400 Commits

Author SHA1 Message Date
hiyouga
c0c387e4db release v0.8.0
Former-commit-id: 004db680b9e3996ec511ee818df6c0c02bf13603
2024-06-08 05:20:54 +08:00
hiyouga
ae60ea15da add ultrafeedback and fineweb #4085 #4132
Former-commit-id: 968e4992e2f2a3ccba73e8668f1654ddc6eb0034
2024-06-08 02:42:34 +08:00
hiyouga
72cd1123a8 fix ci
Former-commit-id: 3f4d293fd861d765edb2040f80d16f99a5e1e3c6
2024-06-08 02:00:44 +08:00
hiyouga
1364190a66 fix ci
Former-commit-id: 95aceebd61d195be5c980a919c12c59b56722898
2024-06-08 01:57:36 +08:00
hiyouga
6d17c59090 add ci
Former-commit-id: 3ea3acdadaa54abe33d93538580196cfdd91ee56
2024-06-08 01:48:30 +08:00
hiyouga
e0f2c0b5dc init unittest
Former-commit-id: 1c6f21cb8878ced043fe0b27c72cad2ef6ee990e
2024-06-08 01:35:58 +08:00
hiyouga
073e34855d Delete .readthedocs.yaml
Former-commit-id: dd3ee514216a9a329519c58d79208040adcad126
2024-06-08 00:58:10 +08:00
hiyouga
ff9ba70bb8 reorganize adapter code
Former-commit-id: b26c2df9d97f4efffccbf7d28de13619b43f10dd
2024-06-08 00:47:23 +08:00
hoshi-hiyouga
adbebb0e3f fix #4139
Former-commit-id: c025a4d74f293c14c2705e68af20a82a84608520
2024-06-08 00:45:02 +08:00
hiyouga
3f6b3eed98 add resume args in webui
Former-commit-id: 1d86ad768b1f36e54b4c2a9f18f6ea5a7df04c90
2024-06-08 00:22:16 +08:00
hiyouga
f45e81e186 fix #4137
Former-commit-id: cdc0d6f5a2e5040e145c82c4801f37bd76529047
2024-06-07 19:16:06 +08:00
hiyouga
ba648fd003 tiny fix
Former-commit-id: 0621bcad1dfbe8ce2464f741d4256c5df2a8d1b6
2024-06-07 05:19:21 +08:00
hiyouga
b0e5a76f4c fix ppo trainer save zero3 model
accelerator.get_state_dict(ds_model) should be called at all ranks


Former-commit-id: 3a0f60f0aa072531e4ae5819ec00c8fa42aa0913
2024-06-07 05:14:19 +08:00
hiyouga
8692796c9b fix ppo in trl 0.8.6
Former-commit-id: 5e0d66a0d80b4bd4a8506e2317209d8fb9d25ff6
2024-06-07 04:48:29 +08:00
hiyouga
d0edcde4ea fix #4120
Former-commit-id: 2a44da678a5e360a9c0f9056397ac9e801329321
2024-06-07 04:18:05 +08:00
hiyouga
8c4c2e580c update data processors
Former-commit-id: 04b138cbcb8b9a72e4bbda6c65843bb459e525e7
2024-06-07 04:15:40 +08:00
hoshi-hiyouga
07f33e7641 Merge pull request #4009 from AlongWY/main
supervised packing with greedy knapsack algorithm

Former-commit-id: 5ded166b39a75a98ded5733678f5a1eab7d4cc71
2024-06-07 03:48:46 +08:00
hoshi-hiyouga
1998c641af Update supervised.py
Former-commit-id: 04b6c2a754e602e0b698cfe6c255c2f2486d8865
2024-06-07 03:42:08 +08:00
hoshi-hiyouga
be1e5f9d62 Update supervised.py
Former-commit-id: 49993c4f4e1f871a22ff0196afe60026b668a4dc
2024-06-07 03:38:23 +08:00
hoshi-hiyouga
fdeec6db52 Update supervised.py
Former-commit-id: 67625b5278a839c12a3e4245f9e90af67d8b11b4
2024-06-07 03:38:04 +08:00
hiyouga
a4d335b42f add qwen2 models
Former-commit-id: 49cb694d02c876e3740a003a8b332349f4310ad3
2024-06-07 00:22:57 +08:00
hiyouga
fcb134e144 rename files
Former-commit-id: e1a8431770fc36c0c9ee7fed4abbc3d7fdcc5efd
2024-06-07 00:09:06 +08:00
hiyouga
a47e24222a add DISABLE_TORCHRUN option
Former-commit-id: bcc574b479c2101438723aadead42743d4378776
2024-06-06 23:44:58 +08:00
hoshi-hiyouga
b96b995620 Merge pull request #4082 from MengqingCao/bugfix
Fix #4077

Former-commit-id: 288028c3fb6bb1b58d1b7f4e8b90108c9bbf27d1
2024-06-06 23:38:40 +08:00
hoshi-hiyouga
c231706aa5 Update cli.py
Former-commit-id: 32190507534adf5f505858b3af2b592ca6568ac7
2024-06-06 23:38:09 +08:00
hiyouga
35b5117a59 fix ppo+zero3 #3108
Former-commit-id: 33a93cc29e3e57bf001515000c0a70c112573dea
2024-06-06 23:30:07 +08:00
hiyouga
80f716bc10 fix torch gc
Former-commit-id: e173799d057598e5692a407601c30d8ce1513461
2024-06-06 20:30:25 +08:00
hiyouga
ca95e98ca0 fix ppo dataset bug #4012
Former-commit-id: 7fc51b2e93698ae5e012566af8481f4d861c873d
2024-06-06 19:03:20 +08:00
hiyouga
d5559461c1 update trainers
Former-commit-id: b7f6c4a171293cf4f3e88f15a811f847342f84ee
2024-06-06 18:45:49 +08:00
hiyouga
f4acd81e2f fix base64 image read #4061
Former-commit-id: 66ccb2a27a04296b4600f2c85f428071bf14eeb0
2024-06-06 17:29:19 +08:00
hiyouga
31feb6e26c update readme
Former-commit-id: cc331fa2d28afe081937c50ea83d63add21d4e3a
2024-06-06 16:59:18 +08:00
hiyouga
7d5c0a069c update readme
Former-commit-id: fb1f709af5199976e63d7188e088e33c75d19bfe
2024-06-06 16:25:42 +08:00
hiyouga
937f49ec3d lora modules: all by default
Former-commit-id: 52c4ae87c7f4312704c31ef26b079b2c5b95ea5f
2024-06-06 03:53:28 +08:00
hiyouga
abc2a73a33 add codestral 22B
Former-commit-id: b011c7f527a57cb1d21c4e2c9631c2fb62bb835e
2024-06-06 03:42:50 +08:00
hiyouga
5e1bf7572c lint
Former-commit-id: 9030501eaef97ea249347198272adf0d709503ec
2024-06-06 03:33:44 +08:00
hoshi-hiyouga
8fdb32d0a3 Merge pull request #4066 from injet-zhou/main
add throughput entry to training log

Former-commit-id: d2816f343f405f3fab09f2a8eade774b886e8f92
2024-06-06 03:32:04 +08:00
hoshi-hiyouga
c709d5f7db Merge pull request #4080 from MengqingCao/npu
Add npu option for model exporting

Former-commit-id: 07fc67193ef6bcb8e8a392aff0c57a2eb36832bf
2024-06-06 03:15:44 +08:00
hoshi-hiyouga
f5b2749ec2 Update export.py
Former-commit-id: 694833c1104d13929d4f181f014a121f25955dc5
2024-06-06 03:14:46 +08:00
hoshi-hiyouga
ee5853c565 Update model_args.py
Former-commit-id: 09c0afd94a8a5f5b45a61b32c983d50e1b9e2941
2024-06-06 03:14:23 +08:00
hoshi-hiyouga
6ec6df8a5f Merge pull request #4053 from hzhaoy/feature/add_select_config_file
Support selecting saved configuration files

Former-commit-id: 568ef3cf2a793f268cbe01c39dec418a13e61ecd
2024-06-06 03:06:03 +08:00
hiyouga
fc95800840 add vllm_dtype arg #3387 #3717
Former-commit-id: a0dd3a6351bb78541d40fec1d2fc457d803c86a4
2024-06-06 02:53:27 +08:00
hiyouga
765715af21 support train from scratch #4033 #4075
Former-commit-id: 1290b9d01077e62f8de7a23637daa2586cc82bfa
2024-06-06 02:43:19 +08:00
hiyouga
639a7f6796 support image input in api #3971 #4061
Former-commit-id: c70aaf763ef22fb83ce3635e8ffd5ec4c89c1cb0
2024-06-06 02:29:55 +08:00
hiyouga
35379c7c0e update train hparams
Former-commit-id: 1ca9fce55b55bf209f4b76152b586731932a3f39
2024-06-06 01:49:20 +08:00
hiyouga
d992f5353f fix setup
Former-commit-id: b2b80d434fcc0c3838d229098e1c21d26632204c
2024-06-06 01:39:02 +08:00
hiyouga
875eef45f3 add llamafactory-cli env
Former-commit-id: 1df077184845ff5f394b9324d46f8c382869e590
2024-06-06 01:28:14 +08:00
hiyouga
556a4aa972 fix #4090
Former-commit-id: d9f15f30a8f4bc64778a5c96baeb6801700d7a2c
2024-06-06 00:50:32 +08:00
MengqingCao
8dc1969111 modify export_device option
Former-commit-id: b2fc4a5499e21a5b9622c2285402efef6e27a74d
2024-06-05 09:37:36 +00:00
hiyouga
b74c229498 fix #4079
Former-commit-id: fda732d7f4616373844c97beff416880260f49db
2024-06-05 16:56:54 +08:00
hiyouga
3dbca466fd update readme
Former-commit-id: 02d34db29a7a35c25711d49e98fd3167a2f4dfe7
2024-06-05 16:32:32 +08:00
MengqingCao
ce6f7fdb82 fix #4077
Former-commit-id: fedbe92f3b56294acc6c49f9a51e369cf2de3ead
2024-06-05 08:03:30 +00:00
hiyouga
7528bc1bc0 support glm-4
Former-commit-id: a10f4718fbf3f3c89dc7eb31cb8e1a46ca6adda5
2024-06-05 15:16:38 +08:00
MengqingCao
9dd5f7d642 add npu for model export
Former-commit-id: ce020b6eb3f35c1db37ee4835e694eddcd0f59b0
2024-06-05 07:06:40 +00:00
faddddeout
99ecb0daaf add throughput entry to log
Former-commit-id: 691f999f64c7bac78761e4354f89816d2f0d46fc
2024-06-04 11:04:29 +00:00
hzhaoy
39d8d7995a add: support selecting saved configuration files and loading training parameters
Former-commit-id: 5c9b17c1dc9093da0ea813642bce9b5c9ae96274
2024-06-04 10:33:43 +08:00
hiyouga
2ac2cde03e tiny fix
Former-commit-id: f9d50501aac1f60a3b445ca3fee9aa60995461ee
2024-06-04 00:31:10 +08:00
hiyouga
aa6c3766de fix #3873
Former-commit-id: 1ac325b4d682bb493573c18bb0b67ceae8d0d372
2024-06-04 00:21:50 +08:00
hiyouga
f4f5d7e3ce fix #3992
Former-commit-id: a48321fbf5196b88a11106cf74a74fbcea2ea50b
2024-06-04 00:17:36 +08:00
hiyouga
efbf6018d3 fix abort in webui DDP mode
Former-commit-id: b90ac72d753b13a3eed9cb8b898fac2f2fe5153f
2024-06-04 00:10:24 +08:00
hoshi-hiyouga
1090bb8bf3 Merge pull request #3987 from injet-zhou/main
Fix cann't interrupt training when using multi GPUs in webui

Former-commit-id: 455bb158b0e600723d2afaa2070b71178f2f5188
2024-06-04 00:04:07 +08:00
hiyouga
26bc79f971 fix #4043
Former-commit-id: 67af68f4fc5232760c57b3a0ae780628da09db6a
2024-06-03 23:30:37 +08:00
hiyouga
4c1f015eca remove gc warnings in DPO&KTO
Former-commit-id: b649bdcbafb464a638387429b770fe258b41f8af
2024-06-03 22:53:54 +08:00
hoshi-hiyouga
0655a183d3 Merge pull request #4045 from enji-zhou/feature/add_kto
fix KTO Trainer Sampler

Former-commit-id: 8e235beb9cf4939c06ccb753b047326a9839e77f
2024-06-03 22:09:25 +08:00
hoshi-hiyouga
7754024e9b Update trainer.py
Former-commit-id: 8565d4b43db905374c328ae57c71fc226980d14f
2024-06-03 22:08:38 +08:00
enji.zhou
b4913569a8 fix KTO Trainer Sampler
Former-commit-id: 39eb1bfa272011554322e9bb2534f83b68282a70
2024-06-03 21:32:38 +08:00
hoshi-hiyouga
eae9f09ca8 Merge pull request #4006 from Uminosachi/scheduler-kwargs
Set scheduler_specific_kwargs to get_scheduler

Former-commit-id: c6ed1955fd8990ddb960750913c9d8b13fe0ace3
2024-06-03 19:27:53 +08:00
hiyouga
8264e5ceaa update placeholder in issue template
Former-commit-id: 5503a90d7e38273b67129e0b9eb62bd1fd23154f
2024-06-03 19:24:10 +08:00
hoshi-hiyouga
b76f319e45 Merge pull request #4011 from statelesshz/issue-template
Update bug-report.yml

Former-commit-id: 1fbc46f45ae4e673f0b20b5eacab3d81d1053807
2024-06-03 19:20:43 +08:00
hiyouga
82d744716a fix #4005 #4013
Former-commit-id: 8608fa268cde5cddf8d0c6c2eb2cb5fa246c1831
2024-06-03 19:12:29 +08:00
hoshi-hiyouga
1a3764ab8f Merge pull request #4007 from xu-song/patch-3
Update model_args.py

Former-commit-id: d88b3a0f2707bcc964f642d348295b99f7c796f8
2024-06-03 18:54:37 +08:00
hiyouga
d2ede9d393 fix #4022
Former-commit-id: 9541f2f1f1b7d7877eb734f051048e52003a3430
2024-06-03 18:38:36 +08:00
hiyouga
5690f513fc bump versions
transformers 4.37.2->4.41.2
datasets 2.14.3->2.16.0
accelerate 0.27.2->0.30.1
peft 0.10.0->0.11.1
trl 0.8.1->0.8.6


