sequences,
|
||||||
repetition_penalty=generating_args["repetition_penalty"],
|
repetition_penalty=repetition_penalty,
|
||||||
temperature=generating_args["temperature"],
|
temperature=temperature,
|
||||||
top_p=generating_args["top_p"],
|
top_p=top_p,
|
||||||
top_k=generating_args["top_k"],
|
top_k=top_k,
|
||||||
use_beam_search=generating_args["num_beams"] > 1,
|
use_beam_search=use_beam_search,
|
||||||
length_penalty=generating_args["length_penalty"],
|
length_penalty=length_penalty,
|
||||||
|
stop=stop,
|
||||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||||
max_tokens=generating_args["max_new_tokens"],
|
max_tokens=max_tokens,
|
||||||
skip_special_tokens=True,
|
skip_special_tokens=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
75
src/llmtuner/cli.py
Normal file
75
src/llmtuner/cli.py
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
import sys
|
||||||
|
from enum import Enum, unique
|
||||||
|
|
||||||
|
from .api.app import run_api
|
||||||
|
from .chat.chat_model import run_chat
|
||||||
|
from .eval.evaluator import run_eval
|
||||||
|
from .train.tuner import export_model, run_exp
|
||||||
|
from .webui.interface import run_web_demo, run_web_ui
|
||||||
|
|
||||||
|
|
||||||
|
USAGE = (
|
||||||
|
"-" * 70
|
||||||
|
+ "\n"
|
||||||
|
+ "| Usage: |\n"
|
||||||
|
+ "| llamafactory-cli api -h: launch an OpenAI-style API server |\n"
|
||||||
|
+ "| llamafactory-cli chat -h: launch a chat interface in CLI |\n"
|
||||||
|
+ "| llamafactory-cli eval -h: evaluate models |\n"
|
||||||
|
+ "| llamafactory-cli export -h: merge LoRA adapters and export model |\n"
|
||||||
|
+ "| llamafactory-cli train -h: train models |\n"
|
||||||
|
+ "| llamafactory-cli webchat -h: launch a chat interface in Web UI |\n"
|
||||||
|
+ "| llamafactory-cli webui: launch LlamaBoard |\n"
|
||||||
|
+ "| llamafactory-cli version: show version info |\n"
|
||||||
|
+ "-" * 70
|
||||||
|
)
|
||||||
|
|
||||||
|
VERSION = "0.7.1"
|
||||||
|
|
||||||
|
WELCOME = (
|
||||||
|
"-" * 58
|
||||||
|
+ "\n"
|
||||||
|
+ "| Welcome to LLaMA Factory, version {}".format(VERSION)
|
||||||
|
+ " " * (21 - len(VERSION))
|
||||||
|
+ "|\n|"
|
||||||
|
+ " " * 56
|
||||||
|
+ "|\n"
|
||||||
|
+ "| Project page: https://github.com/hiyouga/LLaMA-Factory |\n"
|
||||||
|
+ "-" * 58
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@unique
|
||||||
|
class Command(str, Enum):
|
||||||
|
API = "api"
|
||||||
|
CHAT = "chat"
|
||||||
|
EVAL = "eval"
|
||||||
|
EXPORT = "export"
|
||||||
|
TRAIN = "train"
|
||||||
|
WEBDEMO = "webchat"
|
||||||
|
WEBUI = "webui"
|
||||||
|
VER = "version"
|
||||||
|
HELP = "help"
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
command = sys.argv.pop(1)
|
||||||
|
if command == Command.API:
|
||||||
|
run_api()
|
||||||
|
elif command == Command.CHAT:
|
||||||
|
run_chat()
|
||||||
|
elif command == Command.EVAL:
|
||||||
|
run_eval()
|
||||||
|
elif command == Command.EXPORT:
|
||||||
|
export_model()
|
||||||
|
elif command == Command.TRAIN:
|
||||||
|
run_exp()
|
||||||
|
elif command == Command.WEBDEMO:
|
||||||
|
run_web_demo()
|
||||||
|
elif command == Command.WEBUI:
|
||||||
|
run_web_ui()
|
||||||
|
elif command == Command.VER:
|
||||||
|
print(WELCOME)
|
||||||
|
elif command == Command.HELP:
|
||||||
|
print(USAGE)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Unknown command: {}".format(command))
|
||||||
@@ -11,7 +11,7 @@ from .aligner import align_dataset
|
|||||||
from .parser import get_dataset_list
|
from .parser import get_dataset_list
|
||||||
from .preprocess import get_preprocess_and_print_func
|
from .preprocess import get_preprocess_and_print_func
|
||||||
from .template import get_template_and_fix_tokenizer
|
from .template import get_template_and_fix_tokenizer
|
||||||
from .utils import checksum, merge_dataset
|
from .utils import merge_dataset
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
@@ -61,8 +61,6 @@ def load_single_dataset(
|
|||||||
|
|
||||||
if data_path is None:
|
if data_path is None:
|
||||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||||
|
|
||||||
checksum(data_files, dataset_attr.file_sha1)
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|||||||
@@ -21,7 +21,6 @@ class DatasetAttr:
|
|||||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||||
dataset_name: str
|
dataset_name: str
|
||||||
""" extra configs """
|
""" extra configs """
|
||||||
file_sha1: Optional[str] = None
|
|
||||||
subset: Optional[str] = None
|
subset: Optional[str] = None
|
||||||
folder: Optional[str] = None
|
folder: Optional[str] = None
|
||||||
ranking: bool = False
|
ranking: bool = False
|
||||||
@@ -99,7 +98,6 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
|||||||
else:
|
else:
|
||||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||||
|
|
||||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
|
||||||
dataset_attr.set_attr("subset", dataset_info[name])
|
dataset_attr.set_attr("subset", dataset_info[name])
|
||||||
dataset_attr.set_attr("folder", dataset_info[name])
|
dataset_attr.set_attr("folder", dataset_info[name])
|
||||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user