488 Commits

Author SHA1 Message Date
hiyouga
f0bff18324 Update publish.yml
Former-commit-id: 60b0633e29c9e701aa3813bd1fdc0282bd07f7c8
2024-06-19 20:46:33 +08:00
hiyouga
b631bdc5b7 release v0.8.2
Former-commit-id: 3050bbe51d46acd8473275d2713fc28932e4a3d3
2024-06-19 20:42:09 +08:00
hiyouga
c65f7e9bd5 fix jinja template
Former-commit-id: 0ebf2e2ee23918d28b0cbb20ba456732d6eedfbb
2024-06-19 20:03:50 +08:00
hiyouga
3e0fa4a8da fix templates
Former-commit-id: 6f357d59b73309c5955683008632e7f320e7dcb1
2024-06-19 17:44:05 +08:00
hiyouga
235ed85b0f fix bug
Former-commit-id: 412139eaa2fde98ba19e1257d21144382a59f0d6
2024-06-19 03:49:23 +08:00
hiyouga
1ca639a777 use prefix to replace force system
Former-commit-id: 731d9a964f1c3dbfb83825524d697831e691fb9d
2024-06-19 03:39:52 +08:00
hiyouga
e36a994fe6 fix tool formatter, allow parallel function #4362
Former-commit-id: b8f16c976db4ecec1cc8558851c8cbfb6a5b7e9c
2024-06-19 03:23:51 +08:00
hoshi-hiyouga
19ffcfea76 Merge pull request #4173 from mMrBun/main
Implemented the tool_formatter and tool_extractor for glm4 and Qwen2 tool_format

Former-commit-id: 36b02ceed40198ecd5d559ee4ebef9205442ded2
2024-06-19 03:18:55 +08:00
hiyouga
85f3a09c83 tiny fix
Former-commit-id: bb750fa3dde03ec024ae75596ecd4b884cb126c6
2024-06-18 23:32:18 +08:00
hoshi-hiyouga
60b9a9c1fa Merge pull request #4314 from EliMCosta/patch-2
Fix Dockerfile

Former-commit-id: a123a42d98f5c49446762c1d4cfc674d2e4f61b1
2024-06-18 23:30:59 +08:00
hoshi-hiyouga
984e38575c Merge pull request #4309 from EliMCosta/patch-1
Add Magpie and Webinstruct dataset samples

Former-commit-id: 70966de5d4df51a41fef1da5a919dd622aa9c86c
2024-06-18 23:30:19 +08:00
hiyouga
665df5d733 add deepseek coder v2 #4346
Former-commit-id: d83d3846d8e3bf5c40d4b90c24e2c5909ec61864
2024-06-18 22:53:54 +08:00
hiyouga
4bc0bea0e9 fix #4357
Former-commit-id: a6741bba8cebd16a6a3f97a2dc81057d0e27eb39
2024-06-18 22:42:45 +08:00
hoshi-hiyouga
5cfa342f01 Merge pull request #4334 from zzxzz12345/bugfix/add-pandas-versions
Update requirements.txt

Former-commit-id: 219eb5b346bce7e13c2c3511c1638f9dde595787
2024-06-18 22:30:35 +08:00
hoshi-hiyouga
c106cc24e4 Update requirements.txt
Former-commit-id: da8684f9f0b0103d4fa81279343a48ecd0fcc0cd
2024-06-18 22:27:24 +08:00
hiyouga
372da52d4a fix #4335
Former-commit-id: 2ab449adbb160f339a0586edeb846fa311ad8382
2024-06-18 22:08:56 +08:00
hiyouga
875270b851 lint
Former-commit-id: a19a7ac99af62b6715c96274f6350b124a784331
2024-06-17 22:35:56 +08:00
hiyouga
43fab306b6 update chat engine #4335
Former-commit-id: b163df7de48777e4319c9ccc736b0acdd5f473ed
2024-06-17 19:07:17 +08:00
hiyouga
77242f4169 update readme
Former-commit-id: 07c629f77c3978f339402e578cde1aede3f37699
2024-06-17 18:47:24 +08:00
hiyouga
60d9896a70 fix #4326
Former-commit-id: 3c2c45812a720d92f7f5b15b9f03370fe6bf069e
2024-06-17 18:17:48 +08:00
hiyouga
485a80d294 tiny fix
Former-commit-id: 2289436567a7860d25d9da0afb39e4a3e5e83839
2024-06-17 17:47:25 +08:00
胡翀
63bfe9967e Update requirements.txt
add pandas version requirements

Former-commit-id: ed1cf559aa2d02588aacf55a17b439473651f626
2024-06-17 16:45:57 +08:00
Eli Costa
a720b82e63 Fix Dockerfile
Adds the commands to correctly execute LLama-Factory servers

Former-commit-id: 22af40f0895a6f88709a495febeca8507d41d989
2024-06-16 19:16:23 -03:00
Eli Costa
d3b0048d8c Update README_zh.md
Fix details tag in datasets menus

Former-commit-id: d79c1bd4806e9ea13115fabebf9da2d19b0a52be
2024-06-16 11:34:31 -03:00
Eli Costa
9a0aca42a5 Update README_zh.md
Add Magpie and WebInstruct to README

Former-commit-id: 6cf5323959fe9500ba06ab28980fcc8f62e1373f
2024-06-16 11:22:06 -03:00
Eli Costa
5e802b0645 Update README.md
Add Magpie and Webinstruct to README

Former-commit-id: 2b32b9263f12605e48e11dce9b5fbb746d790745
2024-06-16 11:19:25 -03:00
hoshi-hiyouga
ca67b7a568 Update parser.py
Former-commit-id: d10c97193d08bd368aca1a72f0d1d8a96c76765d
2024-06-16 02:57:00 +08:00
hiyouga
76cd879c84 update pr template
Former-commit-id: 0b7c29674fda10c0ac87e0a0c75990feabb5a3de
2024-06-16 01:43:43 +08:00
hoshi-hiyouga
e0c049e590 Merge pull request #4307 from hiyouga/pissa
Support pissa

Former-commit-id: e7c0eefe96540c106162f5d252476b10b97ae696
2024-06-16 01:41:50 +08:00
hiyouga
727943f078 fix tol
Former-commit-id: bdb54bcb477126687db789bd89f2df84e424a2a3
2024-06-16 01:38:44 +08:00
hiyouga
8393b08666 Update tests.yml
Former-commit-id: 82e83615a706293abbf266d11c57caedafdd4c5b
2024-06-16 01:22:23 +08:00
hiyouga
9049f72d2f increase tol
Former-commit-id: c29071445e34aed23123fdf883a4d877744a1b0e
2024-06-16 01:21:06 +08:00
hiyouga
32f45c9e91 support pissa
Former-commit-id: ef8e45f2eaf466c54e9a671512a2974575677b08
2024-06-16 01:08:12 +08:00
hiyouga
05f3a3c944 tiny fix
Former-commit-id: f7f440986b0ae3b38ea9f2da80789629d4f79ea1
2024-06-16 01:06:41 +08:00
hiyouga
14f7bfc545 use fixture
Former-commit-id: 10761985691b9f934f7689c1f82aa6dd68febcca
2024-06-15 20:06:17 +08:00
hiyouga
7f90b0cd20 add tests
Former-commit-id: 484634ee9c982e82e919ff67d507e0210345182d
2024-06-15 19:51:20 +08:00
hiyouga
308abfec6c add minicpm #4227
Former-commit-id: e1bb18ce60be9a1b203989def30f1b9194286325
2024-06-15 17:58:52 +08:00
hiyouga
bb88536166 add license
Former-commit-id: 69cfc98d7c81756a5ab6bf962240e393e449fef0
2024-06-15 17:54:33 +08:00
hiyouga
d2df3f2d6e update readme
Former-commit-id: a43d302aa79cbfb9b0606e855b4c1af6865d8e68
2024-06-15 05:13:16 +08:00
hiyouga
2abfad9c1f fix #4271
Former-commit-id: 03707e78d29bfcf5d395a64bb38632bdb3ff47ce
2024-06-15 05:11:33 +08:00
hiyouga
2af932d969 disable DP
Former-commit-id: c18fd609d268389f3e65274992045a6c9f8e6c1f
2024-06-15 04:57:19 +08:00
hiyouga
c29fa61a9c fix #4292
Former-commit-id: 4cd4c179d24eab0fcaec2b29b9dd71970f877fe8
2024-06-15 04:47:13 +08:00
hiyouga
a30931fe0f fix #4295
Former-commit-id: 08f657868f9d605b837c5d8c2946a25cc05c8735
2024-06-15 04:34:55 +08:00
hiyouga
3ff9b87012 add test cases
Former-commit-id: 731176ff34cdf0cbf6b41c40c69f4ceb54c2daf6
2024-06-15 04:05:54 +08:00
hiyouga
f4f315fd11 Update README.md
Former-commit-id: f8d701cd3ce2e56f95b4f5439b8b48d5b62e0d2b
2024-06-13 16:02:21 +08:00
hiyouga
530165d9a5 update examples
Former-commit-id: d6bf6231290d79eb3a63e711f18fa711ef18a4f6
2024-06-13 03:26:10 +08:00
hiyouga
dbd1458adf add quant check in webui export tab
Former-commit-id: 6455ca07061ae9858cd7bc996b28be1fde697a3d
2024-06-13 03:19:18 +08:00
hiyouga
dedefecd2b Update llama3_full_sft_ds3.yaml
Former-commit-id: e715af62d521112d9c155cfa91fbb42fa0e77710
2024-06-13 03:16:20 +08:00
hiyouga
46f441dd37 update examples
Former-commit-id: 19681f93db399d695aa8e35f8ec2a9e720875baa
2024-06-13 03:15:06 +08:00
hiyouga
49b58fd6af fix #4221
Former-commit-id: 05a3be4853b941909e7d193c31e8d62c8c5f879b
2024-06-13 02:48:21 +08:00
hiyouga
103a507b39 fix #4209
DeepSpeed ZeRO3 has inflight param error when calling model.eval()


Former-commit-id: 4be013f18ea6a35b5a11db98db5f0670ffb41619
2024-06-13 02:25:50 +08:00
hiyouga
0a75224f62 clean code
Former-commit-id: f54cafd5c7f0383370d1a2f357834a61a97397ce
2024-06-13 01:58:16 +08:00
hoshi-hiyouga
04d7629abf Merge pull request #4246 from hzhaoy/adapt-vllm-v0.5.0
adapt vllm==0.5.0

Former-commit-id: 1068e25fc8b89f11cc79b164ee4aef9ce137ad4c
2024-06-13 01:54:02 +08:00
hiyouga
1b6786a21f add neo-sft dataset
Former-commit-id: 34863fa7cb641ceca92e3a2eec914126db537b62
2024-06-13 01:00:56 +08:00
hiyouga
5080f2314c fix lint
Former-commit-id: b170165679317af2b3f03633afac27661b3deb06
2024-06-13 00:48:44 +08:00
hiyouga
41beb7f0a3 fix docker compose usage
Former-commit-id: 59a5bd5d5c8d2a44e2dad26b74e77a45e109c8d6
2024-06-13 00:07:48 +08:00
hzhaoy
799873aa14 adapt vllm==0.5.0
Former-commit-id: 02afd9ff64f23e6707ac739ae1269f41bd70c340
2024-06-12 18:29:03 +08:00
hiyouga
fe2c7eaa93 update readme
Former-commit-id: a436aaa83f0cf12c8f404459e5486f9369d538ec
2024-06-12 17:39:12 +08:00
hiyouga
6392d45ea7 fix #4242
Former-commit-id: cf260e7af03f49aa5e3d6daf3b27738ff9b9bcb8
2024-06-12 16:50:11 +08:00
hoshi-hiyouga
c60ea675d7 Merge pull request #4234 from kimdwkimdw/patch-1
Support vllm==0.5.0