Former-commit-id: 5f1e041f7295bf42a41dd4d9e7f0c42fcc37fed2
2024-06-03 18:29:38 +08:00
hiyouga
123a845209 fix data loader hint
Former-commit-id: 25b56126a11591b0155e2f72b673dd8f45a6c8c9
2024-06-03 18:28:27 +08:00
ylfeng
b1b7d735b3 remove empty line
Former-commit-id: 3164710971a6d6545629f5bf133f98de5ff0991a
2024-05-31 21:43:08 +08:00
ylfeng
230c69f7ce fix eos
Former-commit-id: 6e236c952958cbfe50b5dcb7b8eff6aea8477922
2024-05-31 21:40:41 +08:00
ylfeng
bfc43558ef supervised packing with greedy knapsack algorithm
Former-commit-id: 24d12396c9aabd49da0b08719068f24679111cc6
2024-05-31 15:33:54 +08:00
Xu Song
f2ae2cc04d Update model_args.py
Former-commit-id: f1e018587e5722e41962abd60f74043a3e55f692
2024-05-31 14:35:48 +08:00
statelesshz
6e9c03f958 Update bug-report.yml
Former-commit-id: a8561502360c1e247eeacb46b77ffbcf3387c482
2024-05-31 13:18:18 +08:00
Uminosachi
2696f614a7 Set scheduler_specific_kwargs to get_scheduler
Former-commit-id: f04e70dfab44480ef4c015c06470443237f69ba9
2024-05-31 13:45:39 +09:00
hiyouga
070b944895 update readme
Former-commit-id: 3b92d8c2ddb288b849f38e573ca168cab23315d2
2024-05-30 16:40:17 +08:00
faddddeout
f5f091d390 fix cann't interrupt training when using multi GPUs in webui
Former-commit-id: a7fb02d52bc202c958490aa7081252be5d9eff50
2024-05-30 08:39:21 +00:00
hiyouga
14ab14a0e6 fix #3837
Former-commit-id: 72965aa3f13a9c085c29781b6790d80d00a545d8
2024-05-30 00:52:26 +08:00
hoshi-hiyouga
4f7c850115 Merge pull request #3829 from seanzhang-zhichen/add_dataset_sample_num
Add dataset sample num

Former-commit-id: ab38cf74ce48ea4f1800e077ca287f2eb9336135
2024-05-30 00:25:45 +08:00
hoshi-hiyouga
391eca66cf Update loader.py
Former-commit-id: 0aa59322906d91c5e385c9c02ebb5dd64ba060f3
2024-05-30 00:20:20 +08:00
hoshi-hiyouga
a67199246d Update loader.py
Former-commit-id: aa7f335e3ad5a78e4ed5f99c120be28e9733ea2e
2024-05-30 00:17:21 +08:00
hoshi-hiyouga
5f67fdaac9 Update loader.py
Former-commit-id: 19d8fd62c18ee3ba0e431fc241f7d315cb716fef
2024-05-30 00:12:12 +08:00
hoshi-hiyouga
05e6fe4287 Update parser.py
Former-commit-id: 310cc11e8c83f16fc5bccc349c38fea347ea9a97
2024-05-30 00:05:20 +08:00
hoshi-hiyouga
91cc571e6e Update README_zh.md
Former-commit-id: 3007d260ed45169583a74497a53b661337dd5f71
2024-05-30 00:04:47 +08:00
hoshi-hiyouga
890926e60c Update README.md
Former-commit-id: 65fb69e388c0a04c15ecd11441e567966f51fae5
2024-05-30 00:04:26 +08:00
hiyouga
87aa332583 better llamaboard
* easily resume from checkpoint
* support full and freeze checkpoints
* faster ui


Former-commit-id: 84cfb2452cc86b037ccddee6e833f8eb7c129fa4
2024-05-29 23:55:38 +08:00
hiyouga
f90c4ca672 fix cohere system
Former-commit-id: 5d629b29e705c8ff8dd4521719d9c0e67a3fe0a2
2024-05-29 20:58:23 +08:00
hiyouga
a922e85a5c fix #3965
Former-commit-id: 37d15ac55d0be0ff47d6a88f07e2d823117a4a36
2024-05-29 20:55:51 +08:00
hiyouga
9a65820592 update readme
Former-commit-id: 440e9de66986ef7736361ce8ec3e23ce68655a56
2024-05-29 18:39:11 +08:00
hoshi-hiyouga
f4e16ae373 Merge pull request #3930 from MengqingCao/npu
Add Ascend npu doc and dependency

Former-commit-id: 7210090e4fc6531b9f6122f104875811a8798185
2024-05-29 18:33:38 +08:00
MengqingCao
e2cfd34da0 update torch-npu version
Former-commit-id: a70d7fcf2967eb30280a1fb845b39db7878f535c
2024-05-29 10:05:11 +00:00
MengqingCao
668dea9706 update cann kernels url
Former-commit-id: 23c65e9d7e8817b5815264e44cbf4a7bcb88d3d7
2024-05-29 09:53:31 +00:00
hoshi-hiyouga
084be442f2 Merge pull request #3958 from hzhaoy/add_telechat_12b_support
add TeleChat-12B/TeleChat-12B-v2 models

Former-commit-id: c228546a09764423ae66966079802022185f7e86
2024-05-29 17:20:53 +08:00
hzhaoy
29cb4a1327 add TeleChat-12B/TeleChat-12B-v2 models
Former-commit-id: e0675385c88af03aaef8d51586c8a282829c4051
2024-05-29 15:00:37 +08:00
hiyouga
81a61134b8 fix hf chat engine
Former-commit-id: 76ce52911690ab0dd8ffa5587127afb4ec942abe
2024-05-29 01:20:07 +08:00
hiyouga
cb1a49aa02 add ds config to webui
Former-commit-id: 66d72b263d36dc81de9f6152077663b613035977
2024-05-29 01:13:17 +08:00
hiyouga
351b4efc6c 10x generate in ppo w/ zero3
https://github.com/huggingface/trl/pull/1483

Former-commit-id: 5dc43ba8b373d8803bc22d88b3d0d95ef8b9c7f8
2024-05-29 00:23:23 +08:00
hiyouga
9b551309de update dpo, kto trainer
Former-commit-id: 4a6cc3c7046f8b27d05ea53ef216bab6fa7ebfaf
2024-05-29 00:14:29 +08:00
hiyouga
9fed4a2ef4 clean kto trainer
Former-commit-id: 76402bd78cbd3a99a544f0ac019468b569b0e1d1
2024-05-28 21:43:26 +08:00
hiyouga
bceac4f554 bump vllm version to 0.4.1
Former-commit-id: a00fd39a4c2f270620711f2bfbad8d460fb4aa89
2024-05-28 21:27:27 +08:00
hiyouga
ae3a88d3a7 update readme
Former-commit-id: bc861f76706df3f643028f1dfc8ec2044b067a08
2024-05-28 19:35:52 +08:00
hiyouga
9138a7a5ba support DDP in webui
Former-commit-id: d059262ff8dc857f597d2657546ec625726a664a
2024-05-28 19:24:22 +08:00
hiyouga
9912b43fcc update readme
Former-commit-id: e2c7de1b5147801b301cfc5da0e2866273da18f5
2024-05-28 16:41:34 +08:00
hiyouga
5ac37555a4 update readme
Former-commit-id: 30ef8ee1e86136f38f105b67f70c417d20552f41
2024-05-28 16:19:56 +08:00
hiyouga
34bdc730a6 fix #3931
Former-commit-id: 47e0072416b545d9718af4fa266a83f747b9a4f7
2024-05-28 13:44:22 +08:00
MengqingCao
e45a9d70fc add Ascend npu doc and dependency
Former-commit-id: 803d9f142a294f8c1e0b4e2046c214b0857ccfd6
2024-05-28 01:33:54 +00:00
hoshi-hiyouga
232b36059c Merge pull request #3925 from Yimi81/feat-fix-yi-template
fix yi template

Former-commit-id: 6caee1eb868b9f7b00578c6608883e89aa232d17
2024-05-27 22:59:32 +08:00
Yimi81
d9fbd675d5 fix yi template
Former-commit-id: b3669c8989c3adda305416245e32e9e5a3b7caac
2024-05-27 13:11:25 +00:00
hiyouga
0206e7b9de tiny fix
Former-commit-id: 4c47b3dcef9e400a1c35fce1ad53619a0a86fe81
2024-05-27 20:54:26 +08:00
hoshi-hiyouga
a886544d3d Merge pull request #3921 from gusye1234/main
Add openchat-3.6-8B support

Former-commit-id: 92e6bba3cab22b7835a68f787caf7992a398978e
2024-05-27 20:52:37 +08:00
hoshi-hiyouga
8c9b929bb0 Update template.py
Former-commit-id: f4dabce0a71c9978e051e70886941b64b928ffe2
2024-05-27 20:51:56 +08:00
hoshi-hiyouga
1bb1ae834e Update template.py
Former-commit-id: af869e4c48eb426c4078415533f6dab89123a9d8
2024-05-27 20:51:26 +08:00
Jianbai Ye
0d9e364a90 add openchat-3.6-8B support
Former-commit-id: b66f39d50d896d7597a1506e67ec210b31c9b700
2024-05-27 20:42:08 +08:00
hiyouga
3b28c003dd fix full/freeze tuning for mllm
Former-commit-id: df5860ddb593d5b82163a585d12160b41dbce0f3
2024-05-27 20:37:57 +08:00
hoshi-hiyouga
48ff9fb150 Merge pull request #3835 from BUAADreamer/main
fix some features in llava-style training

Former-commit-id: fc8583bd17dfb088a52e4d8fa91356b918373b50
2024-05-27 20:23:45 +08:00
hiyouga
c43bc74fe6 support Aya23
Former-commit-id: 071935b90006e2c79e39bb9ee0c5d48c6c910501
2024-05-27 20:23:24 +08:00
BUAADreamer
eaf9cc2195 Merge branch 'hiyouga:main' into main
Former-commit-id: cc1b82bf49b060987392c455fdbfe125ad667ec5
2024-05-27 20:10:58 +08:00
hiyouga
4bd276f58f add llava 1k datasets
Former-commit-id: 345d3355752f4a4dc454696a39f1610fffbbf382
2024-05-27 19:57:33 +08:00
hiyouga
f8cf0d5e5d update dpo examples
Former-commit-id: 69e32a7cb6336ca9a953c379ec794818b3f169bd
2024-05-27 19:56:04 +08:00
BUAADreamer
79bc60db33 Merge branch 'hiyouga:main' into main
Former-commit-id: d89e1f8bf8bad1dd125b4de8fe6c0b2b16411cb5
2024-05-27 19:00:48 +08:00
BUAADreamer
dc7c54067e add only tune lm and mm_proj
Former-commit-id: ba12ca430ec527fbfe4cd1eace0adb5c7712146a
2024-05-27 19:00:15 +08:00
BUAADreamer
932f0d5c20 add regex of only tune lm and mm_proj
Former-commit-id: 38d540b3e69bceabafafab524fcfc78aeb05612d
2024-05-27 18:59:00 +08:00
hiyouga
9670f5e41a add phi-3 7b/14b, mistral v0.3 models
Former-commit-id: 86dab182f9710b063f518922ccb49b01aa71c576
2024-05-27 18:20:16 +08:00
hiyouga
97a23e1cbe update readme
Former-commit-id: b8d0170fe0d094acce85dcb5f91775e4685ee055
2024-05-27 18:14:02 +08:00
BUAADreamer
11fcd055ec Merge branch 'hiyouga:main' into main
Former-commit-id: 113be744b3d044fbea3a8654158aa83ddb4599eb
2024-05-27 11:54:01 +08:00
hiyouga
b0d9966663 support SimPO #3900
Former-commit-id: 6b954ce60155cf8334150b795cfc4bb63ca74c8b
2024-05-26 23:46:33 +08:00
BUAADreamer
5c51ab7e1f Merge branch 'hiyouga:main' into main
Former-commit-id: fd5420c43e1414bcd3fadb6239f4e5d42e6ac10e
2024-05-25 14:18:49 +08:00
hiyouga
26f293d587 fix #3853
Former-commit-id: 465a5500bae1f30744d4b9b3db40aaf9171da2cb
2024-05-24 23:29:45 +08:00
seanzhang-zhichen
a3b52fd380 Merge branch 'main' into add_dataset_sample_num
Former-commit-id: 26300127c45f24e63b91f1b0cc73e46c3a936a91
2024-05-24 15:57:47 +08:00
BUAADreamer
27d8706d6d Merge branch 'hiyouga:main' into main
Former-commit-id: a4ce5ee381fd59f6b254ab634af51b6bb54edd97
2024-05-24 09:50:00 +08:00
hiyouga
bf59383783 refactor data preprocessing, fix mllm rlhf
Former-commit-id: 53ff2dd24f9121ea30c95063bb72e49a9b31e980
2024-05-24 04:08:25 +08:00
hoshi-hiyouga
1078611259 Merge pull request #3876 from dongdongqiang2018/main
added adapted to 910B image

Former-commit-id: 0708cc8a24589b9f22ad3df6685e57d1da0336f2
2024-05-24 01:54:30 +08:00
hiyouga
e6fc0ac8fe fix paligemma sft
requires transformers>=4.41.1


Former-commit-id: 80b3030569cd606ac0de43e9a682478f5bd7b727
2024-05-24 00:23:40 +08:00
hiyouga
554ca3d8dc fix oom issues in export
Former-commit-id: b7ccc882a192aa1e25b1e5816f875ea304282412
2024-05-23 23:32:45 +08:00
donggang
86dfdf956d adapted to 910B image
Former-commit-id: e095254808aace63a1be878620f683902f51cfb3
2024-05-23 09:48:22 +00:00
BUAADreamer
c0e4475485 Merge branch 'hiyouga:main' into main
Former-commit-id: 4076f52c8ba7da4624a1fb3fa52a7170d1c3171e
2024-05-21 22:18:20 +08:00
hiyouga
2b65f8bd5c fix paligemma sft
Former-commit-id: 60682d04414be37e611d6470618a8d599703942b
2024-05-21 20:03:09 +08:00
hiyouga
09e78272c2 Update README_zh.md
Former-commit-id: 34c4ba6bf9bb89170446fb396aa06ae44d251de0
2024-05-21 18:30:59 +08:00
hiyouga
cccce564bd update wechat
Former-commit-id: 6613349562194b48c5fc57aa68e620b8fa83fc0a
2024-05-21 18:22:32 +08:00
hiyouga
4adec327de fix #3847
Former-commit-id: d206b306ca4eadc8b3d4feaf490ad12f9452e562
2024-05-21 17:53:06 +08:00
BUAADreamer
1f093334d1 support pretraining of llava
Former-commit-id: 6a4c8cf0a6a1674c693b9337f018ff8df7477f8f
2024-05-21 08:57:14 +08:00
hiyouga
e0e8507108 support paligemma
Former-commit-id: 11c27f9bf204d3d6a9ca5bd4f0a19a420160453f
2024-05-21 00:01:22 +08:00
hiyouga
f5962f8128 fix paligemma data preprocess
Former-commit-id: 71b85437301739d9d96d3881d4a34b37c0f69db8
2024-05-20 23:51:32 +08:00
hiyouga
b31d808655 fix paligemma inference
Former-commit-id: 46357b7a677e8ba2e0a7c9d4ec1974abd061569c
2024-05-20 23:36:43 +08:00
hiyouga
247cda4b68 fix #3818
Former-commit-id: 3f366e05a34be224f53c5bf8334e57ae5d316004
2024-05-20 21:43:19 +08:00
hiyouga
e30975e9a2 add kto to webui
Former-commit-id: 6c866f4dbd45e868860be8351d1a65c4e1a4e02b
2024-05-20 21:20:25 +08:00
zhangzc
de9f1583c2 fix conflict
Former-commit-id: 6922b23a748c2459147bf44b96d86daa89f2c96c
2024-05-20 17:10:01 +08:00
hiyouga
ab48653e63 fix chat engines
do not use pop(key, default) since api assigns None to dict values