Former-commit-id: 0a9da057c9e7ef11cd709b20263c3d2e4c2d72ed
2024-06-12 16:39:09 +08:00
Arthur Kim
16c7c92396 Support vllm==0.5.0
Former-commit-id: e7a8ffd7af21bc3759f055033ba2209fa7a1be0e
2024-06-12 16:49:12 +09:00
hoshi-hiyouga
7598b37543 Merge pull request #4204 from dignfei/main
fixbug:llama3在增量预训练时应该使用<|end_of_text|>标识文本的结束

Former-commit-id: e566342636faf0031a0ba5d5dd4fcff8401a2b76
2024-06-11 17:06:10 +08:00
hoshi-hiyouga
cc9717e2f2 Update pretrain.py
Former-commit-id: e2317b2a84149e39fddfd6366be3de23dfb71f82
2024-06-11 17:02:14 +08:00
hiyouga
08f2f99f4b fix deepspeed version
Former-commit-id: 938a69bb07d4de7d82928ff01c582032162c1480
2024-06-11 16:52:36 +08:00
d
77bf3d66c7 经过大量的增量预训练,进行对比试验,发现这个bug:llama3在预训练时使用的tokenizer.eos_toke是'<|end_of_text|>' ,这里在每条数据后面也得用这个,而不是'<|eot_id|>',否则很容易导致严重的性能下降
Former-commit-id: ef470561f742b16eaa0f99c4cadecd7c84ce6bd2
2024-06-11 16:23:40 +08:00
hiyouga
f14f67f803 Update bug-report.yml
Former-commit-id: bb022cd867ebf2593e40fc6ba43b768603b129a3
2024-06-11 15:40:21 +08:00
hiyouga
820b6e7b32 fix #4198
Former-commit-id: 945d2c6cc73542adf9272ebd9aa332ea2c1c7361
2024-06-11 15:38:38 +08:00
hiyouga
27aece94cf tiny fix
Former-commit-id: c4b2e263d9cefbad0fbc5de72422e4ef8edbcb54
2024-06-11 12:48:53 +08:00
hoshi-hiyouga
3f2508be92 Merge pull request #4191 from iamthebot/al--add_manifest_for_reqs
Add MANIFEST.in so requirements.txt is present in sdist

Former-commit-id: fd6d1c3fce855d1ef7396cf33af9f12eadc5a878
2024-06-11 10:41:15 +08:00
Alfredo Luque
fce11bb386 add manifest so requirements.txt in sdist
Former-commit-id: b501a3c56c51786c3006a2aca15a145641a4556c
2024-06-11 00:07:06 +00:00
hiyouga
2723438531 tiny fix
Former-commit-id: b5e9711ef375cc323fc083e742cccfc974550416
2024-06-11 01:04:16 +08:00
hiyouga
f330b73682 set dev version
Former-commit-id: 16c47cc15226119e33e46ba0f2f6ccb37072257f
2024-06-11 00:50:53 +08:00
hiyouga
0f1e592326 release v0.8.1
Former-commit-id: 875a34f492701d1c644facbe9ede411af2931513
2024-06-11 00:44:26 +08:00
hiyouga
4d7dd0330d fix #4160
The split heads should be concatenated in dim=2


Former-commit-id: 4b3f247f270d44df9fe226cfe0dabfb7fcd2deda
2024-06-11 00:37:17 +08:00
hiyouga
ea2ca2777f fix #4145
Fix the docker image


Former-commit-id: a9838281156fe870bfcde5d1f7afc15264fd4aad
2024-06-11 00:19:17 +08:00
hiyouga
4b2b92fd9a update evaluator
Former-commit-id: bb8661e62481ff7027b8969f3d8a6a17290c9da3
2024-06-10 23:56:00 +08:00
hiyouga
784088db3f fix #2666
Former-commit-id: f121d5c4f94af9f165132c4309cb9bdc8217d985
2024-06-10 21:24:15 +08:00
hoshi-hiyouga
0ecf0d51e3 Merge pull request #4167 from yzoaim/branch
fix README

Former-commit-id: 1a877b0fbf54478dbf905fb3e84bd079a55bb725
2024-06-10 16:24:33 +08:00
mMrBun
bc04ca464a Optimize the handling of QWEN2 in scenarios involving multiple tool calls.
Former-commit-id: 48f870edc96ada40360f7e6e67cbf58805295b33
2024-06-10 02:00:14 +08:00
mMrBun
44829df762 Removed unnecessary comments.
Former-commit-id: 2b81252aa693871098931cd7873ef83ef4922ba5
2024-06-09 18:25:22 +08:00
mMrBun
94ddfa66c0 Merge branch 'hiyouga:main' into main
Former-commit-id: c25734d874a36222e0a540a2c994bbda73008b27
2024-06-09 18:17:24 +08:00
mMrBun
8db8ed5a41 Implemented the tool_formatter and tool_extractor for glm4 tool_format
Former-commit-id: db7fa4490ea7f6966418d2879c895cbc1763b16d
2024-06-09 18:16:15 +08:00
-.-
041ecd0de1 fix README
Former-commit-id: fa30028c0b83c38610b596209493a748b8ca0928
2024-06-08 23:51:56 +08:00
hiyouga
d812249db7 add pr ci
Former-commit-id: 9b05bb8540b946d0c74bf804bcafc4a785d22c47
2024-06-08 21:25:35 +08:00
hiyouga
88528f1a87 Update tests.yml
Former-commit-id: e90f0cc30d6bb819246ccc08935c39e714c179a1
2024-06-08 21:15:36 +08:00
hiyouga
82533114a7 update git workflows
Former-commit-id: 5a3f26bc53433caa98b2a66294becaf156280a4c
2024-06-08 21:11:32 +08:00
hiyouga
6d9fbb3fa9 fix llamafactory-cli env
Former-commit-id: b0515e5f42831b67d1f4d049999ecb68756e66db
2024-06-08 07:15:45 +08:00
hiyouga
9953ae3d03 set dev version
Former-commit-id: 08b7fe1c452cc99264ff0312e310b579590c6a45
2024-06-08 06:46:09 +08:00
hiyouga
c0c387e4db release v0.8.0
Former-commit-id: 004db680b9e3996ec511ee818df6c0c02bf13603
2024-06-08 05:20:54 +08:00
hiyouga
ae60ea15da add ultrafeedback and fineweb #4085 #4132
Former-commit-id: 968e4992e2f2a3ccba73e8668f1654ddc6eb0034
2024-06-08 02:42:34 +08:00
hiyouga
72cd1123a8 fix ci
Former-commit-id: 3f4d293fd861d765edb2040f80d16f99a5e1e3c6
2024-06-08 02:00:44 +08:00
hiyouga
1364190a66 fix ci
Former-commit-id: 95aceebd61d195be5c980a919c12c59b56722898
2024-06-08 01:57:36 +08:00
hiyouga
6d17c59090 add ci
Former-commit-id: 3ea3acdadaa54abe33d93538580196cfdd91ee56
2024-06-08 01:48:30 +08:00
hiyouga
e0f2c0b5dc init unittest
Former-commit-id: 1c6f21cb8878ced043fe0b27c72cad2ef6ee990e
2024-06-08 01:35:58 +08:00
hiyouga
073e34855d Delete .readthedocs.yaml
Former-commit-id: dd3ee514216a9a329519c58d79208040adcad126
2024-06-08 00:58:10 +08:00
hiyouga
ff9ba70bb8 reorganize adapter code
Former-commit-id: b26c2df9d97f4efffccbf7d28de13619b43f10dd
2024-06-08 00:47:23 +08:00
hoshi-hiyouga
adbebb0e3f fix #4139
Former-commit-id: c025a4d74f293c14c2705e68af20a82a84608520
2024-06-08 00:45:02 +08:00
hiyouga
3f6b3eed98 add resume args in webui
Former-commit-id: 1d86ad768b1f36e54b4c2a9f18f6ea5a7df04c90
2024-06-08 00:22:16 +08:00
hiyouga
f45e81e186 fix #4137
Former-commit-id: cdc0d6f5a2e5040e145c82c4801f37bd76529047
2024-06-07 19:16:06 +08:00
hiyouga
ba648fd003 tiny fix
Former-commit-id: 0621bcad1dfbe8ce2464f741d4256c5df2a8d1b6
2024-06-07 05:19:21 +08:00
hiyouga
b0e5a76f4c fix ppo trainer save zero3 model
accelerator.get_state_dict(ds_model) should be called at all ranks


Former-commit-id: 3a0f60f0aa072531e4ae5819ec00c8fa42aa0913
2024-06-07 05:14:19 +08:00
hiyouga
8692796c9b fix ppo in trl 0.8.6
Former-commit-id: 5e0d66a0d80b4bd4a8506e2317209d8fb9d25ff6
2024-06-07 04:48:29 +08:00
hiyouga
d0edcde4ea fix #4120
Former-commit-id: 2a44da678a5e360a9c0f9056397ac9e801329321
2024-06-07 04:18:05 +08:00
hiyouga
8c4c2e580c update data processors
Former-commit-id: 04b138cbcb8b9a72e4bbda6c65843bb459e525e7
2024-06-07 04:15:40 +08:00
hoshi-hiyouga
07f33e7641 Merge pull request #4009 from AlongWY/main
supervised packing with greedy knapsack algorithm

Former-commit-id: 5ded166b39a75a98ded5733678f5a1eab7d4cc71
2024-06-07 03:48:46 +08:00
hoshi-hiyouga
1998c641af Update supervised.py
Former-commit-id: 04b6c2a754e602e0b698cfe6c255c2f2486d8865
2024-06-07 03:42:08 +08:00
hoshi-hiyouga
be1e5f9d62 Update supervised.py
Former-commit-id: 49993c4f4e1f871a22ff0196afe60026b668a4dc
2024-06-07 03:38:23 +08:00
hoshi-hiyouga
fdeec6db52 Update supervised.py
Former-commit-id: 67625b5278a839c12a3e4245f9e90af67d8b11b4
2024-06-07 03:38:04 +08:00
hiyouga
a4d335b42f add qwen2 models
Former-commit-id: 49cb694d02c876e3740a003a8b332349f4310ad3
2024-06-07 00:22:57 +08:00
hiyouga
fcb134e144 rename files
Former-commit-id: e1a8431770fc36c0c9ee7fed4abbc3d7fdcc5efd
2024-06-07 00:09:06 +08:00
hiyouga
a47e24222a add DISABLE_TORCHRUN option
Former-commit-id: bcc574b479c2101438723aadead42743d4378776
2024-06-06 23:44:58 +08:00
hoshi-hiyouga
b96b995620 Merge pull request #4082 from MengqingCao/bugfix
Fix #4077