Former-commit-id: 3ebbd0b55ea07de2897c27ca54eeab5c3b319419
2024-05-20 00:36:43 +08:00
hoshi-hiyouga
6d7a1e3f8f Merge pull request #3812 from ycjcl868/feat/chat-support-system-prompt
feat: cli chat support system_message
Former-commit-id: 96596990527403e910c81e95e38bf2638541cf31
2024-05-20 00:31:32 +08:00
hoshi-hiyouga
e093dad7cb Update vllm_engine.py
Former-commit-id: 0b8278bd21baf35d3f60c6ed24f110b391c92a47
2024-05-20 00:31:04 +08:00
hoshi-hiyouga
b103a121f0 Update hf_engine.py
Former-commit-id: ce8b902e538c69d89f207db8a43c85072cd70265
2024-05-20 00:30:45 +08:00
hoshi-hiyouga
3578abc7a4 Update generating_args.py
Former-commit-id: 861c146fa7d9cb5b99372464bd068c20fa36415d
2024-05-20 00:29:31 +08:00
hoshi-hiyouga
17d398f419 Update chat_model.py
Former-commit-id: 7736aafdc81d175e9fb484dbb7cae9263120a0fc
2024-05-20 00:29:12 +08:00
hiyouga
3453a8eebb fix jinja template
Former-commit-id: 353561f0e3914de3f81499c4e4b831ae0a6383b6
2024-05-19 23:38:30 +08:00
ycjcl868
77a089c35c feat: cli chat support system_message
Former-commit-id: e3982bff596d01992733687a580c4f41c558061c
2024-05-19 23:17:46 +08:00
hiyouga
516d83c946 fix zero2 high ram usage
Former-commit-id: 01797126eb173250250e31f8e76b69ae0047745d
2024-05-19 21:53:54 +08:00
hiyouga
fd02c9f973 fix hf gen args
Former-commit-id: 491a84976258cbb2a2647922420e2f84de1e38cd
2024-05-19 19:39:32 +08:00
hiyouga
351e80a656 fix envs
Former-commit-id: d5e150cfb98f8216713415564ab386b8320c88cb
2024-05-19 18:27:18 +08:00
hiyouga
4f04e2ed93 fix #3807
Former-commit-id: 08b695969049de8bf9bd3e90b9700736d90385ee
2024-05-19 17:07:57 +08:00
hiyouga
a810d1b98e update readme
Former-commit-id: e0beb67a417b13c818a09bd419d4e20dd44ca842
2024-05-18 23:09:03 +08:00
hiyouga
fbe963a96a safe output path in webui
Former-commit-id: 23f14262e0d54631630c084ba71e0433ea1d4640
2024-05-18 22:42:28 +08:00
hiyouga
d13b8bee8a fix jetmoe z3 block
Former-commit-id: cb00a14d905395c4b8fadb955f0424a4c56668de
2024-05-18 22:28:45 +08:00
hiyouga
0aa072a155 improve data process logger
Former-commit-id: 33d0b012b56dbafc9fff87b821c2d1bf1409dbb5
2024-05-18 22:02:42 +08:00
hiyouga
57dde7c3bc update data readme
Former-commit-id: 22c7335b496e4a673383d5a1e4e60bf2cb4e35b3
2024-05-18 21:37:38 +08:00
hiyouga
6b9003f781 update data readme
Former-commit-id: beb864a9367943d3274cb6057423d1eb9aaf85c4
2024-05-18 21:15:20 +08:00
hiyouga
9c1c59e481 fix #3803
Former-commit-id: 1ef12c95059d14a1717c82ce04e529e7ad6435ed
2024-05-18 16:13:14 +08:00
hoshi-hiyouga
31daec2749 Merge pull request #3799 from hiyouga/dev
improve KTO impl, replace datasets

Former-commit-id: b4cc207855aa1dbb120f7999165e176e649af338
2024-05-18 03:49:13 +08:00
hiyouga
2bff90719b improve KTO impl., replace datasets
Former-commit-id: e56a57ddcf061de6e4acc8679f7dbf0b68364986
2024-05-18 03:44:56 +08:00
hoshi-hiyouga
e4570e28a8 Merge pull request #3785 from enji-zhou/feature/add_kto
add kto

Former-commit-id: f60faa23e23022fd855dac6b1ecbd21e095bccb5
2024-05-18 03:07:18 +08:00
hoshi-hiyouga
d84a730daa Merge pull request #3794 from jue-jue-zi/main
feat: pass the `max_lora_rank` parameter to vLLM backend
Former-commit-id: be839961686a1845f00a56e398a7b3779df8b6e4
2024-05-17 16:17:30 +08:00
hoshi-hiyouga
0fd1a05cec Update model_args.py
Former-commit-id: f40a2fe5334865763e4d513292d359317b7a091b
2024-05-17 16:16:41 +08:00
juejuezi
6373d307ec feat: pass the max_lora_rank parameter to vLLM backend
Former-commit-id: a8756d839405ecb5deabe885cf11d1a61564deee
2024-05-17 16:07:39 +08:00
hiyouga
a32c3a50fc add deepseek v2 lite model
Former-commit-id: 5e864e6b721d8b891b1cc2ca2dcac41babb9eaaf
2024-05-17 13:25:36 +08:00
enji.zhou
66b5634ebf add kto
Former-commit-id: ec51986cf70b0bdd79b8141e45916670fb97a08e
2024-05-17 13:09:17 +08:00
hiyouga
92b3697e2c update badam example #3764
Former-commit-id: a3730fd0a96bab869be6d695031182dabaea8137
2024-05-17 02:21:10 +08:00
hiyouga
969e605c7e better dtype handle in loading
Former-commit-id: 663f0577dd61a1a31191db2c6fbb0c7cea533b21
2024-05-17 02:14:56 +08:00
hiyouga
a3320f26cf update examples
Former-commit-id: 3b5f138155d96b346bda18e465cf60ec7d99e19c
2024-05-17 01:02:00 +08:00
hiyouga
45329d9e3c enable inbrowser in webui
Former-commit-id: 71fdeedb64b2339eb1c740d670b87e0c03dada68
2024-05-17 00:08:56 +08:00
hiyouga
6481321470 add falcon 11b
Former-commit-id: 897acc725edc204fad393cc9616828431b4fa768
2024-05-17 00:08:33 +08:00
hiyouga
efcf5e050d fix examples #3769
Former-commit-id: 80c036beb8d9ddac8f844f1818c9488ded04e86e
2024-05-16 19:12:09 +08:00
hiyouga
dfa686b617 rename package
Former-commit-id: a07ff0c083558cfe6f474d13027642d3052fee08
2024-05-16 18:39:08 +08:00
hiyouga
fe638cf11f set dev version
Former-commit-id: 5e9c72d07c3793cdccbdb8a9f95f1bb5d714e0a3
2024-05-16 02:17:31 +08:00
hiyouga
b2949b88e9 release v0.7.1
Former-commit-id: a4f8adb021b6218d624303b51cd5e93ffa3111a1
2024-05-16 00:57:16 +08:00
hiyouga
538c79fd8f fix #3694
Former-commit-id: 3d1b818cb6a77b7603724fbeb756b468aa74e7ea
2024-05-16 00:35:28 +08:00
hiyouga
437cc20be6 fix #3606
https://github.com/huggingface/peft/pull/1706

Former-commit-id: bf2783e1b6bc207375974c48736d6f82dd293f02
2024-05-15 23:05:02 +08:00
hiyouga
2ac972d6e7 add Yi-VL-34B model
Former-commit-id: 8b3d8a7e3bd8dff27cc72edba1b8a042f6d1929c
2024-05-15 22:58:19 +08:00
hiyouga
4d7f0fbb7a add yi-vl 6b model
Former-commit-id: 35f4041b13a593a6cf1ec6686fa18b38911ad6a4
2024-05-15 20:02:41 +08:00
hiyouga
40e3d3fbdd fix yi vl vllm infer
Former-commit-id: de54e5d7ec06dd7c20ec82c9ff032fc16cd50244
2024-05-15 19:25:48 +08:00
hiyouga
096677b989 add NPU docker images
Former-commit-id: 3b3257962c52f5d1f15ce245fee402c5baddb774
2024-05-15 19:20:11 +08:00
hoshi-hiyouga
7940b968ae Merge pull request #3748 from BUAADreamer/main
Add MLLM YI-VL and save processor config during training

Former-commit-id: 1d3cbd24ccea63d36c27725cdc5ecd02b460b0ed
2024-05-15 16:40:54 +08:00
hoshi-hiyouga
36a4224bf5 Update visual.py
Former-commit-id: f5f13a995c64fc374ad05e26cde8efa6651aefa1
2024-05-15 16:39:57 +08:00
hiyouga
d4d36e157c fix fsdp model loading
Former-commit-id: fc6fe23cc9ae4a920a17e8268a85c1aa4ad16d3b
2024-05-15 16:32:28 +08:00
hoshi-hiyouga
c4f5e49d0d Update patcher.py
Former-commit-id: 4c31a21f2106adcdad100119bad83ecaef0be3f3
2024-05-15 15:37:07 +08:00
hoshi-hiyouga
8e518d6c62 Update template.py
Former-commit-id: a13022166ba691c03f4fea7e9e2927fa446cf681
2024-05-15 14:20:39 +08:00
hoshi-hiyouga
79165100e5 Update trainer.py
Former-commit-id: dd767b20635bb549ce14f9556e1c4fb44b3662c5
2024-05-15 14:13:26 +08:00
hoshi-hiyouga
fc82acbbd8 Update workflow.py
Former-commit-id: 97cfb44bced18b721166ccb5f260098645fc5318
2024-05-15 14:13:01 +08:00
BUAADreamer
aead3ca8e5 rm extra import
Former-commit-id: 031215019e3d7727b1c7cc87a44e1cf1eb2853ec
2024-05-15 12:48:18 +08:00
BUAADreamer
b12679ad59 cast dtype in mm_proj
Former-commit-id: e0ab22648fe8b65055b5986258cc2800438dc60c
2024-05-15 11:22:15 +08:00
BUAADreamer
8061cb5671 modify style
Former-commit-id: 823af88c3201412da7ef734d34198424e09b2d51
2024-05-15 10:18:10 +08:00
BUAADreamer
0a7e5f2f57 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: ce5cb0f897eebe32a1c2c0a78fe1b0267e4b6d9d
2024-05-15 09:54:21 +08:00
BUAADreamer
812d2c25a7 Merge branch 'hiyouga:main' into main
Former-commit-id: a4795c2f5328e0cfc657409f5774819e3defc006
2024-05-15 09:54:14 +08:00
BUAADreamer
51795e8db1 add yivl and save processor to model_dir
Former-commit-id: ae72f745cb4f7713c3b835d11202aec19c3c5093
2024-05-15 09:54:00 +08:00
hiyouga
2c011060b1 fix bug in vllm engine
Former-commit-id: 38f02a2c5b52cba6908c2d3c2a455677f8574faf
2024-05-15 02:17:54 +08:00
hiyouga
a8c7531250 fix gen args
Former-commit-id: d79f91f87106ba1bc3c0ea08da5898aad59566a7
2024-05-15 01:49:05 +08:00
hiyouga
88c34d26a8 fix examples
Former-commit-id: 910ffaf46e3dde87d2dbb48b82a59a9898a90847
2024-05-15 00:26:10 +08:00
hiyouga
12d666a63c update examples
Former-commit-id: 09269c59427e8a007c1c1b6f9d2014b4c0d0a328
2024-05-15 00:05:17 +08:00
hiyouga
304a2efec8 update readme
Former-commit-id: 568cc1d33c3d202e6430b68e0bcb2772aa6b0aa2
2024-05-14 23:57:08 +08:00
hiyouga
322331df51 update readme
Former-commit-id: f315a545d85a661746ad304b5a688d1fad9eaea1
2024-05-14 23:55:49 +08:00
hiyouga
ba0da83031 add npu examples
Former-commit-id: 0f21e68e2dbd84c820d66d5c6d980004efc51d51
2024-05-14 23:32:53 +08:00
hoshi-hiyouga
0a82e15e7c Merge pull request #3584 from zhou-wjjw/main
Enhancing Ascend 910A Training Efficiency in LlamaFactory with NPU

Former-commit-id: 310cf017a5ec24af8f5cf3af298760dd4150f9f2
2024-05-14 22:18:37 +08:00
hiyouga
6670b36c49 use robust envs
Former-commit-id: f3e194c3b3c40a3e6c3c5397ec0d859e6db614b5
2024-05-14 21:36:42 +08:00
hoshi-hiyouga
7a1d13aae2 Update train.py
Former-commit-id: da1e6f0d9c2eff64f92da1f6ada3aa44ef6d6a7e
2024-05-14 20:47:52 +08:00
hoshi-hiyouga
86a048128b Apply suggestions from code review
Co-authored-by: Huazhong Ji <hzji210@gmail.com>
Former-commit-id: abef48c17ee795eae984fcc89019c2c4859108c1
2024-05-14 20:44:21 +08:00
hoshi-hiyouga
fe1a3b1367 Apply suggestions from code review
Co-authored-by: Huazhong Ji <hzji210@gmail.com>
Former-commit-id: a435e5a0bdd7268c4f1204f99f289ee0b36fd930
2024-05-14 20:44:04 +08:00
hiyouga
84ff56c3a0 fix #3728
Former-commit-id: ea3e32a27f7f7dce75a708f8a6f376b5d3e8059a
2024-05-14 20:37:21 +08:00
BUAADreamer
483ed64b43 modify yi-vl template
Former-commit-id: f113975b425e70bed2588ca55a2c62594fbf2283
2024-05-14 16:45:28 +08:00
BUAADreamer
dd4619e9f3 add support for Yi-VL
Former-commit-id: d7834ca92d3048949caa48f8635cfbcea2c85771
2024-05-14 14:03:19 +08:00
BUAADreamer
905815d878 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: e82f527ea583a7e99a25a06c7fe7b03c1dc2ebb9
2024-05-13 23:28:52 +08:00
BUAADreamer
ba72e08901 add yi-vl
Former-commit-id: 891b25cb3d709ea82182ca90496034360e1cd5d8
2024-05-13 23:28:28 +08:00
hiyouga
e4972c8fc4 update examples
Former-commit-id: 779603055ae9216ff549f5285caac8c0c0a1e9fb
2024-05-13 20:39:36 +08:00
hiyouga
5f5f948806 fix #3724
Former-commit-id: 62f5999d79834d6cbc4129eda387a317665d6099
2024-05-13 20:09:09 +08:00
hiyouga
2892e5d42a fix #3702
Former-commit-id: 55755786f21050b9efc127c391509ba5d9ea8982
2024-05-13 18:24:35 +08:00
hoshi-hiyouga
542a5d15ef Merge pull request #3655 from Tendo33/main
1.Change the name of is_fastapi_available function 2. Added the log of printing requests when deploying using vllm

Former-commit-id: 28c75448eed9d472e96285737a66ac0d20280e13
2024-05-13 18:05:50 +08:00
hiyouga
b1c791fb0d support Yi 1.5
Former-commit-id: e580823676cbb83ddb9a0f685992e6054ae5ffaa
2024-05-13 16:51:20 +08:00
Tendo33
7589123465 ruff check scripts src tests --fix
Former-commit-id: da5277b6a1cff40d59df8f1835d9514b2a51be34
2024-05-13 09:40:33 +08:00
Sun Jinfeng
f94b54b776 Merge branch 'hiyouga:main' into main
Former-commit-id: 014acaa7845b7ac2876596d216b1be369a8e9311
2024-05-13 09:29:58 +08:00
hiyouga
1e1b8899f5 lint
Former-commit-id: cb72eb6ab24615ce492ca2945f29daa34c0c52d4
2024-05-12 01:28:51 +08:00
hiyouga
7b02c83399 fix #3658
Former-commit-id: 37799a62d4431d1d8c02fee6c23d607a65723c1a
2024-05-12 01:25:16 +08:00
hiyouga
8f1ba07b30 remove checksum and fix ui args
Former-commit-id: 0cfdeb1d30efb63211434bc4656bceb59e666289
2024-05-12 01:10:30 +08:00
hoshi-hiyouga
1ce400bddf Merge pull request #3654 from betapeanut/main
Remove Redundant Environment Variable Usage

Former-commit-id: aa57a2a183eef822973d7e5d7c7bc80a42167482
2024-05-12 00:49:00 +08:00
hiyouga
6bc0ec63c7 update readme
Former-commit-id: d57ca8a865b46588f65b2cc15073c5fcc4e4cebc
2024-05-12 00:33:49 +08:00
hiyouga
25d316b1a0 fix #3674
Former-commit-id: 6bad2eafef75ec697477e1f2ce739006042fb4c7
2024-05-12 00:03:59 +08:00
hiyouga
2bcd5b2b73 fix llava config
Former-commit-id: b13d032325e45d401a9dbc64d4c73e308eff3288
2024-05-12 00:02:49 +08:00
hoshi-hiyouga
436afcba57 Merge pull request #3651 from BUAADreamer/main
add some mllm features and try to incorporate Chinese-LLaVA-Med project

Former-commit-id: 143d311d4a82e1fa9b6d4ad98b0db5b02f3572c4
2024-05-11 23:59:08 +08:00
hoshi-hiyouga
db47c53486 Update loader.py
Former-commit-id: 2fc12790414677bb82736208fb9547640780af2e
2024-05-11 23:58:47 +08:00
hoshi-hiyouga
4efe56fd68 Update model_args.py
Former-commit-id: c4114add4c42c1d7723f7270451a6c9fc656ecd1
2024-05-11 23:57:05 +08:00
hoshi-hiyouga
d54313fcf9 Update patcher.py
Former-commit-id: 2c88d394d29c6e98ac3a6860848855722614ca52
2024-05-11 23:56:40 +08:00
hoshi-hiyouga
382f096475 Update tuner.py
Former-commit-id: ccd1eb2c0992f75440c0e1c5cd3f02d03aacb085
2024-05-11 23:55:59 +08:00
hoshi-hiyouga
0ccc76392e Update tuner.py
Former-commit-id: 22afcbdb25160583e5ece28fad0585c7bc70f41a
2024-05-11 23:54:53 +08:00
hoshi-hiyouga
e2cfcb0a5f Update README_zh.md
Former-commit-id: 1a205478403b5852fac0aa8418cdb8995fbe40e3
2024-05-11 22:44:51 +08:00
hoshi-hiyouga
b530a798c1 Update README.md
Former-commit-id: d24c83bb30e2829ba78db90c4c4975788f2eed25
2024-05-11 22:43:04 +08:00
BUAADreamer
fdf38b70a0 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: 50cc5cf93d50c42cfcf5047bcd9b5c7959d503ae
2024-05-11 13:11:10 +08:00
BUAADreamer
1a78b675be add full parameter finetuning of mllm
Former-commit-id: f90c1da5636ac3cb8112c5081a3b56b09a17fcf8
2024-05-11 13:11:00 +08:00
kkkl
9b1008912c Update constants.py
Fix the download issue of the Phi3 model

Former-commit-id: 8978e80914ac6db1ed1b79641b20c84087dd4341
2024-05-11 00:22:40 +08:00
BUAADreamer
18241f4ed8 Merge branch 'hiyouga:main' into main
Former-commit-id: 0dd072703508f68fd4ee51b6648d0c7642a4cc93
2024-05-10 20:34:41 +08:00
hiyouga
223bbd9930 resolve python 3.8 package
Former-commit-id: 5eee4ec7016846356715a4fa1ad58e3cbb1cac6e
2024-05-09 16:52:27 +08:00
Tendo33
9dadff90bb 1.Change the name of is_fastapi_available function
2. Added the log of printing requests when deploying using vllm


Former-commit-id: 530d4f5d51c13c71d99de5fe2d23805b0aa875a2
2024-05-09 14:28:01 +08:00
BUAADreamer
827a929f1d add push processor to hub
Former-commit-id: 7a05a965311edfdfafa57af8342875860d341f27
2024-05-09 14:05:19 +08:00
BUAADreamer
e508519e0a add mllm processor save and Chinese-LLaVA-Med show
Former-commit-id: 110c49fbf79fe0625f091e63746bfabde00add99
2024-05-09 13:53:39 +08:00
BUAADreamer
47892418ad Merge branch 'hiyouga:main' into main
Former-commit-id: 1f3163509ecd05902ea216a905b4ca15ddd3696f
2024-05-09 13:45:43 +08:00
cocktailpeanut
2aeae4b88b yet another removal of unnecessary environment variables
Former-commit-id: a07726028f0287de28e4751672b27efe0efc6477
2024-05-09 01:33:20 -04:00
cocktailpeanut
c213f2a9a9 more removal of unnecessary environment variables
Former-commit-id: 59ef1a6e0d81585a6c010143d05fcfae26d40c00
2024-05-09 01:32:00 -04:00
cocktailpeanut
333f4a69bb remove unnecessary environment variable usage
Former-commit-id: 4be1d832cb269a07987f5cab5d5f949e269087da
2024-05-09 01:26:15 -04:00
BUAADreamer
172600d432 add mllm export
Former-commit-id: ce4770d33f6761d3b1d60661efcb0be34a036154
2024-05-08 22:50:42 +08:00
hiyouga
4ce4172c87 fix #3625
Former-commit-id: 8c0f5d1db29862277d84aa128b424b7d0f2b187f
2024-05-08 17:12:56 +08:00
hiyouga
400ae144a4 add llama3 chinese chat
Former-commit-id: ee3e5920f2f28567259693cb106e884a90cb02a2
2024-05-08 17:10:03 +08:00
hiyouga
0a1b6ca5a7 add deepseek moe 236B
Former-commit-id: 30c10e2dc41b5d64191a91ad2d61f3b5c440b1d5
2024-05-08 16:37:54 +08:00
BUAADreamer
05ef89cfcc modify export model
Former-commit-id: c7051edae4ce23f85daf204a2aaac134b1f29c3d
2024-05-08 10:36:36 +08:00
hiyouga
6d9d8b92ca update readme
Former-commit-id: bcc3d3b95609555e5e9a4deb68e65391c5b465bd
2024-05-07 22:17:04 +08:00
hiyouga
3f7f1daa33 remove big file
Former-commit-id: 8a05242787f810ec25d1b33358257d2867c45497
2024-05-07 22:14:06 +08:00
hiyouga
8061e92d07 update readme
Former-commit-id: ecefcb2e891e75d37df5ebfc616cfdb2106bcfd6
2024-05-07 21:17:31 +08:00
hiyouga
0c811a7653 update readme
Former-commit-id: 730ea71584debc5784d68eeadceb42f7e827447f
2024-05-07 19:03:47 +08:00
hiyouga
f6ac3796ca fix #3560
Former-commit-id: ea69cbe903a301df1bcc4b63cdc5bd4c6e3a8255
2024-05-07 19:03:35 +08:00
hoshi-hiyouga
c1394e7dfc Merge pull request #3601 from Katehuuh/main
Add contribution Luminia

Former-commit-id: 53bef571c445111f49bcc8a5d49afc2872f754ae
2024-05-07 18:01:48 +08:00
hiyouga
ebab655683 fix #3602
Former-commit-id: 1518b45490606ea200482da4737113c46985e8c5
2024-05-07 17:50:27 +08:00
hoshi-hiyouga
3d74f21738 Merge pull request #3604 from gaussian8/main
fix: splitted Dockerfile's CMD
Former-commit-id: 1d6e6956ca45d3cb7de213c4a641b98a35af5896
2024-05-07 16:53:23 +08:00
junwooo.lee
8493753fab fix: splitted Dockerfile's CMD
Former-commit-id: d8032550c7e084648fbf24da5abbac6432b54f26
2024-05-07 15:09:48 +09:00
Katehuuh
0f626a2145 Update README_zh.md
Add Projects Nekochu/Luminia-13B-v3

Former-commit-id: 88d01e831bd511daec30a94817f06e07b8406b18
2024-05-07 06:28:48 +02:00
Katehuuh
5100c290c4 Update README.md
Add Projects Nekochu/Luminia-13B-v3

Former-commit-id: 3d2cd743c2c8830e8b131d1192f1549fa557762d
2024-05-07 06:23:36 +02:00
hiyouga
4bde37e7c8 update readme
Former-commit-id: 3fdc72b9aad9e129f74417cbbf25e841d28e3737
2024-05-07 06:19:29 +08:00
hiyouga
e3b3a722de fix stop param
Former-commit-id: f0a850c25211b72eddbb357c81679db9b0930d44
2024-05-07 00:41:04 +08:00
hoshi-hiyouga
b9e167e6ca Merge pull request #3527 from zhaonx/dev
"add support for vllm api stop parameter"

Former-commit-id: e7d436403af6ac4c6a33cf36411098a0b0fefce2
2024-05-07 00:37:49 +08:00
hoshi-hiyouga
1ebd1e50e7 Update vllm_engine.py
Former-commit-id: fa2410de07150a82082ab5b88baf56aa891db870
2024-05-07 00:37:05 +08:00
hoshi-hiyouga
14316f6583 Update generating_args.py
Former-commit-id: 714957ba0159919a89fc1659a7a7b4b6bd82eead
2024-05-07 00:28:16 +08:00
hoshi-hiyouga
8e4ab2f7d0 Update generating_args.py
Former-commit-id: 7a9fb56786f4c40856211009656a983be1e42cb7
2024-05-07 00:27:56 +08:00
hiyouga
196068fa19 update readme
Former-commit-id: 1c67708291195825e8356d5862d22cbee9566233
2024-05-06 23:34:59 +08:00
hiyouga
da2295f8c8 fix gradio args
Former-commit-id: 7767c1ad4b2b638b558f941ba1f0d05d4a049507
2024-05-06 23:33:06 +08:00
hoshi-hiyouga
ab0741b5a6 Merge pull request #3596 from hiyouga/dev_doc
Add CLI document

Former-commit-id: 2b08c51500592f092b9596517e787081453ecbb5
2024-05-06 23:10:38 +08:00
hiyouga
6aec446940 update examples
Former-commit-id: cca50b627c85e0a777717d609377406cc7fd579f
2024-05-06 23:07:55 +08:00
hiyouga
50c71dd29f update example docs
Former-commit-id: 102cd42768d9eb2cf1219309a25b41e26149067e
2024-05-06 22:51:02 +08:00
hiyouga
5c9da798b5 update docs
Former-commit-id: a4a2e94241bea6f96590f6cb8ca8b5cddee1917e
2024-05-06 21:47:00 +08:00
zhouwei
3d1b0e1864 The training efficiency of the Ascend 910A has been significantly enhanced, leveraging the full computational power of the NPU (Neural Processing Unit) and the capabilities of torch_npu, a PyTorch library optimized for NPUs. This improvement has resulted in a remarkable tenfold increase in efficiency.
Former-commit-id: 90980b626d3408b3e2ee32a02456c20881318be7
2024-05-06 13:29:59 +08:00
zhaonx96
45becd2a45 ”add stop parameter in chat.py“
Former-commit-id: e529bf5bc14c72558d26f73c42076eaa9684205c
2024-05-06 10:10:00 +08:00
zhaonx96
8f1197de7e Merge branch 'main' of https://github.com/zhaonx/LLaMA-Factory into dev
Former-commit-id: ec1f834905e241277fdd3f764c70eede97e9ff40
2024-05-06 10:09:00 +08:00
hoshi-hiyouga
25de4ce56a Merge pull request #3578 from pha123661/main
Fix badam example argument