Former-commit-id: 288028c3fb6bb1b58d1b7f4e8b90108c9bbf27d1
2024-06-06 23:38:40 +08:00
hoshi-hiyouga
c231706aa5 Update cli.py
Former-commit-id: 32190507534adf5f505858b3af2b592ca6568ac7
2024-06-06 23:38:09 +08:00
hiyouga
35b5117a59 fix ppo+zero3 #3108
Former-commit-id: 33a93cc29e3e57bf001515000c0a70c112573dea
2024-06-06 23:30:07 +08:00
hiyouga
80f716bc10 fix torch gc
Former-commit-id: e173799d057598e5692a407601c30d8ce1513461
2024-06-06 20:30:25 +08:00
hiyouga
ca95e98ca0 fix ppo dataset bug #4012
Former-commit-id: 7fc51b2e93698ae5e012566af8481f4d861c873d
2024-06-06 19:03:20 +08:00
hiyouga
d5559461c1 update trainers
Former-commit-id: b7f6c4a171293cf4f3e88f15a811f847342f84ee
2024-06-06 18:45:49 +08:00
hiyouga
f4acd81e2f fix base64 image read #4061
Former-commit-id: 66ccb2a27a04296b4600f2c85f428071bf14eeb0
2024-06-06 17:29:19 +08:00
hiyouga
31feb6e26c update readme
Former-commit-id: cc331fa2d28afe081937c50ea83d63add21d4e3a
2024-06-06 16:59:18 +08:00
hiyouga
7d5c0a069c update readme
Former-commit-id: fb1f709af5199976e63d7188e088e33c75d19bfe
2024-06-06 16:25:42 +08:00
hiyouga
937f49ec3d lora modules: all by default
Former-commit-id: 52c4ae87c7f4312704c31ef26b079b2c5b95ea5f
2024-06-06 03:53:28 +08:00
hiyouga
abc2a73a33 add codestral 22B
Former-commit-id: b011c7f527a57cb1d21c4e2c9631c2fb62bb835e
2024-06-06 03:42:50 +08:00
hiyouga
5e1bf7572c lint
Former-commit-id: 9030501eaef97ea249347198272adf0d709503ec
2024-06-06 03:33:44 +08:00
hoshi-hiyouga
8fdb32d0a3 Merge pull request #4066 from injet-zhou/main
add throughput entry to training log

Former-commit-id: d2816f343f405f3fab09f2a8eade774b886e8f92
2024-06-06 03:32:04 +08:00
hoshi-hiyouga
c709d5f7db Merge pull request #4080 from MengqingCao/npu
Add npu option for model exporting

Former-commit-id: 07fc67193ef6bcb8e8a392aff0c57a2eb36832bf
2024-06-06 03:15:44 +08:00
hoshi-hiyouga
f5b2749ec2 Update export.py
Former-commit-id: 694833c1104d13929d4f181f014a121f25955dc5
2024-06-06 03:14:46 +08:00
hoshi-hiyouga
ee5853c565 Update model_args.py
Former-commit-id: 09c0afd94a8a5f5b45a61b32c983d50e1b9e2941
2024-06-06 03:14:23 +08:00
hoshi-hiyouga
6ec6df8a5f Merge pull request #4053 from hzhaoy/feature/add_select_config_file
Support selecting saved configuration files

Former-commit-id: 568ef3cf2a793f268cbe01c39dec418a13e61ecd
2024-06-06 03:06:03 +08:00
hiyouga
fc95800840 add vllm_dtype arg #3387 #3717
Former-commit-id: a0dd3a6351bb78541d40fec1d2fc457d803c86a4
2024-06-06 02:53:27 +08:00
hiyouga
765715af21 support train from scratch #4033 #4075
Former-commit-id: 1290b9d01077e62f8de7a23637daa2586cc82bfa
2024-06-06 02:43:19 +08:00
hiyouga
639a7f6796 support image input in api #3971 #4061
Former-commit-id: c70aaf763ef22fb83ce3635e8ffd5ec4c89c1cb0
2024-06-06 02:29:55 +08:00
hiyouga
35379c7c0e update train hparams
Former-commit-id: 1ca9fce55b55bf209f4b76152b586731932a3f39
2024-06-06 01:49:20 +08:00
hiyouga
d992f5353f fix setup
Former-commit-id: b2b80d434fcc0c3838d229098e1c21d26632204c
2024-06-06 01:39:02 +08:00
hiyouga
875eef45f3 add llamafactory-cli env
Former-commit-id: 1df077184845ff5f394b9324d46f8c382869e590
2024-06-06 01:28:14 +08:00
hiyouga
556a4aa972 fix #4090
Former-commit-id: d9f15f30a8f4bc64778a5c96baeb6801700d7a2c
2024-06-06 00:50:32 +08:00
MengqingCao
8dc1969111 modify export_device option
Former-commit-id: b2fc4a5499e21a5b9622c2285402efef6e27a74d
2024-06-05 09:37:36 +00:00
hiyouga
b74c229498 fix #4079
Former-commit-id: fda732d7f4616373844c97beff416880260f49db
2024-06-05 16:56:54 +08:00
hiyouga
3dbca466fd update readme
Former-commit-id: 02d34db29a7a35c25711d49e98fd3167a2f4dfe7
2024-06-05 16:32:32 +08:00
MengqingCao
ce6f7fdb82 fix #4077
Former-commit-id: fedbe92f3b56294acc6c49f9a51e369cf2de3ead
2024-06-05 08:03:30 +00:00
hiyouga
7528bc1bc0 support glm-4
Former-commit-id: a10f4718fbf3f3c89dc7eb31cb8e1a46ca6adda5
2024-06-05 15:16:38 +08:00
MengqingCao
9dd5f7d642 add npu for model export
Former-commit-id: ce020b6eb3f35c1db37ee4835e694eddcd0f59b0
2024-06-05 07:06:40 +00:00
faddddeout
99ecb0daaf add throughput entry to log
Former-commit-id: 691f999f64c7bac78761e4354f89816d2f0d46fc
2024-06-04 11:04:29 +00:00
hzhaoy
39d8d7995a add: support selecting saved configuration files and loading training parameters
Former-commit-id: 5c9b17c1dc9093da0ea813642bce9b5c9ae96274
2024-06-04 10:33:43 +08:00
hiyouga
2ac2cde03e tiny fix
Former-commit-id: f9d50501aac1f60a3b445ca3fee9aa60995461ee
2024-06-04 00:31:10 +08:00
hiyouga
aa6c3766de fix #3873
Former-commit-id: 1ac325b4d682bb493573c18bb0b67ceae8d0d372
2024-06-04 00:21:50 +08:00
hiyouga
f4f5d7e3ce fix #3992
Former-commit-id: a48321fbf5196b88a11106cf74a74fbcea2ea50b
2024-06-04 00:17:36 +08:00
hiyouga
efbf6018d3 fix abort in webui DDP mode
Former-commit-id: b90ac72d753b13a3eed9cb8b898fac2f2fe5153f
2024-06-04 00:10:24 +08:00
hoshi-hiyouga
1090bb8bf3 Merge pull request #3987 from injet-zhou/main
Fix cann't interrupt training when using multi GPUs in webui

Former-commit-id: 455bb158b0e600723d2afaa2070b71178f2f5188
2024-06-04 00:04:07 +08:00
hiyouga
26bc79f971 fix #4043
Former-commit-id: 67af68f4fc5232760c57b3a0ae780628da09db6a
2024-06-03 23:30:37 +08:00
hiyouga
4c1f015eca remove gc warnings in DPO&KTO
Former-commit-id: b649bdcbafb464a638387429b770fe258b41f8af
2024-06-03 22:53:54 +08:00
hoshi-hiyouga
0655a183d3 Merge pull request #4045 from enji-zhou/feature/add_kto
fix KTO Trainer Sampler

Former-commit-id: 8e235beb9cf4939c06ccb753b047326a9839e77f
2024-06-03 22:09:25 +08:00
hoshi-hiyouga
7754024e9b Update trainer.py
Former-commit-id: 8565d4b43db905374c328ae57c71fc226980d14f
2024-06-03 22:08:38 +08:00
enji.zhou
b4913569a8 fix KTO Trainer Sampler
Former-commit-id: 39eb1bfa272011554322e9bb2534f83b68282a70
2024-06-03 21:32:38 +08:00
hoshi-hiyouga
eae9f09ca8 Merge pull request #4006 from Uminosachi/scheduler-kwargs
Set scheduler_specific_kwargs to get_scheduler

Former-commit-id: c6ed1955fd8990ddb960750913c9d8b13fe0ace3
2024-06-03 19:27:53 +08:00
hiyouga
8264e5ceaa update placeholder in issue template
Former-commit-id: 5503a90d7e38273b67129e0b9eb62bd1fd23154f
2024-06-03 19:24:10 +08:00
hoshi-hiyouga
b76f319e45 Merge pull request #4011 from statelesshz/issue-template
Update bug-report.yml

Former-commit-id: 1fbc46f45ae4e673f0b20b5eacab3d81d1053807
2024-06-03 19:20:43 +08:00
hiyouga
82d744716a fix #4005 #4013
Former-commit-id: 8608fa268cde5cddf8d0c6c2eb2cb5fa246c1831
2024-06-03 19:12:29 +08:00
hoshi-hiyouga
1a3764ab8f Merge pull request #4007 from xu-song/patch-3
Update model_args.py

Former-commit-id: d88b3a0f2707bcc964f642d348295b99f7c796f8
2024-06-03 18:54:37 +08:00
hiyouga
d2ede9d393 fix #4022
Former-commit-id: 9541f2f1f1b7d7877eb734f051048e52003a3430
2024-06-03 18:38:36 +08:00
hiyouga
5690f513fc bump versions
transformers 4.37.2->4.41.2
datasets 2.14.3->2.16.0
accelerate 0.27.2->0.30.1
peft 0.10.0->0.11.1
trl 0.8.1->0.8.6


Former-commit-id: 5f1e041f7295bf42a41dd4d9e7f0c42fcc37fed2
2024-06-03 18:29:38 +08:00
hiyouga
123a845209 fix data loader hint
Former-commit-id: 25b56126a11591b0155e2f72b673dd8f45a6c8c9
2024-06-03 18:28:27 +08:00
ylfeng
b1b7d735b3 remove empty line
Former-commit-id: 3164710971a6d6545629f5bf133f98de5ff0991a
2024-05-31 21:43:08 +08:00
ylfeng
230c69f7ce fix eos
Former-commit-id: 6e236c952958cbfe50b5dcb7b8eff6aea8477922
2024-05-31 21:40:41 +08:00
ylfeng
bfc43558ef supervised packing with greedy knapsack algorithm
Former-commit-id: 24d12396c9aabd49da0b08719068f24679111cc6
2024-05-31 15:33:54 +08:00
Xu Song
f2ae2cc04d Update model_args.py
Former-commit-id: f1e018587e5722e41962abd60f74043a3e55f692
2024-05-31 14:35:48 +08:00
statelesshz
6e9c03f958 Update bug-report.yml
Former-commit-id: a8561502360c1e247eeacb46b77ffbcf3387c482
2024-05-31 13:18:18 +08:00
Uminosachi
2696f614a7 Set scheduler_specific_kwargs to get_scheduler
Former-commit-id: f04e70dfab44480ef4c015c06470443237f69ba9
2024-05-31 13:45:39 +09:00
hiyouga
070b944895 update readme
Former-commit-id: 3b92d8c2ddb288b849f38e573ca168cab23315d2
2024-05-30 16:40:17 +08:00
faddddeout
f5f091d390 fix cann't interrupt training when using multi GPUs in webui
Former-commit-id: a7fb02d52bc202c958490aa7081252be5d9eff50
2024-05-30 08:39:21 +00:00
hiyouga
14ab14a0e6 fix #3837
Former-commit-id: 72965aa3f13a9c085c29781b6790d80d00a545d8
2024-05-30 00:52:26 +08:00
hoshi-hiyouga
4f7c850115 Merge pull request #3829 from seanzhang-zhichen/add_dataset_sample_num
Add dataset sample num

Former-commit-id: ab38cf74ce48ea4f1800e077ca287f2eb9336135
2024-05-30 00:25:45 +08:00
hoshi-hiyouga
391eca66cf Update loader.py
Former-commit-id: 0aa59322906d91c5e385c9c02ebb5dd64ba060f3
2024-05-30 00:20:20 +08:00
hoshi-hiyouga
a67199246d Update loader.py
Former-commit-id: aa7f335e3ad5a78e4ed5f99c120be28e9733ea2e
2024-05-30 00:17:21 +08:00
hoshi-hiyouga
5f67fdaac9 Update loader.py
Former-commit-id: 19d8fd62c18ee3ba0e431fc241f7d315cb716fef
2024-05-30 00:12:12 +08:00
hoshi-hiyouga
05e6fe4287 Update parser.py
Former-commit-id: 310cc11e8c83f16fc5bccc349c38fea347ea9a97
2024-05-30 00:05:20 +08:00
hoshi-hiyouga
91cc571e6e Update README_zh.md
Former-commit-id: 3007d260ed45169583a74497a53b661337dd5f71
2024-05-30 00:04:47 +08:00
hoshi-hiyouga
890926e60c Update README.md
Former-commit-id: 65fb69e388c0a04c15ecd11441e567966f51fae5
2024-05-30 00:04:26 +08:00
hiyouga
87aa332583 better llamaboard
* easily resume from checkpoint
* support full and freeze checkpoints
* faster ui


Former-commit-id: 84cfb2452cc86b037ccddee6e833f8eb7c129fa4
2024-05-29 23:55:38 +08:00
hiyouga
f90c4ca672 fix cohere system
Former-commit-id: 5d629b29e705c8ff8dd4521719d9c0e67a3fe0a2
2024-05-29 20:58:23 +08:00
hiyouga
a922e85a5c fix #3965
Former-commit-id: 37d15ac55d0be0ff47d6a88f07e2d823117a4a36
2024-05-29 20:55:51 +08:00
hiyouga
9a65820592 update readme
Former-commit-id: 440e9de66986ef7736361ce8ec3e23ce68655a56
2024-05-29 18:39:11 +08:00
hoshi-hiyouga
f4e16ae373 Merge pull request #3930 from MengqingCao/npu
Add Ascend npu doc and dependency

Former-commit-id: 7210090e4fc6531b9f6122f104875811a8798185
2024-05-29 18:33:38 +08:00
MengqingCao
e2cfd34da0 update torch-npu version
Former-commit-id: a70d7fcf2967eb30280a1fb845b39db7878f535c
2024-05-29 10:05:11 +00:00
MengqingCao
668dea9706 update cann kernels url
Former-commit-id: 23c65e9d7e8817b5815264e44cbf4a7bcb88d3d7
2024-05-29 09:53:31 +00:00
hoshi-hiyouga
084be442f2 Merge pull request #3958 from hzhaoy/add_telechat_12b_support
add TeleChat-12B/TeleChat-12B-v2 models

Former-commit-id: c228546a09764423ae66966079802022185f7e86
2024-05-29 17:20:53 +08:00
hzhaoy
29cb4a1327 add TeleChat-12B/TeleChat-12B-v2 models
Former-commit-id: e0675385c88af03aaef8d51586c8a282829c4051
2024-05-29 15:00:37 +08:00
hiyouga
81a61134b8 fix hf chat engine
Former-commit-id: 76ce52911690ab0dd8ffa5587127afb4ec942abe
2024-05-29 01:20:07 +08:00
hiyouga
cb1a49aa02 add ds config to webui
Former-commit-id: 66d72b263d36dc81de9f6152077663b613035977
2024-05-29 01:13:17 +08:00
hiyouga
351b4efc6c 10x generate in ppo w/ zero3
https://github.com/huggingface/trl/pull/1483

Former-commit-id: 5dc43ba8b373d8803bc22d88b3d0d95ef8b9c7f8
2024-05-29 00:23:23 +08:00
hiyouga
9b551309de update dpo, kto trainer
Former-commit-id: 4a6cc3c7046f8b27d05ea53ef216bab6fa7ebfaf
2024-05-29 00:14:29 +08:00
hiyouga
9fed4a2ef4 clean kto trainer
Former-commit-id: 76402bd78cbd3a99a544f0ac019468b569b0e1d1
2024-05-28 21:43:26 +08:00
hiyouga
bceac4f554 bump vllm version to 0.4.1
Former-commit-id: a00fd39a4c2f270620711f2bfbad8d460fb4aa89
2024-05-28 21:27:27 +08:00
hiyouga
ae3a88d3a7 update readme
Former-commit-id: bc861f76706df3f643028f1dfc8ec2044b067a08
2024-05-28 19:35:52 +08:00
hiyouga
9138a7a5ba support DDP in webui
Former-commit-id: d059262ff8dc857f597d2657546ec625726a664a
2024-05-28 19:24:22 +08:00
hiyouga
9912b43fcc update readme
Former-commit-id: e2c7de1b5147801b301cfc5da0e2866273da18f5
2024-05-28 16:41:34 +08:00
hiyouga
5ac37555a4 update readme
Former-commit-id: 30ef8ee1e86136f38f105b67f70c417d20552f41
2024-05-28 16:19:56 +08:00
hiyouga
34bdc730a6 fix #3931
Former-commit-id: 47e0072416b545d9718af4fa266a83f747b9a4f7
2024-05-28 13:44:22 +08:00
MengqingCao
e45a9d70fc add Ascend npu doc and dependency
Former-commit-id: 803d9f142a294f8c1e0b4e2046c214b0857ccfd6
2024-05-28 01:33:54 +00:00
hoshi-hiyouga
232b36059c Merge pull request #3925 from Yimi81/feat-fix-yi-template
fix yi template

Former-commit-id: 6caee1eb868b9f7b00578c6608883e89aa232d17
2024-05-27 22:59:32 +08:00
Yimi81
d9fbd675d5 fix yi template
Former-commit-id: b3669c8989c3adda305416245e32e9e5a3b7caac
2024-05-27 13:11:25 +00:00
hiyouga
0206e7b9de tiny fix
Former-commit-id: 4c47b3dcef9e400a1c35fce1ad53619a0a86fe81
2024-05-27 20:54:26 +08:00
hoshi-hiyouga
a886544d3d Merge pull request #3921 from gusye1234/main
Add openchat-3.6-8B support

Former-commit-id: 92e6bba3cab22b7835a68f787caf7992a398978e
2024-05-27 20:52:37 +08:00
hoshi-hiyouga
8c9b929bb0 Update template.py
Former-commit-id: f4dabce0a71c9978e051e70886941b64b928ffe2
2024-05-27 20:51:56 +08:00
hoshi-hiyouga
1bb1ae834e Update template.py
Former-commit-id: af869e4c48eb426c4078415533f6dab89123a9d8
2024-05-27 20:51:26 +08:00
Jianbai Ye
0d9e364a90 add openchat-3.6-8B support
Former-commit-id: b66f39d50d896d7597a1506e67ec210b31c9b700
2024-05-27 20:42:08 +08:00
hiyouga
3b28c003dd fix full/freeze tuning for mllm
Former-commit-id: df5860ddb593d5b82163a585d12160b41dbce0f3
2024-05-27 20:37:57 +08:00
hoshi-hiyouga
48ff9fb150 Merge pull request #3835 from BUAADreamer/main
fix some features in llava-style training

Former-commit-id: fc8583bd17dfb088a52e4d8fa91356b918373b50
2024-05-27 20:23:45 +08:00
hiyouga
c43bc74fe6 support Aya23
Former-commit-id: 071935b90006e2c79e39bb9ee0c5d48c6c910501
2024-05-27 20:23:24 +08:00
BUAADreamer
eaf9cc2195 Merge branch 'hiyouga:main' into main
Former-commit-id: cc1b82bf49b060987392c455fdbfe125ad667ec5
2024-05-27 20:10:58 +08:00
hiyouga
4bd276f58f add llava 1k datasets
Former-commit-id: 345d3355752f4a4dc454696a39f1610fffbbf382
2024-05-27 19:57:33 +08:00
hiyouga
f8cf0d5e5d update dpo examples
Former-commit-id: 69e32a7cb6336ca9a953c379ec794818b3f169bd
2024-05-27 19:56:04 +08:00
BUAADreamer
79bc60db33 Merge branch 'hiyouga:main' into main
Former-commit-id: d89e1f8bf8bad1dd125b4de8fe6c0b2b16411cb5
2024-05-27 19:00:48 +08:00
BUAADreamer
dc7c54067e add only tune lm and mm_proj
Former-commit-id: ba12ca430ec527fbfe4cd1eace0adb5c7712146a
2024-05-27 19:00:15 +08:00
BUAADreamer
932f0d5c20 add regex of only tune lm and mm_proj
Former-commit-id: 38d540b3e69bceabafafab524fcfc78aeb05612d
2024-05-27 18:59:00 +08:00
hiyouga
9670f5e41a add phi-3 7b/14b, mistral v0.3 models
Former-commit-id: 86dab182f9710b063f518922ccb49b01aa71c576
2024-05-27 18:20:16 +08:00
hiyouga
97a23e1cbe update readme
Former-commit-id: b8d0170fe0d094acce85dcb5f91775e4685ee055
2024-05-27 18:14:02 +08:00
BUAADreamer
11fcd055ec Merge branch 'hiyouga:main' into main
Former-commit-id: 113be744b3d044fbea3a8654158aa83ddb4599eb
2024-05-27 11:54:01 +08:00
hiyouga
b0d9966663 support SimPO #3900
Former-commit-id: 6b954ce60155cf8334150b795cfc4bb63ca74c8b
2024-05-26 23:46:33 +08:00
BUAADreamer
5c51ab7e1f Merge branch 'hiyouga:main' into main
Former-commit-id: fd5420c43e1414bcd3fadb6239f4e5d42e6ac10e
2024-05-25 14:18:49 +08:00
hiyouga
26f293d587 fix #3853
Former-commit-id: 465a5500bae1f30744d4b9b3db40aaf9171da2cb
2024-05-24 23:29:45 +08:00
seanzhang-zhichen
a3b52fd380 Merge branch 'main' into add_dataset_sample_num
Former-commit-id: 26300127c45f24e63b91f1b0cc73e46c3a936a91
2024-05-24 15:57:47 +08:00
BUAADreamer
27d8706d6d Merge branch 'hiyouga:main' into main
Former-commit-id: a4ce5ee381fd59f6b254ab634af51b6bb54edd97
2024-05-24 09:50:00 +08:00
hiyouga
bf59383783 refactor data preprocessing, fix mllm rlhf
Former-commit-id: 53ff2dd24f9121ea30c95063bb72e49a9b31e980
2024-05-24 04:08:25 +08:00
hoshi-hiyouga
1078611259 Merge pull request #3876 from dongdongqiang2018/main
added adapted to 910B image

Former-commit-id: 0708cc8a24589b9f22ad3df6685e57d1da0336f2
2024-05-24 01:54:30 +08:00
hiyouga
e6fc0ac8fe fix paligemma sft
requires transformers>=4.41.1