Former-commit-id: d6edf3d91e5d20f48938e02d96d2193ed3d50181
2024-05-05 23:41:58 +08:00
Oscar
d0597897bf Fix badam example outdated argument
Former-commit-id: 29aa188cc774cb72367f706f1cd4c07bc5a9f241
2024-05-05 23:35:19 +08:00
hiyouga
4674f3baa7 add version and help to cli
Former-commit-id: f762f2215169b9fe55564d5600b758ddc66f9c9c
2024-05-05 02:44:35 +08:00
hiyouga
2f5f6722cf fix eval scripts
Former-commit-id: fc3743d0b82c28fbff1170761139e4fa5d2a8939
2024-05-05 00:53:07 +08:00
hiyouga
7ef3788ff4 update webui
Former-commit-id: 17a53d25cdadd2df70a8afa0488f75bbf1918b89
2024-05-05 00:17:54 +08:00
hiyouga
f9aa74715a update scripts
Former-commit-id: 1c07648c4bb4bb0c46bc0240547b46bd2835dce1
2024-05-04 23:05:17 +08:00
hiyouga
9b187b274c add avg ppl
Former-commit-id: 40caeb6f0fdf76a1e2c9ca3761299d087fc643e0
2024-05-04 22:35:31 +08:00
hiyouga
68ed89f351 update ppl script
Former-commit-id: 07606fa4ab303f088170a569c1f86141a1b496c5
2024-05-04 22:13:14 +08:00
hiyouga
342d7da8d7 add cal_ppl script
Former-commit-id: 947068c11c0be00db2cecddb2c5842a0d6e2c321
2024-05-04 22:02:25 +08:00
hiyouga
6eda42eb7c update readme
Former-commit-id: eaf83847ef6d89d8b70429138e73b04fd2aa3ef8
2024-05-04 17:01:21 +08:00
hiyouga
e9fe8815be remove empty stream response
Former-commit-id: 070d0da928b1e974a094279a2782201016d2a3ab
2024-05-04 16:13:52 +08:00
hiyouga
9381fecca7 fix async stream api response
Former-commit-id: d70bbcae6513e50aa6094f2d98c4aa5c6641ea02
2024-05-04 16:11:18 +08:00
hiyouga
efa9140577 update api and support abort eval in webui
Former-commit-id: 8661bed68812e9ded9439e8a821b1d7716bc797b
2024-05-04 15:59:15 +08:00
hiyouga
b1b18b2c5a update readme
Former-commit-id: 5061f7196a3278af5ebce77249d9c3c0f8a55b34
2024-05-04 00:43:53 +08:00
hiyouga
37bcbf72b4 update readme and webui launch
Former-commit-id: c66ffa57323ef6ea78a9b75ec5122d9ea25fd420
2024-05-04 00:43:02 +08:00
hiyouga
99125c8825 update readme
Former-commit-id: 012e5b9625682a628a0b7fb5879097be7166c7be
2024-05-04 00:31:02 +08:00
hiyouga
182b974786 fix eval in webui
Former-commit-id: 774ef2bf5823d68b9cc254a676f5adb4af533d75
2024-05-04 00:19:19 +08:00
hiyouga
7a4a6a5522 fix webui resume
Former-commit-id: c2f6582ddd365bb64b72e8057cc4ecd7884d2480
2024-05-03 23:15:19 +08:00
hiyouga
2383e5440c fix slow op in dpo/orpo trainer
Former-commit-id: 38cad0896ea0516de6d4b2759ec9d45ee67d339b
2024-05-03 23:06:52 +08:00
hiyouga
1fea91736a fix callback log multigpu #3559
Former-commit-id: 1f105f1551b12675ca7d339ef5f91333f0371987
2024-05-03 21:24:27 +08:00
hiyouga
09d9fb28f9 enable tqdm in webui
Former-commit-id: 1737bff64799047a5b715fd979b4c038ae213bb3
2024-05-03 04:42:50 +08:00
hiyouga
57c6eabf83 fix gen_args
Former-commit-id: c3e2f4f07b7fb3b1d7d2b44451660f082a467aed
2024-05-03 04:24:50 +08:00
hiyouga
33d440b577 fix colab gradio
Former-commit-id: 26179a29d3400d1fea155e325a79473a8bc12f04
2024-05-03 03:54:46 +08:00
hiyouga
ce8200ad98 update webui and add CLIs
Former-commit-id: 1368dda22ab875914c9dd86ee5146a4f6a4736ad
2024-05-03 02:58:23 +08:00
hiyouga
2cedb59bee Update prepare.sh
Former-commit-id: 5928b869251a984a085289ca6861a9731dc5b910
2024-05-02 17:16:02 +08:00
hiyouga
dd0b85580e fix badam configs
Former-commit-id: 8a4e6a4c65a9a42e6501b0d3ce81d6220c287454
2024-05-02 02:47:04 +08:00
hoshi-hiyouga
cd4dad846b Merge pull request #3487 from codemayq/main
support BAdam in WebUI

Former-commit-id: 6eada1a2844a2b2c8aad599ebfcc35b376c938ea
2024-05-02 02:38:01 +08:00
hoshi-hiyouga
a11a04a24f Update train.py
Former-commit-id: 16f0d0056967872e02969fdd842a381f9484af8a
2024-05-02 02:21:27 +08:00
hoshi-hiyouga
eb99999ca8 Update README_zh.md
Former-commit-id: 1c673d89faca3160627009fcd0a4aa39138570c0
2024-05-02 02:14:55 +08:00
hoshi-hiyouga
ea58cf111e Update README.md
Former-commit-id: 4fb43b0c9aa48242126252ad755a2a1683b38d6a
2024-05-02 02:13:46 +08:00
zhaonx
2d95127c33 "add support for vllm api stop parameter"
Former-commit-id: b9f21fa639b66db09c79404d885661c96bdf9395
2024-04-30 17:17:09 +08:00
Lao
57fcdca336 Update README_zh.md
Former-commit-id: bacc8588dc7b0b43c240189ecf4336bedc299357
2024-04-28 23:31:37 +08:00
khazic
3d88589c0f Upgrade the second sharegpt format
Former-commit-id: 057f992a666b029d207a3dc7dfc353f9abcf8316
2024-04-28 14:30:05 +08:00
khazic
dfd153cc81 added the second sharegpt format
Former-commit-id: 6d140ac98a78ecc0a713842bb917dc8eb14450cb
2024-04-28 14:27:45 +08:00
codingma
7641a214d8 support BAdam in WebUI
Former-commit-id: 1247154dd7d5eba5d11c4bb8504bf551ab49eb72
2024-04-28 11:31:34 +08:00
hiyouga
3cef844079 fix setup
Former-commit-id: 7d3e7db46a5f8672dd57fa5fcc03822e175047f9
2024-04-28 03:49:13 +08:00
hiyouga
4dcd47100d fix llava rlhf
Former-commit-id: f6863cbbcbf960d6481296c6cae3e40fd70e4e14
2024-04-28 03:01:49 +08:00
hiyouga
a412b4ed4a add models to 0.7.0
Former-commit-id: 436d3754452f839c617839ab3bbaacc4a8908e19
2024-04-28 01:50:30 +08:00
hiyouga
544a6259b6 update readme
Former-commit-id: c9190fe36f511c3a5149d45c85a10b02a57fa88a
2024-04-26 23:39:19 +08:00
hiyouga
c501f377dd release v0.7.0
Former-commit-id: 45bb89cb4d26a6b3fb5360bc90ab950738fe4920
2024-04-26 23:18:00 +08:00
hiyouga
cb8b8f40cd update readme
Former-commit-id: f3d4b46338d4d484b205d0651a1fa7b2e77a1654
2024-04-26 20:09:14 +08:00
hiyouga
70bed8ad8f support Qwen1.5 110B
Former-commit-id: d6e5ecaf4109127bab24e39a0696076bceb0b37c
2024-04-26 19:59:22 +08:00
hiyouga
51f776ae2a fix llava qlora
Former-commit-id: 01c5a669f6fe598aac1758a700a7607da37db1bc
2024-04-26 18:00:23 +08:00
hiyouga
697bc20941 add llava to llamaboard
Former-commit-id: deaaff0a9de0eef9691991c99cd797461b1165cc
2024-04-26 06:41:35 +08:00
hiyouga
1480e3a88f update readme
Former-commit-id: df1155245d3f71ba4f3361d43aa662ab3b024de8
2024-04-26 05:49:26 +08:00
hoshi-hiyouga
19029d5b0f Merge pull request #3454 from hiyouga/mllm
Support fine-tuning LLaVA-1.5 MLLM @BUAADreamer 

Former-commit-id: c4195d1e26349795f7aad5c10a8a9e2abb7b64a3
2024-04-26 05:46:29 +08:00
hiyouga
7773ac0ead update readme
Former-commit-id: 41728fd74de7bec0cc6135aef9dfa3ae9fe7af73
2024-04-26 05:44:30 +08:00
hiyouga
23b881bff1 support mllm hf inference
Former-commit-id: 2c7c01282acd7ddabbb17ce3246b8dae4bc4b8cf
2024-04-26 05:34:58 +08:00
hoshi-hiyouga
10a6c395bb Merge pull request #3450 from BUAADreamer/mllm
Add Multimodal LLM Finetuning

Former-commit-id: 7cacbcfdf7391080ef43eb2b2c79a5237e6120e8
2024-04-26 05:30:30 +08:00
hoshi-hiyouga
f9a7732a1f Update preprocess.py
Former-commit-id: 0e376eab23d38b8fca05f054f3cde308756ee3b1
2024-04-26 04:10:28 +08:00
hoshi-hiyouga
c37582af02 Update aligner.py
Former-commit-id: 855489074c469f47572153df0fa1e251b187b232
2024-04-26 03:48:34 +08:00
hoshi-hiyouga
ece67f8c7f Update parser.py
Former-commit-id: 4df75e8a9a391565cc3eec69bc0ebf5d5192de61
2024-04-26 03:35:39 +08:00
hoshi-hiyouga
e1838e76fe Update loader.py
Former-commit-id: 6a5f2e2ab7304113ff71cb77aafff6a1f74831f8
2024-04-26 03:33:07 +08:00
hoshi-hiyouga
2eede9ffd6 Update workflow.py
Former-commit-id: 5b8b5b975716d539ae2fae8536f79e106aa0b566
2024-04-26 03:29:12 +08:00
hoshi-hiyouga
a6f6b406b3 Update loader.py
Former-commit-id: 72d4817a15f6916706828ea2a61d808183c23773
2024-04-26 03:22:40 +08:00
hoshi-hiyouga
279439abbe update hparam name
Former-commit-id: 9941adfbf06db37f8ba32c4555f6e58e27188aaf
2024-04-26 02:49:39 +08:00
hoshi-hiyouga
13117b69d7 delete llava template (use vicuna)
Former-commit-id: 420e64970e5a0e45453041927e0366ee8beb73d5
2024-04-26 02:20:47 +08:00
BUAADreamer
5d03ac642d modify some bug
Former-commit-id: 593b7b004df74bd24361c9883401a656c08fb589
2024-04-25 22:59:46 +08:00
BUAADreamer
5062ee547e modify some style
Former-commit-id: 1291c7ee39361dd75247c67f04dcf20b472faf83
2024-04-25 22:40:53 +08:00
BUAADreamer
59817c27e3 modify some style
Former-commit-id: d578a90cefa7ec813355795bdd6ead5ee558ce26
2024-04-25 22:40:25 +08:00
BUAADreamer
759bee48d2 merge some func
Former-commit-id: 3085107c44715e4b2ca96d73b20d90c172b95219
2024-04-25 22:35:17 +08:00
BUAADreamer
514ffafc12 modify some style
Former-commit-id: 053062abc007014a7fde95c5ae9f4d859893d8ad
2024-04-25 22:04:09 +08:00
BUAADreamer
8b2a735c14 modify some style
Former-commit-id: b016e6a671a2f228f0bdd9b8d5995b4669609655
2024-04-25 21:58:18 +08:00
BUAADreamer
10d59e9e4a make dataset script
Former-commit-id: 25892f958da14976025a775febf628cd0e0a3d85
2024-04-25 21:32:01 +08:00
BUAADreamer
058ed5e607 modify style
Former-commit-id: c1f1df99e4dc3d0aadf1207b4e9a16218187fd5a
2024-04-25 21:29:50 +08:00
BUAADreamer
110c2ce2a5 modify style
Former-commit-id: 3bffc1e1b8bcc4582cebea06d35e5146163c7bec
2024-04-25 21:27:48 +08:00
BUAADreamer
c425436676 modify style
Former-commit-id: 54b713d0c4ffdfc6a7faeb14471b58bb1cd8acf5
2024-04-25 21:15:16 +08:00
BUAADreamer
266fe908e3 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: c4bb5af69c5bbf0b1ea044cbb2b18acddc6733ac
2024-04-25 21:08:40 +08:00
BUAADreamer
dbd905438b add some
Former-commit-id: 8d035a849c4a441d457791aab073861adf69a09f
2024-04-25 21:08:32 +08:00
hoshi-hiyouga
d64c87f928 Merge pull request #3449 from hiyouga/mllm
add webui backend option