Former-commit-id: 80b3030569cd606ac0de43e9a682478f5bd7b727
2024-05-24 00:23:40 +08:00
hiyouga
554ca3d8dc fix oom issues in export
Former-commit-id: b7ccc882a192aa1e25b1e5816f875ea304282412
2024-05-23 23:32:45 +08:00
donggang
86dfdf956d adapted to 910B image
Former-commit-id: e095254808aace63a1be878620f683902f51cfb3
2024-05-23 09:48:22 +00:00
BUAADreamer
c0e4475485 Merge branch 'hiyouga:main' into main
Former-commit-id: 4076f52c8ba7da4624a1fb3fa52a7170d1c3171e
2024-05-21 22:18:20 +08:00
hiyouga
2b65f8bd5c fix paligemma sft
Former-commit-id: 60682d04414be37e611d6470618a8d599703942b
2024-05-21 20:03:09 +08:00
hiyouga
09e78272c2 Update README_zh.md
Former-commit-id: 34c4ba6bf9bb89170446fb396aa06ae44d251de0
2024-05-21 18:30:59 +08:00
hiyouga
cccce564bd update wechat
Former-commit-id: 6613349562194b48c5fc57aa68e620b8fa83fc0a
2024-05-21 18:22:32 +08:00
hiyouga
4adec327de fix #3847
Former-commit-id: d206b306ca4eadc8b3d4feaf490ad12f9452e562
2024-05-21 17:53:06 +08:00
BUAADreamer
1f093334d1 support pretraining of llava
Former-commit-id: 6a4c8cf0a6a1674c693b9337f018ff8df7477f8f
2024-05-21 08:57:14 +08:00
hiyouga
e0e8507108 support paligemma
Former-commit-id: 11c27f9bf204d3d6a9ca5bd4f0a19a420160453f
2024-05-21 00:01:22 +08:00
hiyouga
f5962f8128 fix paligemma data preprocess
Former-commit-id: 71b85437301739d9d96d3881d4a34b37c0f69db8
2024-05-20 23:51:32 +08:00
hiyouga
b31d808655 fix paligemma inference
Former-commit-id: 46357b7a677e8ba2e0a7c9d4ec1974abd061569c
2024-05-20 23:36:43 +08:00
hiyouga
247cda4b68 fix #3818
Former-commit-id: 3f366e05a34be224f53c5bf8334e57ae5d316004
2024-05-20 21:43:19 +08:00
hiyouga
e30975e9a2 add kto to webui
Former-commit-id: 6c866f4dbd45e868860be8351d1a65c4e1a4e02b
2024-05-20 21:20:25 +08:00
zhangzc
de9f1583c2 fix conflict
Former-commit-id: 6922b23a748c2459147bf44b96d86daa89f2c96c
2024-05-20 17:10:01 +08:00
hiyouga
ab48653e63 fix chat engines
do not use pop(key, default) since api assigns None to dict values


Former-commit-id: 3ebbd0b55ea07de2897c27ca54eeab5c3b319419
2024-05-20 00:36:43 +08:00
hoshi-hiyouga
6d7a1e3f8f Merge pull request #3812 from ycjcl868/feat/chat-support-system-prompt
feat: cli chat support system_message
Former-commit-id: 96596990527403e910c81e95e38bf2638541cf31
2024-05-20 00:31:32 +08:00
hoshi-hiyouga
e093dad7cb Update vllm_engine.py
Former-commit-id: 0b8278bd21baf35d3f60c6ed24f110b391c92a47
2024-05-20 00:31:04 +08:00
hoshi-hiyouga
b103a121f0 Update hf_engine.py
Former-commit-id: ce8b902e538c69d89f207db8a43c85072cd70265
2024-05-20 00:30:45 +08:00
hoshi-hiyouga
3578abc7a4 Update generating_args.py
Former-commit-id: 861c146fa7d9cb5b99372464bd068c20fa36415d
2024-05-20 00:29:31 +08:00
hoshi-hiyouga
17d398f419 Update chat_model.py
Former-commit-id: 7736aafdc81d175e9fb484dbb7cae9263120a0fc
2024-05-20 00:29:12 +08:00
hiyouga
3453a8eebb fix jinja template
Former-commit-id: 353561f0e3914de3f81499c4e4b831ae0a6383b6
2024-05-19 23:38:30 +08:00
ycjcl868
77a089c35c feat: cli chat support system_message
Former-commit-id: e3982bff596d01992733687a580c4f41c558061c
2024-05-19 23:17:46 +08:00
hiyouga
516d83c946 fix zero2 high ram usage
Former-commit-id: 01797126eb173250250e31f8e76b69ae0047745d
2024-05-19 21:53:54 +08:00
hiyouga
fd02c9f973 fix hf gen args
Former-commit-id: 491a84976258cbb2a2647922420e2f84de1e38cd
2024-05-19 19:39:32 +08:00
hiyouga
351e80a656 fix envs
Former-commit-id: d5e150cfb98f8216713415564ab386b8320c88cb
2024-05-19 18:27:18 +08:00
hiyouga
4f04e2ed93 fix #3807
Former-commit-id: 08b695969049de8bf9bd3e90b9700736d90385ee
2024-05-19 17:07:57 +08:00
hiyouga
a810d1b98e update readme
Former-commit-id: e0beb67a417b13c818a09bd419d4e20dd44ca842
2024-05-18 23:09:03 +08:00
hiyouga
fbe963a96a safe output path in webui
Former-commit-id: 23f14262e0d54631630c084ba71e0433ea1d4640
2024-05-18 22:42:28 +08:00
hiyouga
d13b8bee8a fix jetmoe z3 block
Former-commit-id: cb00a14d905395c4b8fadb955f0424a4c56668de
2024-05-18 22:28:45 +08:00
hiyouga
0aa072a155 improve data process logger
Former-commit-id: 33d0b012b56dbafc9fff87b821c2d1bf1409dbb5
2024-05-18 22:02:42 +08:00
hiyouga
57dde7c3bc update data readme
Former-commit-id: 22c7335b496e4a673383d5a1e4e60bf2cb4e35b3
2024-05-18 21:37:38 +08:00
hiyouga
6b9003f781 update data readme
Former-commit-id: beb864a9367943d3274cb6057423d1eb9aaf85c4
2024-05-18 21:15:20 +08:00
hiyouga
9c1c59e481 fix #3803
Former-commit-id: 1ef12c95059d14a1717c82ce04e529e7ad6435ed
2024-05-18 16:13:14 +08:00
hoshi-hiyouga
31daec2749 Merge pull request #3799 from hiyouga/dev
improve KTO impl, replace datasets

Former-commit-id: b4cc207855aa1dbb120f7999165e176e649af338
2024-05-18 03:49:13 +08:00
hiyouga
2bff90719b improve KTO impl., replace datasets
Former-commit-id: e56a57ddcf061de6e4acc8679f7dbf0b68364986
2024-05-18 03:44:56 +08:00
hoshi-hiyouga
e4570e28a8 Merge pull request #3785 from enji-zhou/feature/add_kto
add kto

Former-commit-id: f60faa23e23022fd855dac6b1ecbd21e095bccb5
2024-05-18 03:07:18 +08:00
hoshi-hiyouga
d84a730daa Merge pull request #3794 from jue-jue-zi/main
feat: pass the `max_lora_rank` parameter to vLLM backend
Former-commit-id: be839961686a1845f00a56e398a7b3779df8b6e4
2024-05-17 16:17:30 +08:00
hoshi-hiyouga
0fd1a05cec Update model_args.py
Former-commit-id: f40a2fe5334865763e4d513292d359317b7a091b
2024-05-17 16:16:41 +08:00
juejuezi
6373d307ec feat: pass the max_lora_rank parameter to vLLM backend
Former-commit-id: a8756d839405ecb5deabe885cf11d1a61564deee
2024-05-17 16:07:39 +08:00
hiyouga
a32c3a50fc add deepseek v2 lite model
Former-commit-id: 5e864e6b721d8b891b1cc2ca2dcac41babb9eaaf
2024-05-17 13:25:36 +08:00
enji.zhou
66b5634ebf add kto
Former-commit-id: ec51986cf70b0bdd79b8141e45916670fb97a08e
2024-05-17 13:09:17 +08:00
hiyouga
92b3697e2c update badam example #3764
Former-commit-id: a3730fd0a96bab869be6d695031182dabaea8137
2024-05-17 02:21:10 +08:00
hiyouga
969e605c7e better dtype handle in loading
Former-commit-id: 663f0577dd61a1a31191db2c6fbb0c7cea533b21
2024-05-17 02:14:56 +08:00
hiyouga
a3320f26cf update examples
Former-commit-id: 3b5f138155d96b346bda18e465cf60ec7d99e19c
2024-05-17 01:02:00 +08:00
hiyouga
45329d9e3c enable inbrowser in webui
Former-commit-id: 71fdeedb64b2339eb1c740d670b87e0c03dada68
2024-05-17 00:08:56 +08:00
hiyouga
6481321470 add falcon 11b
Former-commit-id: 897acc725edc204fad393cc9616828431b4fa768
2024-05-17 00:08:33 +08:00
hiyouga
efcf5e050d fix examples #3769
Former-commit-id: 80c036beb8d9ddac8f844f1818c9488ded04e86e
2024-05-16 19:12:09 +08:00
hiyouga
dfa686b617 rename package
Former-commit-id: a07ff0c083558cfe6f474d13027642d3052fee08
2024-05-16 18:39:08 +08:00
hiyouga
fe638cf11f set dev version
Former-commit-id: 5e9c72d07c3793cdccbdb8a9f95f1bb5d714e0a3
2024-05-16 02:17:31 +08:00
hiyouga
b2949b88e9 release v0.7.1
Former-commit-id: a4f8adb021b6218d624303b51cd5e93ffa3111a1
2024-05-16 00:57:16 +08:00
hiyouga
538c79fd8f fix #3694
Former-commit-id: 3d1b818cb6a77b7603724fbeb756b468aa74e7ea
2024-05-16 00:35:28 +08:00
hiyouga
437cc20be6 fix #3606
https://github.com/huggingface/peft/pull/1706

Former-commit-id: bf2783e1b6bc207375974c48736d6f82dd293f02
2024-05-15 23:05:02 +08:00
hiyouga
2ac972d6e7 add Yi-VL-34B model
Former-commit-id: 8b3d8a7e3bd8dff27cc72edba1b8a042f6d1929c
2024-05-15 22:58:19 +08:00
hiyouga
4d7f0fbb7a add yi-vl 6b model
Former-commit-id: 35f4041b13a593a6cf1ec6686fa18b38911ad6a4
2024-05-15 20:02:41 +08:00
hiyouga
40e3d3fbdd fix yi vl vllm infer
Former-commit-id: de54e5d7ec06dd7c20ec82c9ff032fc16cd50244
2024-05-15 19:25:48 +08:00
hiyouga
096677b989 add NPU docker images
Former-commit-id: 3b3257962c52f5d1f15ce245fee402c5baddb774
2024-05-15 19:20:11 +08:00
hoshi-hiyouga
7940b968ae Merge pull request #3748 from BUAADreamer/main
Add MLLM YI-VL and save processor config during training

Former-commit-id: 1d3cbd24ccea63d36c27725cdc5ecd02b460b0ed
2024-05-15 16:40:54 +08:00
hoshi-hiyouga
36a4224bf5 Update visual.py
Former-commit-id: f5f13a995c64fc374ad05e26cde8efa6651aefa1
2024-05-15 16:39:57 +08:00
hiyouga
d4d36e157c fix fsdp model loading
Former-commit-id: fc6fe23cc9ae4a920a17e8268a85c1aa4ad16d3b
2024-05-15 16:32:28 +08:00
hoshi-hiyouga
c4f5e49d0d Update patcher.py
Former-commit-id: 4c31a21f2106adcdad100119bad83ecaef0be3f3
2024-05-15 15:37:07 +08:00
hoshi-hiyouga
8e518d6c62 Update template.py
Former-commit-id: a13022166ba691c03f4fea7e9e2927fa446cf681
2024-05-15 14:20:39 +08:00
hoshi-hiyouga
79165100e5 Update trainer.py
Former-commit-id: dd767b20635bb549ce14f9556e1c4fb44b3662c5
2024-05-15 14:13:26 +08:00
hoshi-hiyouga
fc82acbbd8 Update workflow.py
Former-commit-id: 97cfb44bced18b721166ccb5f260098645fc5318
2024-05-15 14:13:01 +08:00
BUAADreamer
aead3ca8e5 rm extra import
Former-commit-id: 031215019e3d7727b1c7cc87a44e1cf1eb2853ec
2024-05-15 12:48:18 +08:00
BUAADreamer
b12679ad59 cast dtype in mm_proj
Former-commit-id: e0ab22648fe8b65055b5986258cc2800438dc60c
2024-05-15 11:22:15 +08:00
BUAADreamer
8061cb5671 modify style
Former-commit-id: 823af88c3201412da7ef734d34198424e09b2d51
2024-05-15 10:18:10 +08:00
BUAADreamer
0a7e5f2f57 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: ce5cb0f897eebe32a1c2c0a78fe1b0267e4b6d9d
2024-05-15 09:54:21 +08:00
BUAADreamer
812d2c25a7 Merge branch 'hiyouga:main' into main
Former-commit-id: a4795c2f5328e0cfc657409f5774819e3defc006
2024-05-15 09:54:14 +08:00
BUAADreamer
51795e8db1 add yivl and save processor to model_dir
Former-commit-id: ae72f745cb4f7713c3b835d11202aec19c3c5093
2024-05-15 09:54:00 +08:00
hiyouga
2c011060b1 fix bug in vllm engine
Former-commit-id: 38f02a2c5b52cba6908c2d3c2a455677f8574faf
2024-05-15 02:17:54 +08:00
hiyouga
a8c7531250 fix gen args
Former-commit-id: d79f91f87106ba1bc3c0ea08da5898aad59566a7
2024-05-15 01:49:05 +08:00
hiyouga
88c34d26a8 fix examples
Former-commit-id: 910ffaf46e3dde87d2dbb48b82a59a9898a90847
2024-05-15 00:26:10 +08:00
hiyouga
12d666a63c update examples
Former-commit-id: 09269c59427e8a007c1c1b6f9d2014b4c0d0a328
2024-05-15 00:05:17 +08:00
hiyouga
304a2efec8 update readme
Former-commit-id: 568cc1d33c3d202e6430b68e0bcb2772aa6b0aa2
2024-05-14 23:57:08 +08:00
hiyouga
322331df51 update readme
Former-commit-id: f315a545d85a661746ad304b5a688d1fad9eaea1
2024-05-14 23:55:49 +08:00
hiyouga
ba0da83031 add npu examples
Former-commit-id: 0f21e68e2dbd84c820d66d5c6d980004efc51d51
2024-05-14 23:32:53 +08:00
hoshi-hiyouga
0a82e15e7c Merge pull request #3584 from zhou-wjjw/main
Enhancing Ascend 910A Training Efficiency in LlamaFactory with NPU

Former-commit-id: 310cf017a5ec24af8f5cf3af298760dd4150f9f2
2024-05-14 22:18:37 +08:00
hiyouga
6670b36c49 use robust envs
Former-commit-id: f3e194c3b3c40a3e6c3c5397ec0d859e6db614b5
2024-05-14 21:36:42 +08:00
hoshi-hiyouga
7a1d13aae2 Update train.py
Former-commit-id: da1e6f0d9c2eff64f92da1f6ada3aa44ef6d6a7e
2024-05-14 20:47:52 +08:00
hoshi-hiyouga
86a048128b Apply suggestions from code review
Co-authored-by: Huazhong Ji <hzji210@gmail.com>
Former-commit-id: abef48c17ee795eae984fcc89019c2c4859108c1
2024-05-14 20:44:21 +08:00
hoshi-hiyouga
fe1a3b1367 Apply suggestions from code review
Co-authored-by: Huazhong Ji <hzji210@gmail.com>
Former-commit-id: a435e5a0bdd7268c4f1204f99f289ee0b36fd930
2024-05-14 20:44:04 +08:00
hiyouga
84ff56c3a0 fix #3728
Former-commit-id: ea3e32a27f7f7dce75a708f8a6f376b5d3e8059a
2024-05-14 20:37:21 +08:00
BUAADreamer
483ed64b43 modify yi-vl template
Former-commit-id: f113975b425e70bed2588ca55a2c62594fbf2283
2024-05-14 16:45:28 +08:00
BUAADreamer
dd4619e9f3 add support for Yi-VL
Former-commit-id: d7834ca92d3048949caa48f8635cfbcea2c85771
2024-05-14 14:03:19 +08:00
BUAADreamer
905815d878 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: e82f527ea583a7e99a25a06c7fe7b03c1dc2ebb9
2024-05-13 23:28:52 +08:00
BUAADreamer
ba72e08901 add yi-vl
Former-commit-id: 891b25cb3d709ea82182ca90496034360e1cd5d8
2024-05-13 23:28:28 +08:00
hiyouga
e4972c8fc4 update examples
Former-commit-id: 779603055ae9216ff549f5285caac8c0c0a1e9fb
2024-05-13 20:39:36 +08:00
hiyouga
5f5f948806 fix #3724
Former-commit-id: 62f5999d79834d6cbc4129eda387a317665d6099
2024-05-13 20:09:09 +08:00
hiyouga
2892e5d42a fix #3702
Former-commit-id: 55755786f21050b9efc127c391509ba5d9ea8982
2024-05-13 18:24:35 +08:00
hoshi-hiyouga
542a5d15ef Merge pull request #3655 from Tendo33/main
1.Change the name of is_fastapi_available function 2. Added the log of printing requests when deploying using vllm

Former-commit-id: 28c75448eed9d472e96285737a66ac0d20280e13
2024-05-13 18:05:50 +08:00
hiyouga
b1c791fb0d support Yi 1.5
Former-commit-id: e580823676cbb83ddb9a0f685992e6054ae5ffaa
2024-05-13 16:51:20 +08:00
Tendo33
7589123465 ruff check scripts src tests --fix
Former-commit-id: da5277b6a1cff40d59df8f1835d9514b2a51be34
2024-05-13 09:40:33 +08:00
Sun Jinfeng
f94b54b776 Merge branch 'hiyouga:main' into main
Former-commit-id: 014acaa7845b7ac2876596d216b1be369a8e9311
2024-05-13 09:29:58 +08:00
hiyouga
1e1b8899f5 lint
Former-commit-id: cb72eb6ab24615ce492ca2945f29daa34c0c52d4
2024-05-12 01:28:51 +08:00
hiyouga
7b02c83399 fix #3658
Former-commit-id: 37799a62d4431d1d8c02fee6c23d607a65723c1a
2024-05-12 01:25:16 +08:00
hiyouga
8f1ba07b30 remove checksum and fix ui args
Former-commit-id: 0cfdeb1d30efb63211434bc4656bceb59e666289
2024-05-12 01:10:30 +08:00
hoshi-hiyouga
1ce400bddf Merge pull request #3654 from betapeanut/main
Remove Redundant Environment Variable Usage

Former-commit-id: aa57a2a183eef822973d7e5d7c7bc80a42167482
2024-05-12 00:49:00 +08:00
hiyouga
6bc0ec63c7 update readme
Former-commit-id: d57ca8a865b46588f65b2cc15073c5fcc4e4cebc
2024-05-12 00:33:49 +08:00
hiyouga
25d316b1a0 fix #3674
Former-commit-id: 6bad2eafef75ec697477e1f2ce739006042fb4c7
2024-05-12 00:03:59 +08:00
hiyouga
2bcd5b2b73 fix llava config
Former-commit-id: b13d032325e45d401a9dbc64d4c73e308eff3288
2024-05-12 00:02:49 +08:00
hoshi-hiyouga
436afcba57 Merge pull request #3651 from BUAADreamer/main
add some mllm features and try to incorporate Chinese-LLaVA-Med project

Former-commit-id: 143d311d4a82e1fa9b6d4ad98b0db5b02f3572c4
2024-05-11 23:59:08 +08:00
hoshi-hiyouga
db47c53486 Update loader.py
Former-commit-id: 2fc12790414677bb82736208fb9547640780af2e
2024-05-11 23:58:47 +08:00
hoshi-hiyouga
4efe56fd68 Update model_args.py
Former-commit-id: c4114add4c42c1d7723f7270451a6c9fc656ecd1
2024-05-11 23:57:05 +08:00
hoshi-hiyouga
d54313fcf9 Update patcher.py
Former-commit-id: 2c88d394d29c6e98ac3a6860848855722614ca52
2024-05-11 23:56:40 +08:00
hoshi-hiyouga
382f096475 Update tuner.py
Former-commit-id: ccd1eb2c0992f75440c0e1c5cd3f02d03aacb085
2024-05-11 23:55:59 +08:00
hoshi-hiyouga
0ccc76392e Update tuner.py
Former-commit-id: 22afcbdb25160583e5ece28fad0585c7bc70f41a
2024-05-11 23:54:53 +08:00
hoshi-hiyouga
e2cfcb0a5f Update README_zh.md
Former-commit-id: 1a205478403b5852fac0aa8418cdb8995fbe40e3
2024-05-11 22:44:51 +08:00
hoshi-hiyouga
b530a798c1 Update README.md
Former-commit-id: d24c83bb30e2829ba78db90c4c4975788f2eed25
2024-05-11 22:43:04 +08:00
BUAADreamer
fdf38b70a0 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: 50cc5cf93d50c42cfcf5047bcd9b5c7959d503ae
2024-05-11 13:11:10 +08:00
BUAADreamer
1a78b675be add full parameter finetuning of mllm
Former-commit-id: f90c1da5636ac3cb8112c5081a3b56b09a17fcf8
2024-05-11 13:11:00 +08:00
kkkl
9b1008912c Update constants.py
Fix the download issue of the Phi3 model

Former-commit-id: 8978e80914ac6db1ed1b79641b20c84087dd4341
2024-05-11 00:22:40 +08:00
BUAADreamer
18241f4ed8 Merge branch 'hiyouga:main' into main
Former-commit-id: 0dd072703508f68fd4ee51b6648d0c7642a4cc93
2024-05-10 20:34:41 +08:00
hiyouga
223bbd9930 resolve python 3.8 package
Former-commit-id: 5eee4ec7016846356715a4fa1ad58e3cbb1cac6e
2024-05-09 16:52:27 +08:00
Tendo33
9dadff90bb 1.Change the name of is_fastapi_available function
2. Added the log of printing requests when deploying using vllm