Former-commit-id: 372fcedef40b79fe8bd3932c06c720f2a03db6e6
2024-04-25 20:58:16 +08:00
hiyouga
29eebef696 add webui backend option
Former-commit-id: 3764586cb3ed64fe376d0ae420ff5690c28459e2
2024-04-25 20:49:23 +08:00
hiyouga
7bfbcb1fe3 vllm + lora support
Former-commit-id: 8cb86ba355195f5d6dcb95ee6b6b7203463a34db
2024-04-25 20:24:31 +08:00
BUAADreamer
9b210cf4b3 rm some
Former-commit-id: 2c85b4fabbebd8b51eee53f5d29184d4a6e97569
2024-04-25 20:09:43 +08:00
BUAADreamer
f74e640565 Merge branch 'hiyouga:main' into main
Former-commit-id: 131d0bcd554dedd794add7eb3d7b1201cac80e7c
2024-04-25 20:02:50 +08:00
BUAADreamer
d1d08d066a merge data part to the text stream
Former-commit-id: 80537d580119d9d5a06ab236a5284aaae2f83b5b
2024-04-25 19:58:47 +08:00
hiyouga
6be321b5da fix #3374
Former-commit-id: 0097d7968b3b570e1705caff26f42d9ed71ad974
2024-04-25 19:56:49 +08:00
BUAADreamer
3c792174db merge data part to the text stream
Former-commit-id: 7ee20286d9bcc2d5378bfd6bb02cd3648396d873
2024-04-25 19:19:59 +08:00
hiyouga
9aeb88c426 add export_device in webui #3333
Former-commit-id: 30ebd3652809d73941e0a5e4a8be11d989faf98d
2024-04-25 19:02:32 +08:00
BUAADreamer
00e2a272ef merge model part to the text stream
Former-commit-id: b6fcb832ddaed4647d6f2b926f3dfccd47f3ea84
2024-04-25 08:20:41 +08:00
BUAADreamer
5142349661 remove error
Former-commit-id: 2bcd1c7dc3595f17ae4e2c4475196cc2d03d0e75
2024-04-25 01:01:59 +08:00
BUAADreamer
0e3cc52327 remove conflicts
Former-commit-id: e5750ee202eb67cf5fc54f464548e2eb43d00900
2024-04-25 00:56:06 +08:00
BUAADreamer
6c1db2d012 remove conflicts
Former-commit-id: f8b637eb76cba7ec229e2978068805ad1cca8adb
2024-04-25 00:34:22 +08:00
BUAADreamer
12c51655ce add llava and instructblip
Former-commit-id: 142fb6f4541a1acfefe66ff2574dabde53b00c06
2024-04-25 00:22:43 +08:00
hiyouga
36be12a3b7 update tool template
Former-commit-id: c72a1981859818c257c5271d32e03c9d3c344206
2024-04-25 00:21:34 +08:00
hiyouga
21fac4c98c fix log level
Former-commit-id: 8d21302f6201b3f33c10f61f3559bd95be3363c2
2024-04-24 23:42:59 +08:00
hiyouga
83404c4fa9 support new special token #3420
Former-commit-id: f5c6a47f5193ab3a6c137580992bdcce0b31fdd5
2024-04-24 23:39:31 +08:00
hoshi-hiyouga
12f852b8d4 fix phi template
Former-commit-id: 14a1ff665eaebfc618229efbe96f09848d52faec
2024-04-24 13:55:14 +08:00
hoshi-hiyouga
a88873116a fix webchatmodel
Former-commit-id: dc6d8b5dc42c363dd180aaf90c9a2f2d0cce6725
2024-04-24 13:54:21 +08:00
hoshi-hiyouga
7cfcd69c64 fix inference in llamaboard
Former-commit-id: 5e631915157083b61e2d5a183e0c91f2d11f416e
2024-04-24 13:53:39 +08:00
hiyouga
a5eabbe933 add olmo 1.7
Former-commit-id: 86a3fb3a141d2702b15af08df36ffcf9b3d6de14
2024-04-24 05:50:50 +08:00
hiyouga
aa25716a5d add dbrx and jamba models
Former-commit-id: ce35c80b4b00152185285d6064939803d14487f0
2024-04-24 05:39:52 +08:00
hiyouga
94c8219575 fix bug
Former-commit-id: 38e164fe4aaea6f0baf121a720291ca42643ba8c
2024-04-24 05:21:18 +08:00
hiyouga
ad24a2a0c9 fix bug
Former-commit-id: 271c24d2c82d645fa9072e6de94ca38f20411537
2024-04-24 05:10:07 +08:00
hiyouga
c05027d14a remove redundant code
Former-commit-id: 4a7a7ad2bcdc493458084f5f3d384239228b7d5a
2024-04-24 05:02:18 +08:00
hiyouga
5420905a2e support unsloth generate
Former-commit-id: 0ef1ad9f505dba71db9342f524cc3a7565e5e09e
2024-04-24 04:46:53 +08:00
hiyouga
03f2e3284a refactor patcher
Former-commit-id: 263cfe1294f5c3188f5e8d65791f35ee0d87315a
2024-04-24 03:02:23 +08:00
hiyouga
d2bb1b3a6b reenable sdpa and fast tok by default
Former-commit-id: 9e00902dbedc71d55743d1bf237843506a557891
2024-04-24 02:18:44 +08:00
hiyouga
35c4a2c212 fix #3347 #3387
Former-commit-id: c253c18185a29b59190f3e0ed236c2bb4c788085
2024-04-24 01:30:16 +08:00
hiyouga
1e4010a1fb support phi-3
Former-commit-id: 7e8ffa9beee3893e051ceeade443bd56c4a07b1c
2024-04-24 00:28:53 +08:00
BUAADreamer
1451297c78 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: 67800c565b086f362b8cf131b0c9babaa7a7ebc7
2024-04-23 19:22:42 +08:00
BUAADreamer
0b99b13786 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: b78b5f290aa38a7454e101ee9703fb6fac5064ac
2024-04-23 18:47:03 +08:00
BUAADreamer
f5edbf2b49 Merge branch 'hiyouga:main' into main
Former-commit-id: 6287d1b789c631205c1033adf036e28deaef4167
2024-04-23 18:46:12 +08:00
BUAADreamer
ab6dc0ea30 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: a730f89a972f1a9d37c718c716f199cb8d4903b2
2024-04-23 18:45:43 +08:00
hiyouga
79d34ce0f3 update examples
Former-commit-id: 8bf55682cdfbbdca0f01073eac0084c20a6a09d1
2024-04-23 18:29:46 +08:00
hiyouga
1d2e372a8e update readme
Former-commit-id: d4eaee262a64e716ce475dc4eb18d8d9697d8dd8
2024-04-22 17:09:17 +08:00
hiyouga
f6a53d83c8 update readme
Former-commit-id: 3eab580703ee01a0d2d75e7f01df5165af551386
2024-04-22 00:51:35 +08:00
hiyouga
4ec56dd958 update readme
Former-commit-id: fdca136309709e43d75a831252b9375a5a99635a
2024-04-22 00:42:25 +08:00
hiyouga
ba06eb65ca update readme and examples
Former-commit-id: 27dd9bf201c24f7804811398bc2758966ec78432
2024-04-22 00:37:32 +08:00
hiyouga
be716972fe remove extras
Former-commit-id: d67e972f8c3d5273e589c8c85c0a1620f59785c5
2024-04-22 00:35:41 +08:00
hiyouga
719585a128 update readme
Former-commit-id: 3a8c17907c71f46b1b37501e2afdc99ad89fb4bc
2024-04-22 00:21:01 +08:00
hiyouga
348f29aa50 set dev version
Former-commit-id: b9557887d7506ff57b2b2bf490092aac4e4becf0
2024-04-21 23:14:30 +08:00
zhangzc
7cdc16abdf Supports custom data set sampling quantity
Former-commit-id: fa8325401df27595de4611a89dfcc14644956abd
2024-03-27 14:22:50 +08:00
245 changed files with 9245 additions and 4779 deletions

View File

@@ -4,6 +4,8 @@
.venv
cache
data
hf_cache
output
examples
.dockerignore
.gitattributes

View File

@@ -13,6 +13,18 @@ body:
- label: I have read the README and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
@@ -26,7 +38,7 @@ body:
请合理使用 Markdown 标签来格式化您的文本。
placeholder: |
python src/train_bash.py ...
llamafactory-cli train ...
- type: textarea
id: expected-behavior
@@ -38,18 +50,6 @@ body:
Please provide a clear and concise description of what you would expect to happen.
请提供您原本的目的,即这段代码的期望行为。
- type: textarea
id: system-info
validations:
required: false
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **transformers-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **transformers-cli env** 并将其输出复制到该文本框中。
placeholder: transformers version, platform, python version, ...
- type: textarea
id: others
validations:

View File

@@ -2,28 +2,38 @@ name: tests
on:
push:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
jobs:
check_code_quality:
tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.8"
cache: "pip"
cache-dependency-path: "setup.py"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ruff
python -m pip install .[torch,dev]
- name: Check quality
run: |
make style && make quality
make style && make quality
- name: Test with pytest
run: |
make test

View File

@@ -6,9 +6,9 @@ COPY requirements.txt /app/
RUN pip install -r requirements.txt
COPY . /app/
RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
RUN pip install -e .[metrics,bitsandbytes,qwen]
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
EXPOSE 7860
CMD [ "python", "src/train_web.py" ]
CMD [ "llamafactory-cli", "webui" ]

View File

@@ -1,4 +1,4 @@
.PHONY: quality style
.PHONY: quality style test
check_dirs := scripts src tests
@@ -9,3 +9,6 @@ quality:
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
test:
pytest tests/

336
README.md
View File

@@ -3,15 +3,17 @@
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![Citation](https://img.shields.io/badge/citation-34-green)](#projects-using-llama-factory)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-44-green)](#projects-using-llama-factory)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
👋 Join our [WeChat](assets/wechat.jpg).
@@ -24,6 +26,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89
Choose your path:
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Local machine**: Please refer to [usage](#getting-started)
## Table of Contents
@@ -43,8 +46,8 @@ Choose your path:
## Features
- **Various models**: LLaMA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, supervised fine-tuning, reward modeling, PPO, DPO and ORPO.
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
@@ -68,55 +71,69 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See `examples/extras/mod` for usage.
[24/06/07] We supported fine-tuning the **[Qwen-2](https://qwenlm.github.io/blog/qwen2/)** series models.
[24/04/19] We supported **Meta Llama 3** model series.
[24/06/05] We supported fine-tuning the **[GLM-4-9B/GLM-4-9B-Chat](https://github.com/THUDM/GLM-4)** models.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See `examples/extras/badam` for usage.
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See `examples/lora_single_gpu` for usage.
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage.
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See `examples/extras/fsdp_qlora` for usage.
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage.
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See `examples/extras/loraplus` for usage.
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training.
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See `examples/extras/llama_pro` for usage.
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage.
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall_en`.
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage.
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings.
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage.
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
[23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode.
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
@@ -128,44 +145,50 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
</details>
## Supported Models
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | att_proj | olmo |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| Model | Model size | Template |
| -------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
> Remember to use the **SAME** template in training and inference.
Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list of models we supported.
Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
You also can add a custom chat template to [template.py](src/llmtuner/data/template.py).
You also can add a custom chat template to [template.py](src/llamafactory/data/template.py).
## Supported Training Approaches
@@ -176,7 +199,9 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
## Provided Datasets
@@ -189,6 +214,8 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -196,12 +223,12 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
<details><summary>Supervised fine-tuning datasets</summary>
- [Identity (en&zh)](data/identity.json)
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self Cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
@@ -210,7 +237,6 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
@@ -223,15 +249,17 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
@@ -246,13 +274,13 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
<details><summary>Preference datasets</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [DPO mix (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
</details>
@@ -267,59 +295,57 @@ huggingface-cli login
| Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| Optional | Minimum | Recommend |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### Hardware Requirement
\* *estimated*
| Method | Bits | 7B | 13B | 30B | 70B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB | 48GB |
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
## Getting Started
### Data Preparation
### Installation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Dependence Installation
> [!IMPORTANT]
> Installation is mandatory.
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[metrics]
pip install -e '.[torch,metrics]'
```
Extra dependencies available: deepspeed, metrics, unsloth, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
Extra dependencies available: torch, torch_npu, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.
<details><summary>For Windows users</summary>
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
@@ -329,19 +355,76 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
</details>
### LLaMA Board GUI
<details><summary>For Ascend NPU users</summary>
> [!IMPORTANT]
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#command-line-interface) for distributed training.
Join [NPU user group](assets/wechat_npu.jpg).
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e '.[torch-npu,metrics]'`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
```bash
# replace the url according to your CANN version and devices
# install CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# install CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# set env variables
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| Requirement | Minimum | Recommend |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker image:
- 32GB: [Download page](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
- 64GB: [Download page](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
</details>
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Quickstart
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
> [!TIP]
> Use `llamafactory-cli help` to show help information.
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
#### Use local environment
```bash
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
python src/train_web.py # or python -m llmtuner.webui.interface
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
```
</details>
#### Use Docker
```bash
@@ -350,7 +433,6 @@ docker run --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
--shm-size 16G \
--name llama_factory \
@@ -371,23 +453,16 @@ docker compose -f ./docker-compose.yml up -d
</details>
### Command Line Interface
See [examples/README.md](examples/README.md) for usage.
Use `python src/train_bash.py -h` to display arguments description.
### Deploy with OpenAI-style API and vLLM
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--model_name_or_path mistralai/Mistral-7B-Instruct-v0.2 \
--template mistral \
--infer_backend vllm \
--vllm_enforce_eager
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### Use ModelScope Hub
> [!TIP]
> Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
### Download from ModelScope Hub
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
@@ -395,7 +470,18 @@ If you have trouble with downloading models and datasets from Hugging Face, you
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
```
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `modelscope/Llama-2-7b-ms`.
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
### Use W&B Logger
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments.
```yaml
report_to: wandb
run_name: test_run # optional
```
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
## Projects using LLaMA Factory
@@ -424,6 +510,7 @@ If you have a project that should be incorporated, please contact via email or c
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
@@ -431,12 +518,21 @@ If you have a project that should be incorporated, please contact via email or c
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
</details>
@@ -444,7 +540,7 @@ If you have a project that should be incorporated, please contact via email or c
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation

View File

@@ -3,15 +3,17 @@
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![Citation](https://img.shields.io/badge/citation-34-green)](#使用了-llama-factory-的项目)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-44-green)](#使用了-llama-factory-的项目)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
👋 加入我们的[微信群](assets/wechat.jpg)。
@@ -23,7 +25,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
选择你的打开方式:
- **Colab**https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Colab**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **本地机器**:请见[如何使用](#如何使用)
## 目录
@@ -43,8 +46,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 项目特色
- **多种模型**LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**增量预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练ORPO 训练。
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等
- **多种精度**32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
@@ -68,55 +71,69 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`
[24/06/07] 我们支持了 **[Qwen-2](https://qwenlm.github.io/blog/qwen2/)** 系列模型的微调
[24/04/19] 我们支持了 **Meta Llama 3** 系列模型
[24/06/05] 我们支持了 **[GLM-4-9B/GLM-4-9B-Chat](https://github.com/THUDM/GLM-4)** 模型的微调
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 `examples/extras/badam`
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练24GB 可训练 Llama-2-7B-56k。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)
<details><summary>展开日志</summary>
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练24GB 可训练 Llama-2-7B-56k。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 `examples/extras/fsdp_qlora`
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 `examples/extras/loraplus`
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 `examples/extras/galore`
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA请先合并权重。
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 `examples/extras/llama_pro`
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)
[24/02/05] Qwen1.5Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力。
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall_zh` 即可使模型获得工具调用能力。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#魔搭社区下载)。
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune,例如 `--neftune_noise_alpha 5`
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。
[23/07/31] 我们支持了**数据流式加载**。请使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
[23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true``max_steps: 10000` 参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
@@ -128,44 +145,50 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)
</details>
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | att_proj | olmo |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| 模型名 | 模型大小 | Template |
| -------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块
> 对于所有“基座”Base模型`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用**对应的模板**
> 请务必在训练和推理时采用**完全一致**的模板。
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
您也可以在 [template.py](src/llmtuner/data/template.py) 中添加自己的对话模板。
您也可以在 [template.py](src/llamafactory/data/template.py) 中添加自己的对话模板。
## 训练方法
@@ -176,7 +199,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
## 数据集
@@ -189,6 +214,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -196,12 +223,12 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
<details><summary>指令微调数据集</summary>
- [Identity (en&zh)](data/identity.json)
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self Cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
@@ -210,7 +237,6 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
@@ -223,15 +249,17 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
@@ -246,13 +274,13 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
<details><summary>偏好数据集</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [DPO mix (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
</details>
@@ -267,55 +295,53 @@ huggingface-cli login
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### 硬件依赖
\* *估算值*
| 方法 | 精度 | 7B | 13B | 30B | 70B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB | 48GB |
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
## 如何使用
### 数据准备
### 安装 LLaMA Factory
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 安装依赖
> [!IMPORTANT]
> 此步骤为必需。
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[metrics]
pip install -e '.[torch,metrics]'
```
可选的额外依赖项:deepspeed、metrics、unsloth、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
可选的额外依赖项:torch、torch_npu、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
<details><summary>Windows 用户指南</summary>
@@ -329,17 +355,72 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
</details>
### LLaMA Board 可视化界面
<details><summary>昇腾 NPU 用户指南</summary>
> [!IMPORTANT]
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行分布式训练。
加入 [NPU 用户群](assets/wechat_npu.jpg)。
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e '.[torch-npu,metrics]'` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
# 安装 CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# 安装 CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker 镜像:
- 32GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
- 64GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`
</details>
### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
> [!TIP]
> 使用 `llamafactory-cli help` 显示帮助信息。
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
#### 使用本地环境
```bash
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
python src/train_web.py # 或 python -m llmtuner.webui.interface
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
```
#### 使用 Docker
@@ -350,7 +431,6 @@ docker run --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
--shm-size 16G \
--name llama_factory \
@@ -371,23 +451,16 @@ docker compose -f ./docker-compose.yml up -d
</details>
### 命令行接口
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
使用 `python src/train_bash.py -h` 查看参数文档。
### 使用 OpenAI 风格 API 和 vLLM 部署
### 利用 vLLM 部署 OpenAI API
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--model_name_or_path mistralai/Mistral-7B-Instruct-v0.2 \
--template mistral \
--infer_backend vllm \
--vllm_enforce_eager
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### 使用魔搭社区
> [!TIP]
> API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。
### 从魔搭社区下载
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
@@ -395,7 +468,18 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
```
`--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `modelscope/Llama-2-7b-ms`
`model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`
### 使用 W&B 面板
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请添加下面的参数。
```yaml
report_to: wandb
run_name: test_run # 可选
```
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
## 使用了 LLaMA Factory 的项目
@@ -424,6 +508,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
@@ -431,12 +516,21 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**MBTI性格大模型项目根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
</details>
@@ -444,7 +538,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用

View File

@@ -1,16 +1,18 @@
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
@@ -18,7 +20,11 @@ If you are using a custom dataset, please provide your dataset definition in the
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)"
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
@@ -32,31 +38,38 @@ If you are using a custom dataset, please provide your dataset definition in the
}
```
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
## Alpaca Format
----
### Supervised Fine-Tuning Dataset
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
The `system` column will be used as the system prompt if specified.
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
@@ -67,30 +80,135 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
}
```
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
### Pre-training Dataset
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
- [Example dataset](c4_demo.json)
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
In pre-training, only the `text` column will be used for model learning.
```json
{
"instruction": "user instruction",
"input": "user input",
"output": [
"chosen answer",
"rejected answer"
]
[
{"text": "document"},
{"text": "document"}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
Remember to set `"ranking": true` for the preference datasets.
### Preference Dataset
----
Preference datasets are used for reward modeling, DPO training and ORPO training.
The dataset in sharegpt format should follow the below format:
It requires a better response in `chosen` column and a worse response in `rejected` column.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
- [Example dataset](kto_en_demo.json)
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"kto_tag": "human feedback [true/false] (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### Multimodal Dataset
- [Example dataset](mllm_demo.json)
Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"images": [
"image path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt Format
### Supervised Fine-Tuning Dataset
- [Example dataset](glaive_toolcall_en_demo.json)
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
```json
[
@@ -98,7 +216,15 @@ The dataset in sharegpt format should follow the below format:
"conversations": [
{
"from": "human",
"value": "user instruction"
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
@@ -111,24 +237,114 @@ The dataset in sharegpt format should follow the below format:
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
```
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
### Preference Dataset
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
- [Example dataset](dpo_en_demo.json)
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
```json
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.
Pre-training datasets are **incompatible** with the sharegpt format.