Former-commit-id: 530d4f5d51c13c71d99de5fe2d23805b0aa875a2
2024-05-09 14:28:01 +08:00
BUAADreamer
827a929f1d add push processor to hub
Former-commit-id: 7a05a965311edfdfafa57af8342875860d341f27
2024-05-09 14:05:19 +08:00
BUAADreamer
e508519e0a add mllm processor save and Chinese-LLaVA-Med show
Former-commit-id: 110c49fbf79fe0625f091e63746bfabde00add99
2024-05-09 13:53:39 +08:00
BUAADreamer
47892418ad Merge branch 'hiyouga:main' into main
Former-commit-id: 1f3163509ecd05902ea216a905b4ca15ddd3696f
2024-05-09 13:45:43 +08:00
cocktailpeanut
2aeae4b88b yet another removal of unnecessary environment variables
Former-commit-id: a07726028f0287de28e4751672b27efe0efc6477
2024-05-09 01:33:20 -04:00
cocktailpeanut
c213f2a9a9 more removal of unnecessary environment variables
Former-commit-id: 59ef1a6e0d81585a6c010143d05fcfae26d40c00
2024-05-09 01:32:00 -04:00
cocktailpeanut
333f4a69bb remove unnecessary environment variable usage
Former-commit-id: 4be1d832cb269a07987f5cab5d5f949e269087da
2024-05-09 01:26:15 -04:00
BUAADreamer
172600d432 add mllm export
Former-commit-id: ce4770d33f6761d3b1d60661efcb0be34a036154
2024-05-08 22:50:42 +08:00
hiyouga
4ce4172c87 fix #3625
Former-commit-id: 8c0f5d1db29862277d84aa128b424b7d0f2b187f
2024-05-08 17:12:56 +08:00
hiyouga
400ae144a4 add llama3 chinese chat
Former-commit-id: ee3e5920f2f28567259693cb106e884a90cb02a2
2024-05-08 17:10:03 +08:00
hiyouga
0a1b6ca5a7 add deepseek moe 236B
Former-commit-id: 30c10e2dc41b5d64191a91ad2d61f3b5c440b1d5
2024-05-08 16:37:54 +08:00
BUAADreamer
05ef89cfcc modify export model
Former-commit-id: c7051edae4ce23f85daf204a2aaac134b1f29c3d
2024-05-08 10:36:36 +08:00
hiyouga
6d9d8b92ca update readme
Former-commit-id: bcc3d3b95609555e5e9a4deb68e65391c5b465bd
2024-05-07 22:17:04 +08:00
hiyouga
3f7f1daa33 remove big file
Former-commit-id: 8a05242787f810ec25d1b33358257d2867c45497
2024-05-07 22:14:06 +08:00
hiyouga
8061e92d07 update readme
Former-commit-id: ecefcb2e891e75d37df5ebfc616cfdb2106bcfd6
2024-05-07 21:17:31 +08:00
hiyouga
0c811a7653 update readme
Former-commit-id: 730ea71584debc5784d68eeadceb42f7e827447f
2024-05-07 19:03:47 +08:00
hiyouga
f6ac3796ca fix #3560
Former-commit-id: ea69cbe903a301df1bcc4b63cdc5bd4c6e3a8255
2024-05-07 19:03:35 +08:00
hoshi-hiyouga
c1394e7dfc Merge pull request #3601 from Katehuuh/main
Add contribution Luminia

Former-commit-id: 53bef571c445111f49bcc8a5d49afc2872f754ae
2024-05-07 18:01:48 +08:00
hiyouga
ebab655683 fix #3602
Former-commit-id: 1518b45490606ea200482da4737113c46985e8c5
2024-05-07 17:50:27 +08:00
hoshi-hiyouga
3d74f21738 Merge pull request #3604 from gaussian8/main
fix: splitted Dockerfile's CMD
Former-commit-id: 1d6e6956ca45d3cb7de213c4a641b98a35af5896
2024-05-07 16:53:23 +08:00
junwooo.lee
8493753fab fix: splitted Dockerfile's CMD
Former-commit-id: d8032550c7e084648fbf24da5abbac6432b54f26
2024-05-07 15:09:48 +09:00
Katehuuh
0f626a2145 Update README_zh.md
Add Projects Nekochu/Luminia-13B-v3

Former-commit-id: 88d01e831bd511daec30a94817f06e07b8406b18
2024-05-07 06:28:48 +02:00
Katehuuh
5100c290c4 Update README.md
Add Projects Nekochu/Luminia-13B-v3

Former-commit-id: 3d2cd743c2c8830e8b131d1192f1549fa557762d
2024-05-07 06:23:36 +02:00
hiyouga
4bde37e7c8 update readme
Former-commit-id: 3fdc72b9aad9e129f74417cbbf25e841d28e3737
2024-05-07 06:19:29 +08:00
hiyouga
e3b3a722de fix stop param
Former-commit-id: f0a850c25211b72eddbb357c81679db9b0930d44
2024-05-07 00:41:04 +08:00
hoshi-hiyouga
b9e167e6ca Merge pull request #3527 from zhaonx/dev
"add support for vllm api stop parameter"

Former-commit-id: e7d436403af6ac4c6a33cf36411098a0b0fefce2
2024-05-07 00:37:49 +08:00
hoshi-hiyouga
1ebd1e50e7 Update vllm_engine.py
Former-commit-id: fa2410de07150a82082ab5b88baf56aa891db870
2024-05-07 00:37:05 +08:00
hoshi-hiyouga
14316f6583 Update generating_args.py
Former-commit-id: 714957ba0159919a89fc1659a7a7b4b6bd82eead
2024-05-07 00:28:16 +08:00
hoshi-hiyouga
8e4ab2f7d0 Update generating_args.py
Former-commit-id: 7a9fb56786f4c40856211009656a983be1e42cb7
2024-05-07 00:27:56 +08:00
hiyouga
196068fa19 update readme
Former-commit-id: 1c67708291195825e8356d5862d22cbee9566233
2024-05-06 23:34:59 +08:00
hiyouga
da2295f8c8 fix gradio args
Former-commit-id: 7767c1ad4b2b638b558f941ba1f0d05d4a049507
2024-05-06 23:33:06 +08:00
hoshi-hiyouga
ab0741b5a6 Merge pull request #3596 from hiyouga/dev_doc
Add CLI document

Former-commit-id: 2b08c51500592f092b9596517e787081453ecbb5
2024-05-06 23:10:38 +08:00
hiyouga
6aec446940 update examples
Former-commit-id: cca50b627c85e0a777717d609377406cc7fd579f
2024-05-06 23:07:55 +08:00
hiyouga
50c71dd29f update example docs
Former-commit-id: 102cd42768d9eb2cf1219309a25b41e26149067e
2024-05-06 22:51:02 +08:00
hiyouga
5c9da798b5 update docs
Former-commit-id: a4a2e94241bea6f96590f6cb8ca8b5cddee1917e
2024-05-06 21:47:00 +08:00
zhouwei
3d1b0e1864 The training efficiency of the Ascend 910A has been significantly enhanced, leveraging the full computational power of the NPU (Neural Processing Unit) and the capabilities of torch_npu, a PyTorch library optimized for NPUs. This improvement has resulted in a remarkable tenfold increase in efficiency.
Former-commit-id: 90980b626d3408b3e2ee32a02456c20881318be7
2024-05-06 13:29:59 +08:00
zhaonx96
45becd2a45 ”add stop parameter in chat.py“
Former-commit-id: e529bf5bc14c72558d26f73c42076eaa9684205c
2024-05-06 10:10:00 +08:00
zhaonx96
8f1197de7e Merge branch 'main' of https://github.com/zhaonx/LLaMA-Factory into dev
Former-commit-id: ec1f834905e241277fdd3f764c70eede97e9ff40
2024-05-06 10:09:00 +08:00
hoshi-hiyouga
25de4ce56a Merge pull request #3578 from pha123661/main
Fix badam example argument

Former-commit-id: d6edf3d91e5d20f48938e02d96d2193ed3d50181
2024-05-05 23:41:58 +08:00
Oscar
d0597897bf Fix badam example outdated argument
Former-commit-id: 29aa188cc774cb72367f706f1cd4c07bc5a9f241
2024-05-05 23:35:19 +08:00
hiyouga
4674f3baa7 add version and help to cli
Former-commit-id: f762f2215169b9fe55564d5600b758ddc66f9c9c
2024-05-05 02:44:35 +08:00
hiyouga
2f5f6722cf fix eval scripts
Former-commit-id: fc3743d0b82c28fbff1170761139e4fa5d2a8939
2024-05-05 00:53:07 +08:00
hiyouga
7ef3788ff4 update webui
Former-commit-id: 17a53d25cdadd2df70a8afa0488f75bbf1918b89
2024-05-05 00:17:54 +08:00
hiyouga
f9aa74715a update scripts
Former-commit-id: 1c07648c4bb4bb0c46bc0240547b46bd2835dce1
2024-05-04 23:05:17 +08:00
hiyouga
9b187b274c add avg ppl
Former-commit-id: 40caeb6f0fdf76a1e2c9ca3761299d087fc643e0
2024-05-04 22:35:31 +08:00
hiyouga
68ed89f351 update ppl script
Former-commit-id: 07606fa4ab303f088170a569c1f86141a1b496c5
2024-05-04 22:13:14 +08:00
hiyouga
342d7da8d7 add cal_ppl script
Former-commit-id: 947068c11c0be00db2cecddb2c5842a0d6e2c321
2024-05-04 22:02:25 +08:00
hiyouga
6eda42eb7c update readme
Former-commit-id: eaf83847ef6d89d8b70429138e73b04fd2aa3ef8
2024-05-04 17:01:21 +08:00
hiyouga
e9fe8815be remove empty stream response
Former-commit-id: 070d0da928b1e974a094279a2782201016d2a3ab
2024-05-04 16:13:52 +08:00
hiyouga
9381fecca7 fix async stream api response
Former-commit-id: d70bbcae6513e50aa6094f2d98c4aa5c6641ea02
2024-05-04 16:11:18 +08:00
hiyouga
efa9140577 update api and support abort eval in webui
Former-commit-id: 8661bed68812e9ded9439e8a821b1d7716bc797b
2024-05-04 15:59:15 +08:00
hiyouga
b1b18b2c5a update readme
Former-commit-id: 5061f7196a3278af5ebce77249d9c3c0f8a55b34
2024-05-04 00:43:53 +08:00
hiyouga
37bcbf72b4 update readme and webui launch
Former-commit-id: c66ffa57323ef6ea78a9b75ec5122d9ea25fd420
2024-05-04 00:43:02 +08:00
hiyouga
99125c8825 update readme
Former-commit-id: 012e5b9625682a628a0b7fb5879097be7166c7be
2024-05-04 00:31:02 +08:00
hiyouga
182b974786 fix eval in webui
Former-commit-id: 774ef2bf5823d68b9cc254a676f5adb4af533d75
2024-05-04 00:19:19 +08:00
hiyouga
7a4a6a5522 fix webui resume
Former-commit-id: c2f6582ddd365bb64b72e8057cc4ecd7884d2480
2024-05-03 23:15:19 +08:00
hiyouga
2383e5440c fix slow op in dpo/orpo trainer
Former-commit-id: 38cad0896ea0516de6d4b2759ec9d45ee67d339b
2024-05-03 23:06:52 +08:00
hiyouga
1fea91736a fix callback log multigpu #3559
Former-commit-id: 1f105f1551b12675ca7d339ef5f91333f0371987
2024-05-03 21:24:27 +08:00
hiyouga
09d9fb28f9 enable tqdm in webui
Former-commit-id: 1737bff64799047a5b715fd979b4c038ae213bb3
2024-05-03 04:42:50 +08:00
hiyouga
57c6eabf83 fix gen_args
Former-commit-id: c3e2f4f07b7fb3b1d7d2b44451660f082a467aed
2024-05-03 04:24:50 +08:00
hiyouga
33d440b577 fix colab gradio
Former-commit-id: 26179a29d3400d1fea155e325a79473a8bc12f04
2024-05-03 03:54:46 +08:00
hiyouga
ce8200ad98 update webui and add CLIs
Former-commit-id: 1368dda22ab875914c9dd86ee5146a4f6a4736ad
2024-05-03 02:58:23 +08:00
hiyouga
2cedb59bee Update prepare.sh
Former-commit-id: 5928b869251a984a085289ca6861a9731dc5b910
2024-05-02 17:16:02 +08:00
hiyouga
dd0b85580e fix badam configs
Former-commit-id: 8a4e6a4c65a9a42e6501b0d3ce81d6220c287454
2024-05-02 02:47:04 +08:00
hoshi-hiyouga
cd4dad846b Merge pull request #3487 from codemayq/main
support BAdam in WebUI