View File

@@ -1,16 +1,18 @@
如果您使用自定义数据集,请务必`dataset_info.json` 文件中按照以下格式提供数据集定义
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**`dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练",
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"ranking": "是否为偏好数据集可选默认False",
"subset": "数据集子集的名称可选默认None",
"folder": "Hugging Face 仓库的文件夹名称可选默认None",
"ranking": "是否为偏好数据集(可选,默认:False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"num_samples": "该数据集中用于训练的样本数量。(可选,默认:None",
"columns可选": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
@@ -18,7 +20,11 @@
"history": "数据集代表历史对话的表头名称默认None",
"messages": "数据集代表消息列表的表头名称默认conversations",
"system": "数据集代表系统提示的表头名称默认None",
"tools": "数据集代表工具描述的表头名称默认None"
"tools": "数据集代表工具描述的表头名称默认None",
"images": "数据集代表图像输入的表头名称默认None",
"chosen": "数据集代表更优回答的表头名称默认None",
"rejected": "数据集代表更差回答的表头名称默认None",
"kto_tag": "数据集代表 KTO 标签的表头名称默认None"
},
"tags可选用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名默认from",
@@ -27,22 +33,28 @@
"assistant_tag": "消息中代表助手的 role_tag默认gpt",
"observation_tag": "消息中代表工具返回结果的 role_tag默认observation",
"function_tag": "消息中代表工具调用的 role_tag默认function_call",
"system_tag": "消息中代表系统提示的 role_tag默认system会覆盖 system "
"system_tag": "消息中代表系统提示的 role_tag默认system会覆盖 system column"
}
}
```
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
## Alpaca 格式
----
### 指令监督微调数据集
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
如果指定,`system` 列对应的内容将被作为系统提示词。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
```json
[
{
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
@@ -53,10 +65,11 @@
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
@@ -67,30 +80,135 @@
}
```
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery``response` 列对应的内容为模型回答。
### 预训练数据集
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意历史消息中的回答**也会被用于训练**。
- [样例数据集](c4_demo.json)
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
预训练时,只有 `text` 列中的内容会用于模型学习
```json
{
"instruction": "用户指令",
"input": "用户输入",
"output": [
"优质回答",
"劣质回答"
]
[
{"text": "document"},
{"text": "document"}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
添加偏好数据集需要额外指定 `"ranking": true`
### 偏好数据集
----
偏好数据集用于奖励模型训练、DPO 训练和 ORPO 训练。
而 sharegpt 格式的数据集按照以下方式组织:
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
- [样例数据集](kto_en_demo.json)
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"kto_tag": "人类反馈 [true/false](必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### 多模态数据集
- [样例数据集](mllm_demo.json)
多模态数据集需要额外添加一个 `images` 列,包含输入图像的路径。目前我们仅支持单张图像输入。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"images": [
"图像路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt 格式
### 指令监督微调数据集
- [样例数据集](glaive_toolcall_zh_demo.json)
相比 alpaca 格式的数据集sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。
```json
[
@@ -98,7 +216,15 @@
"conversations": [
{
"from": "human",
"value": "用户指令"
"value": "人类指令"
},
{
"from": "function_call",
"value": "工具参数"
},
{
"from": "observation",
"value": "工具结果"
},
{
"from": "gpt",
@@ -111,24 +237,114 @@
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
```
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
### 偏好数据集
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
- [样例数据集](dpo_zh_demo.json)
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
},
{
"from": "human",
"value": "人类指令"
}
],
"chosen": {
"from": "gpt",
"value": "优质回答"
},
"rejected": {
"from": "gpt",
"value": "劣质回答"
}
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
```json
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "人类指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
Sharegpt 格式中的 KTO 数据集和多模态数据集与 alpaca 格式的类似。
预训练数据集**不支持** sharegpt 格式。

View File

@@ -1 +0,0 @@
3779ddbc040543ab1834ef216c983d6fcc06cc9a

View File

@@ -1 +0,0 @@
a97cf9475291591843976554878568e046d8a46d

View File

@@ -1 +0,0 @@
25508714b7879a1e5a6764ba7f979a980f549f1a

View File

@@ -1 +0,0 @@
7cb6a7d11455bddc3d495750a2392683d775b184

View File

@@ -1 +0,0 @@
f5cb08305ff5dc9c17a09809c54c8c8834aadc70

View File

@@ -1 +0,0 @@
aee47b7b443496e37808d7f34ef10403ff99bcc3

View File

@@ -1,37 +0,0 @@
import json
from typing import Any, Dict, Generator, List, Tuple
import datasets
_DESCRIPTION = "An example of dataset."
_CITATION = ""
_HOMEPAGE = ""
_LICENSE = ""
_URL = "examples.json"
class ExampleDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"input": datasets.Value("string"),
"output": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_path = dl_manager.download(_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
def _generate_examples(self, filepath: str) -> Generator[Tuple[int, Dict[str, Any]], None, None]:
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
for key, example in enumerate(example_dataset):
yield key, example

View File

@@ -1 +0,0 @@
4748dff00d1dc42768a5b6cc772143c313017812

View File

@@ -34,7 +34,8 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"output": datasets.Sequence(datasets.Value("string")),
"chosen": datasets.Value("string"),
"rejected": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
@@ -79,5 +80,5 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
break
prompt = prompt[:human_idx]
yield key, {"instruction": query, "output": [r_accept, r_reject], "history": history}
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
key += 1

View File

@@ -1 +0,0 @@
274079ea921762be356de85b18f13fa60b7ba8cb

View File

@@ -1 +0,0 @@
57fd080be5bffe4153fe3ee26a175e3d56da30f3

View File

@@ -1 +0,0 @@
736bcedea2b24a1414765c6d69cbdafaea839f3c

30
data/wiki_demo.txt Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
c9cf509b7fdac5490cfd6dae72c2d7b8a60af6cb

View File

@@ -10,8 +10,6 @@ services:
- ./hf_cache:/root/.cache/huggingface/
- ./data:/app/data
- ./output:/app/output
environment:
- CUDA_VISIBLE_DEVICES=0
ports:
- "7860:7860"
ipc: host

View File

@@ -19,7 +19,7 @@ import pandas as pd
_CITATION = """\
@article{huang2023ceval,
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
journal={arXiv preprint arXiv:2305.08322},
year={2023}
@@ -133,25 +133,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "test", f"{task_name}_test.csv"
),
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "val", f"{task_name}_val.csv"
),
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "dev", f"{task_name}_dev.csv"
),
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
},
),
]

View File

@@ -37,73 +37,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
_URL = "cmmlu.zip"
task_list = [
'agronomy',
'anatomy',
'ancient_chinese',
'arts',
'astronomy',
'business_ethics',
'chinese_civil_service_exam',
'chinese_driving_rule',
'chinese_food_culture',
'chinese_foreign_policy',
'chinese_history',
'chinese_literature',
'chinese_teacher_qualification',
'clinical_knowledge',
'college_actuarial_science',
'college_education',
'college_engineering_hydrology',
'college_law',
'college_mathematics',
'college_medical_statistics',
'college_medicine',
'computer_science',
'computer_security',
'conceptual_physics',
'construction_project_management',
'economics',
'education',
'electrical_engineering',
'elementary_chinese',
'elementary_commonsense',
'elementary_information_and_technology',
'elementary_mathematics',
'ethnology',
'food_science',
'genetics',
'global_facts',
'high_school_biology',
'high_school_chemistry',
'high_school_geography',
'high_school_mathematics',
'high_school_physics',
'high_school_politics',
'human_sexuality',
'international_law',
'journalism',
'jurisprudence',
'legal_and_moral_basis',
'logical',
'machine_learning',
'management',
'marketing',
'marxist_theory',
'modern_chinese',
'nutrition',
'philosophy',
'professional_accounting',
'professional_law',
'professional_medicine',
'professional_psychology',
'public_relations',
'security_study',
'sociology',
'sports_science',
'traditional_chinese_medicine',
'virology',
'world_history',
'world_religions',
"agronomy",
"anatomy",
"ancient_chinese",
"arts",
"astronomy",
"business_ethics",
"chinese_civil_service_exam",
"chinese_driving_rule",
"chinese_food_culture",
"chinese_foreign_policy",
"chinese_history",
"chinese_literature",
"chinese_teacher_qualification",
"clinical_knowledge",
"college_actuarial_science",
"college_education",
"college_engineering_hydrology",
"college_law",
"college_mathematics",
"college_medical_statistics",
"college_medicine",
"computer_science",
"computer_security",
"conceptual_physics",
"construction_project_management",
"economics",
"education",
"electrical_engineering",
"elementary_chinese",
"elementary_commonsense",
"elementary_information_and_technology",
"elementary_mathematics",
"ethnology",
"food_science",
"genetics",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_geography",
"high_school_mathematics",
"high_school_physics",
"high_school_politics",
"human_sexuality",
"international_law",
"journalism",
"jurisprudence",
"legal_and_moral_basis",
"logical",
"machine_learning",
"management",
"marketing",
"marxist_theory",
"modern_chinese",
"nutrition",
"philosophy",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_study",
"sociology",
"sports_science",
"traditional_chinese_medicine",
"virology",
"world_history",
"world_religions",
]

View File

@@ -136,31 +136,25 @@ class MMLU(datasets.GeneratorBasedBuilder):
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "test", f"{task_name}_test.csv"
),
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "val", f"{task_name}_val.csv"
),
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "dev", f"{task_name}_dev.csv"
),
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
for i, instance in enumerate(df.to_dict(orient="records")):

View File

@@ -1,48 +1,233 @@
We provide diverse examples about fine-tuning LLMs.
Make sure to execute these commands in the `LLaMA-Factory` directory.
## Table of Contents
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)
## Examples
### LoRA Fine-Tuning on A Single GPU
#### (Continuous) Pre-Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
```
examples/
├── lora_single_gpu/
│ ├── pretrain.sh: Do continuous pre-training using LoRA
│ ├── sft.sh: Do supervised fine-tuning using LoRA
│ ├── reward.sh: Do reward modeling using LoRA
│ ├── ppo.sh: Do PPO training using LoRA
│ ├── dpo.sh: Do DPO training using LoRA
│ ├── orpo.sh: Do ORPO training using LoRA
│ ├── prepare.sh: Save tokenized dataset
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
├── qlora_single_gpu/
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models using QLoRA
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models using QLoRA
│ ├── awq.sh: Fine-tune 4-bit AWQ models using QLoRA
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
├── lora_multi_gpu/
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
│ └── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
├── full_multi_gpu/
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after full tuning
├── merge_lora/
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ
├── inference/
│ ├── cli_demo.sh: Launch a command line interface with LoRA adapters
│ ├── api_demo.sh: Launch an OpenAI-style API with LoRA adapters
│ ├── web_demo.sh: Launch a web interface with LoRA adapters
│ └── evaluate.sh: Evaluate model on the MMLU/CMMLU/C-Eval benchmarks with LoRA adapters
└── extras/
├── galore/
│ └── sft.sh: Fine-tune model with GaLore
├── badam/
│ └── sft.sh: Fine-tune model with BAdam
├── loraplus/
│ └── sft.sh: Fine-tune model using LoRA+
├── mod/
│ └── sft.sh: Fine-tune model using Mixture-of-Depths
├── llama_pro/
│ ├── expand.sh: Expand layers in the model
│ └── sft.sh: Fine-tune the expanded model
└── fsdp_qlora/
└── sft.sh: Fine-tune quantized model with FSDP+QLoRA
#### Supervised Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
```
#### Reward Modeling
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
```
#### PPO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
```
#### KTO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
```
#### Preprocess Dataset
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
```
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
```
### QLoRA Fine-Tuning on a Single GPU
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
```
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
```
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
```
### LoRA Fine-Tuning on Multiple GPUs
#### Supervised Fine-Tuning on Single Node
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
```
### LoRA Fine-Tuning on Multiple NPUs
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
```bash
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
```
### Full-Parameter Fine-Tuning on Multiple GPUs
#### Supervised Fine-Tuning on Single Node
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
```
### Merging LoRA Adapters and Quantization
#### Merge LoRA Adapters
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### Quantizing Model using AutoGPTQ
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### Inferring LoRA Fine-Tuned Models
Use `CUDA_VISIBLE_DEVICES=0,1` to infer models on multiple devices.
#### Use CLI
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### Use Web UI
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### Launch OpenAI-style API
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### Extras
#### Full-Parameter Fine-Tuning using GaLore
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### Mixture-of-Depths Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro Fine-Tuning
```bash
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA Fine-Tuning
```bash
bash examples/extras/fsdp_qlora/single_node.sh
```

View File

@@ -1,48 +1,233 @@
我们提供了多样化的大模型微调示例脚本。
请确保在 `LLaMA-Factory` 目录下执行下述命令。
## 目录
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
- [多 NPU LoRA 微调](#多-npu-lora-微调)
- [多 GPU 全参数微调](#多-gpu-全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)
## 示例
### 单 GPU LoRA 微调
#### (增量)预训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
```
examples/
├── lora_single_gpu/
│ ├── pretrain.sh: 基于 LoRA 进行增量预训练
│ ├── sft.sh: 基于 LoRA 进行指令监督微调
│ ├── reward.sh: 基于 LoRA 进行奖励模型训练
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
│ ├── prepare.sh: 保存预处理后的数据集
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
├── qlora_single_gpu/
│ ├── bitsandbytes.sh: 基于 QLoRA 微调 4/8 比特 BNB 模型
│ ├── gptq.sh: 基于 QLoRA 微调 4/8 比特 GPTQ 模型
│ ├── awq.sh: 基于 QLoRA 微调 4 比特 AWQ 模型
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
├── lora_multi_gpu/
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
│ └── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
├── full_multi_gpu/
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
│ └── predict.sh: 基于全量训练进行批量预测并计算 BLEU 和 ROUGE 分数
├── merge_lora/
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型
├── inference/
│ ├── cli_demo.sh: 启动 LoRA 模型的命令行推理接口
│ ├── api_demo.sh: 启动 LoRA 模型的 OpenAI 风格 API
│ ├── web_demo.sh: 启动 LoRA 模型的浏览器推理接口
│ └── evaluate.sh: 在 MMLU/CMMLU/C-Eval 数据集上评测 LoRA 模型
└── extras/
├── galore/
│ └── sft.sh: 使用 GaLore 训练模型
├── badam/
│ └── sft.sh: 使用 BAdam 训练模型
├── loraplus/
│ └── sft.sh: 使用 LoRA+ 训练模型
├── mod/
│ └── sft.sh: 使用深度混合训练模型
├── llama_pro/
│ ├── expand.sh: 扩展模型中的层
│ └── sft.sh: 训练扩展后的模型
└── fsdp_qlora/
└── sft.sh: 使用 FSDP+QLoRA 微调量化模型
#### 指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
```
#### 多模态指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
```
#### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
```
#### PPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
```
#### KTO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
```
#### 预处理数据集
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
```
#### 在 MMLU/CMMLU/C-Eval 上评估
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
```
### 单 GPU QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
```
#### 基于 4 比特 AWQ 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
```
#### 基于 2 比特 AQLM 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
```
### 多 GPU LoRA 微调
#### 在单机上进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```
#### 在多机上进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
```
### 多 NPU LoRA 微调
#### 使用 DeepSpeed ZeRO-0 进行指令监督微调
```bash
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
```
### 多 GPU 全参数微调
#### 在单机上进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```
#### 在多机上进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
```
### 合并 LoRA 适配器与模型量化
#### 合并 LoRA 适配器
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### 使用 AutoGPTQ 量化模型
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### 推理 LoRA 模型
使用 `CUDA_VISIBLE_DEVICES=0,1` 进行多卡推理。
#### 使用命令行接口
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### 使用浏览器界面
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### 启动 OpenAI 风格 API
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### 杂项
#### 使用 GaLore 进行全参数训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ 微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### 深度混合微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro 微调
```bash
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA 微调
```bash
bash examples/extras/fsdp_qlora/single_node.sh
```

View File

@@ -5,16 +5,16 @@ downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: fp16
mixed_precision: fp16 # or bf16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static

View File

@@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,16 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1 # the number of nodes
num_processes: 4 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 1
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--mixture_of_depths convert \
--output_dir ../../../saves/LLaMA2-7B/mod/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--optim paged_adamw_8bit \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 2
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_badam \
--badam_switch_mode descending \
--badam_switch_block_every 50 \
--badam_verbose 2 \
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### ddp
ddp_timeout: 180000000
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,40 +0,0 @@
#!/bin/bash
pip install "transformers>=4.39.1"
pip install "accelerate>=0.28.0"
pip install "bitsandbytes>=0.43.0"
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file ../../accelerate/fsdp_config.yaml \
../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-70b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,6 @@
#!/bin/bash
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file examples/accelerate/fsdp_config.yaml \
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_galore: true
galore_layerwise: true
galore_target: mlp,self_attn
galore_rank: 128
galore_scale: 2.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,36 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_galore \
--galore_layerwise \
--galore_target mlp,self_attn \
--galore_rank 128 \
--galore_scale 2.0 \
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -1,6 +1,6 @@
#!/bin/bash
python ../../../scripts/llama_pro.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--output_dir ../../../models/llama2-7b-pro \
python scripts/llama_pro.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-instruct-pro \
--num_expand 8

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: models/llama3-8b-instruct-pro
### method
stage: sft
do_train: true
finetuning_type: freeze
freeze_trainable_layers: 8
freeze_trainable_modules: all
use_llama_pro: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,34 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path ../../../models/llama2-7b-pro \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type freeze \
--name_module_trainable all \
--num_layer_trainable 8 \
--use_llama_pro \
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
loraplus_lr_ratio: 16.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--loraplus_lr_ratio 16.0 \
--output_dir ../../saves/LLaMA2-7B/loraplus/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
mixture_of_depths: convert
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b-mod/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
optim: paged_adamw_8bit
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,23 @@
### model
model_name_or_path: saves/llama3-8b/full/sft
### method
stage: sft
do_predict: true
finetuning_type: full
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
### ddp
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,38 +0,0 @@
#!/bin/bash
python -m torch.distributed.run \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,18 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/predict \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_eval_batch_size 1 \
--max_samples 20 \
--predict_with_generate

View File

@@ -1,32 +0,0 @@
#!/bin/bash
deepspeed --num_gpus 4 ../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -1,12 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template fewshot \
--finetuning_type lora \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4

View File

@@ -0,0 +1,2 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3

View File

@@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora

View File

@@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: vllm
vllm_enforce_eager: true

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### ddp
ddp_timeout: 180000000
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### ddp
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file ../accelerate/master_config.yaml \
../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch \
--config_file ../accelerate/single_config.yaml \
../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### ddp
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z0_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage dpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--dpo_ftx 1.0 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: dpo
do_train: true
finetuning_type: lora
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid # [sigmoid (dpo), orpo, simpo]
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/dpo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,19 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
finetuning_type: lora
### dataset
task: mmlu
split: test
template: fewshot
lang: en
n_shot: 5
### output
save_dir: saves/llama3-8b/lora/eval
### eval
batch_size: 4

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: kto
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: kto_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/kto
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
reward_model: saves/llama3-8b/lora/reward
### method
stage: ppo
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/ppo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### generate
max_new_tokens: 512
top_k: 0
top_p: 0.9

View File

@@ -0,0 +1,24 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
stage: sft
do_predict: true
finetuning_type: lora
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true

View File

@@ -0,0 +1,37 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: pt
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: c4_demo
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: rm
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/reward
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,21 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
tokenized_path: saves/llama3-8b/dataset/sft
### output
output_dir: saves/llama3-8b/lora/sft
overwrite_output_dir: true

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: llava-hf/llava-1.5-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: mllm_demo
template: vicuna
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llava1_5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage orpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage ppo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset alpaca_gpt4_en \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--reward_model ../../saves/LLaMA2-7B/lora/reward \
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 512 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--top_k 0 \
--top_p 0.9 \
--max_new_tokens 256 \
--plot_loss \
--fp16

View File

@@ -1,19 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--output_dir ../../saves/LLaMA2-7B/lora/predict \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_eval_batch_size 1 \
--max_samples 20 \
--predict_with_generate

View File

@@ -1,18 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES= python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--max_samples 3000 \
--tokenized_path ../../saves/datasets/sft

View File

@@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage pt \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset c4_demo \
--dataset_dir ../../data \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 10000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage rm \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/reward \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 5000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,11 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
### export
export_dir: models/llama3_gptq
export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.json
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@@ -0,0 +1,13 @@
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora
### export
export_dir: models/llama3_lora_sft
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@@ -1,11 +0,0 @@
#!/bin/bash
# DO NOT use quantized model or quantization_bit when merging lora weights
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora \
--export_dir ../../models/llama2-7b-sft \
--export_size 2 \
--export_legacy_format False

View File

@@ -1,10 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
--model_name_or_path ../../models/llama2-7b-sft \
--template default \
--export_dir ../../models/llama2-7b-sft-int4 \
--export_quantization_bit 4 \
--export_quantization_dataset ../../data/c4_demo.json \
--export_size 2 \
--export_legacy_format False

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -13,7 +13,7 @@ select = ["C", "E", "F", "I", "W"]
[tool.ruff.lint.isort]
lines-after-imports = 2
known-first-party = ["llmtuner"]
known-first-party = ["llamafactory"]
known-third-party = [
"accelerate",
"datasets",

View File

@@ -1,17 +1,19 @@
torch>=1.13.1
transformers>=4.37.2
datasets>=2.14.3
accelerate>=0.27.2
peft>=0.10.0
trl>=0.8.1
transformers>=4.41.2
datasets>=2.16.0
accelerate>=0.30.1
peft>=0.11.1
trl>=0.8.6
gradio>=4.0.0
scipy
einops
sentencepiece
tiktoken
protobuf
uvicorn
pydantic
fastapi
sse-starlette
matplotlib
matplotlib>=3.7.0
fire
packaging
pyyaml

View File

@@ -3,24 +3,22 @@
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
from typing import Optional
import fire
import torch
from deepspeed.accelerator import get_accelerator # type: ignore
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
from llmtuner import ChatModel
from llamafactory.chat import ChatModel
def calculate_flops(
model_name_or_path: str,
batch_size: Optional[int] = 1,
seq_length: Optional[int] = 256,
flash_attn: Optional[bool] = False,
batch_size: int = 1,
seq_length: int = 256,
flash_attn: str = "auto",
):
with get_accelerator().device(0):
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="vanilla", flash_attn=flash_attn))
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)

View File

@@ -4,7 +4,7 @@
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
import math
from typing import Optional
from typing import Literal
import fire
import torch
@@ -12,10 +12,10 @@ from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
from llmtuner.data import get_dataset
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.hparams import get_train_args
from llmtuner.model import load_tokenizer
from llamafactory.data import get_dataset
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models
@@ -25,12 +25,12 @@ BASE_BS = 4_000_000 # from llama paper
def calculate_lr(
model_name_or_path: str,
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
stage: Optional[str] = "sft",
dataset: Optional[str] = "alpaca_en",
dataset_dir: Optional[str] = "data",
template: Optional[str] = "default",
cutoff_len: Optional[int] = 1024, # i.e. maximum input length during training
is_mistral: Optional[bool] = False, # mistral model uses a smaller learning rate,
stage: Literal["pt", "sft"] = "sft",
dataset: str = "alpaca_en",
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 1024, # i.e. maximum input length during training
is_mistral: bool = False, # mistral model uses a smaller learning rate,
):
model_args, data_args, training_args, _, _ = get_train_args(
dict(
@@ -44,8 +44,9 @@ def calculate_lr(
overwrite_cache=True,
)
)
tokenizer = load_tokenizer(model_args)
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
if stage == "pt":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
elif stage == "sft":
@@ -53,9 +54,7 @@ def calculate_lr(
else:
raise NotImplementedError
dataloader = DataLoader(
dataset=trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, pin_memory=True
)
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
valid_tokens, total_tokens = 0, 0
for batch in tqdm(dataloader):
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()

116
scripts/cal_ppl.py Normal file
View File

@@ -0,0 +1,116 @@
# coding=utf-8
# Calculates the ppl on the dataset of the pre-trained models.
# Usage: python cal_ppl.py --model_name_or_path path_to_model --save_name ppl.json
import json
from dataclasses import dataclass
from typing import Any, Dict, Literal, Optional, Sequence
import fire
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
from llamafactory.data import get_dataset
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_train_args
from llamafactory.model import load_model, load_tokenizer
@dataclass
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
r"""
Data collator for pairwise data.
"""
train_on_prompt: bool = False
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
chosen_features = []
for feature in features:
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
input_ids = feature["prompt_ids"] + feature["chosen_ids"]
attention_mask = [1] * (prompt_len + answer_len)
labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
return super().__call__(chosen_features)
def cal_ppl(
model_name_or_path: str,
save_name: str,
batch_size: int = 4,
stage: Literal["pt", "sft", "rm"] = "sft",
dataset: str = "alpaca_en",
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 1024,
max_samples: Optional[int] = None,
train_on_prompt: bool = False,
):
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
dict(
stage=stage,
model_name_or_path=model_name_or_path,
dataset=dataset,
dataset_dir=dataset_dir,
template=template,
cutoff_len=cutoff_len,
max_samples=max_samples,
train_on_prompt=train_on_prompt,
output_dir="dummy_dir",
overwrite_cache=True,
)
)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
if stage == "pt":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
elif stage == "sft":
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
elif stage == "rm":
data_collator = PairwiseDataCollatorWithPadding(
tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
)
else:
raise NotImplementedError
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
criterion = torch.nn.CrossEntropyLoss(reduction="none")
total_ppl = 0
perplexities = []
batch: Dict[str, "torch.Tensor"]
with torch.no_grad():
for batch in tqdm(dataloader):
batch = batch.to(model.device)
outputs = model(**batch)
shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
shift_labels: "torch.Tensor" = batch["labels"][..., 1:]
loss_mask = shift_labels != IGNORE_INDEX
flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1)
flatten_labels = shift_labels.contiguous().view(-1)
token_logps: "torch.Tensor" = criterion(flatten_logits, flatten_labels)
token_logps = token_logps.contiguous().view(shift_logits.size(0), -1)
sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
total_ppl += sentence_logps.exp().sum().item()
perplexities.extend(sentence_logps.exp().tolist())
with open(save_name, "w", encoding="utf-8") as f:
json.dump(perplexities, f, indent=2)
print("Average perplexity is {:.2f}".format(total_ppl / len(perplexities)))
print("Perplexities have been saved at {}.".format(save_name))
if __name__ == "__main__":
fire.Fire(cal_ppl)

View File

@@ -3,22 +3,21 @@
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
from collections import defaultdict
from typing import Optional
import fire
from tqdm import tqdm
from llmtuner.data import get_dataset
from llmtuner.hparams import get_train_args
from llmtuner.model import load_tokenizer
from llamafactory.data import get_dataset
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer
def length_cdf(
model_name_or_path: str,
dataset: Optional[str] = "alpaca_en",
dataset_dir: Optional[str] = "data",
template: Optional[str] = "default",
interval: Optional[int] = 1000,
dataset: str = "alpaca_en",
dataset_dir: str = "data",
template: str = "default",
interval: int = 1000,
):
model_args, data_args, training_args, _, _ = get_train_args(
dict(
@@ -32,8 +31,8 @@ def length_cdf(
overwrite_cache=True,
)
)
tokenizer = load_tokenizer(model_args)
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
tokenizer_module = load_tokenizer(model_args)
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
total_num = len(trainset)
length_dict = defaultdict(int)
for sample in tqdm(trainset["input_ids"]):

Some files were not shown because too many files have changed in this diff Show More