Former-commit-id: 6eada1a2844a2b2c8aad599ebfcc35b376c938ea
2024-05-02 02:38:01 +08:00
hoshi-hiyouga
a11a04a24f Update train.py
Former-commit-id: 16f0d0056967872e02969fdd842a381f9484af8a
2024-05-02 02:21:27 +08:00
hoshi-hiyouga
eb99999ca8 Update README_zh.md
Former-commit-id: 1c673d89faca3160627009fcd0a4aa39138570c0
2024-05-02 02:14:55 +08:00
hoshi-hiyouga
ea58cf111e Update README.md
Former-commit-id: 4fb43b0c9aa48242126252ad755a2a1683b38d6a
2024-05-02 02:13:46 +08:00
zhaonx
2d95127c33 "add support for vllm api stop parameter"
Former-commit-id: b9f21fa639b66db09c79404d885661c96bdf9395
2024-04-30 17:17:09 +08:00
Lao
57fcdca336 Update README_zh.md
Former-commit-id: bacc8588dc7b0b43c240189ecf4336bedc299357
2024-04-28 23:31:37 +08:00
khazic
3d88589c0f Upgrade the second sharegpt format
Former-commit-id: 057f992a666b029d207a3dc7dfc353f9abcf8316
2024-04-28 14:30:05 +08:00
khazic
dfd153cc81 added the second sharegpt format
Former-commit-id: 6d140ac98a78ecc0a713842bb917dc8eb14450cb
2024-04-28 14:27:45 +08:00
codingma
7641a214d8 support BAdam in WebUI
Former-commit-id: 1247154dd7d5eba5d11c4bb8504bf551ab49eb72
2024-04-28 11:31:34 +08:00
hiyouga
3cef844079 fix setup
Former-commit-id: 7d3e7db46a5f8672dd57fa5fcc03822e175047f9
2024-04-28 03:49:13 +08:00
hiyouga
4dcd47100d fix llava rlhf
Former-commit-id: f6863cbbcbf960d6481296c6cae3e40fd70e4e14
2024-04-28 03:01:49 +08:00
hiyouga
a412b4ed4a add models to 0.7.0
Former-commit-id: 436d3754452f839c617839ab3bbaacc4a8908e19
2024-04-28 01:50:30 +08:00
hiyouga
544a6259b6 update readme
Former-commit-id: c9190fe36f511c3a5149d45c85a10b02a57fa88a
2024-04-26 23:39:19 +08:00
hiyouga
c501f377dd release v0.7.0
Former-commit-id: 45bb89cb4d26a6b3fb5360bc90ab950738fe4920
2024-04-26 23:18:00 +08:00
hiyouga
cb8b8f40cd update readme
Former-commit-id: f3d4b46338d4d484b205d0651a1fa7b2e77a1654
2024-04-26 20:09:14 +08:00
hiyouga
70bed8ad8f support Qwen1.5 110B
Former-commit-id: d6e5ecaf4109127bab24e39a0696076bceb0b37c
2024-04-26 19:59:22 +08:00
hiyouga
51f776ae2a fix llava qlora
Former-commit-id: 01c5a669f6fe598aac1758a700a7607da37db1bc
2024-04-26 18:00:23 +08:00
hiyouga
697bc20941 add llava to llamaboard
Former-commit-id: deaaff0a9de0eef9691991c99cd797461b1165cc
2024-04-26 06:41:35 +08:00
hiyouga
1480e3a88f update readme
Former-commit-id: df1155245d3f71ba4f3361d43aa662ab3b024de8
2024-04-26 05:49:26 +08:00
hoshi-hiyouga
19029d5b0f Merge pull request #3454 from hiyouga/mllm
Support fine-tuning LLaVA-1.5 MLLM @BUAADreamer 

Former-commit-id: c4195d1e26349795f7aad5c10a8a9e2abb7b64a3
2024-04-26 05:46:29 +08:00
hiyouga
7773ac0ead update readme
Former-commit-id: 41728fd74de7bec0cc6135aef9dfa3ae9fe7af73
2024-04-26 05:44:30 +08:00
hiyouga
23b881bff1 support mllm hf inference
Former-commit-id: 2c7c01282acd7ddabbb17ce3246b8dae4bc4b8cf
2024-04-26 05:34:58 +08:00
hoshi-hiyouga
10a6c395bb Merge pull request #3450 from BUAADreamer/mllm
Add Multimodal LLM Finetuning

Former-commit-id: 7cacbcfdf7391080ef43eb2b2c79a5237e6120e8
2024-04-26 05:30:30 +08:00
hoshi-hiyouga
f9a7732a1f Update preprocess.py
Former-commit-id: 0e376eab23d38b8fca05f054f3cde308756ee3b1
2024-04-26 04:10:28 +08:00
hoshi-hiyouga
c37582af02 Update aligner.py
Former-commit-id: 855489074c469f47572153df0fa1e251b187b232
2024-04-26 03:48:34 +08:00
hoshi-hiyouga
ece67f8c7f Update parser.py
Former-commit-id: 4df75e8a9a391565cc3eec69bc0ebf5d5192de61
2024-04-26 03:35:39 +08:00
hoshi-hiyouga
e1838e76fe Update loader.py
Former-commit-id: 6a5f2e2ab7304113ff71cb77aafff6a1f74831f8
2024-04-26 03:33:07 +08:00
hoshi-hiyouga
2eede9ffd6 Update workflow.py
Former-commit-id: 5b8b5b975716d539ae2fae8536f79e106aa0b566
2024-04-26 03:29:12 +08:00
hoshi-hiyouga
a6f6b406b3 Update loader.py
Former-commit-id: 72d4817a15f6916706828ea2a61d808183c23773
2024-04-26 03:22:40 +08:00
hoshi-hiyouga
279439abbe update hparam name
Former-commit-id: 9941adfbf06db37f8ba32c4555f6e58e27188aaf
2024-04-26 02:49:39 +08:00
hoshi-hiyouga
13117b69d7 delete llava template (use vicuna)
Former-commit-id: 420e64970e5a0e45453041927e0366ee8beb73d5
2024-04-26 02:20:47 +08:00
BUAADreamer
5d03ac642d modify some bug
Former-commit-id: 593b7b004df74bd24361c9883401a656c08fb589
2024-04-25 22:59:46 +08:00
BUAADreamer
5062ee547e modify some style
Former-commit-id: 1291c7ee39361dd75247c67f04dcf20b472faf83
2024-04-25 22:40:53 +08:00
BUAADreamer
59817c27e3 modify some style
Former-commit-id: d578a90cefa7ec813355795bdd6ead5ee558ce26
2024-04-25 22:40:25 +08:00
BUAADreamer
759bee48d2 merge some func
Former-commit-id: 3085107c44715e4b2ca96d73b20d90c172b95219
2024-04-25 22:35:17 +08:00
BUAADreamer
514ffafc12 modify some style
Former-commit-id: 053062abc007014a7fde95c5ae9f4d859893d8ad
2024-04-25 22:04:09 +08:00
BUAADreamer
8b2a735c14 modify some style
Former-commit-id: b016e6a671a2f228f0bdd9b8d5995b4669609655
2024-04-25 21:58:18 +08:00
BUAADreamer
10d59e9e4a make dataset script
Former-commit-id: 25892f958da14976025a775febf628cd0e0a3d85
2024-04-25 21:32:01 +08:00
BUAADreamer
058ed5e607 modify style
Former-commit-id: c1f1df99e4dc3d0aadf1207b4e9a16218187fd5a
2024-04-25 21:29:50 +08:00
BUAADreamer
110c2ce2a5 modify style
Former-commit-id: 3bffc1e1b8bcc4582cebea06d35e5146163c7bec
2024-04-25 21:27:48 +08:00
BUAADreamer
c425436676 modify style
Former-commit-id: 54b713d0c4ffdfc6a7faeb14471b58bb1cd8acf5
2024-04-25 21:15:16 +08:00
BUAADreamer
266fe908e3 Merge branch 'main' of https://github.com/BUAADreamer/LLaMA-Factory
Former-commit-id: c4bb5af69c5bbf0b1ea044cbb2b18acddc6733ac
2024-04-25 21:08:40 +08:00
BUAADreamer
dbd905438b add some
Former-commit-id: 8d035a849c4a441d457791aab073861adf69a09f
2024-04-25 21:08:32 +08:00
hoshi-hiyouga
d64c87f928 Merge pull request #3449 from hiyouga/mllm
add webui backend option

Former-commit-id: 372fcedef40b79fe8bd3932c06c720f2a03db6e6
2024-04-25 20:58:16 +08:00
hiyouga
29eebef696 add webui backend option
Former-commit-id: 3764586cb3ed64fe376d0ae420ff5690c28459e2
2024-04-25 20:49:23 +08:00
hiyouga
7bfbcb1fe3 vllm + lora support
Former-commit-id: 8cb86ba355195f5d6dcb95ee6b6b7203463a34db
2024-04-25 20:24:31 +08:00
BUAADreamer
9b210cf4b3 rm some
Former-commit-id: 2c85b4fabbebd8b51eee53f5d29184d4a6e97569
2024-04-25 20:09:43 +08:00
BUAADreamer
f74e640565 Merge branch 'hiyouga:main' into main
Former-commit-id: 131d0bcd554dedd794add7eb3d7b1201cac80e7c
2024-04-25 20:02:50 +08:00
BUAADreamer
d1d08d066a merge data part to the text stream
Former-commit-id: 80537d580119d9d5a06ab236a5284aaae2f83b5b
2024-04-25 19:58:47 +08:00
hiyouga
6be321b5da fix #3374
Former-commit-id: 0097d7968b3b570e1705caff26f42d9ed71ad974
2024-04-25 19:56:49 +08:00
BUAADreamer
3c792174db merge data part to the text stream
Former-commit-id: 7ee20286d9bcc2d5378bfd6bb02cd3648396d873
2024-04-25 19:19:59 +08:00
hiyouga
9aeb88c426 add export_device in webui #3333
Former-commit-id: 30ebd3652809d73941e0a5e4a8be11d989faf98d
2024-04-25 19:02:32 +08:00
BUAADreamer
00e2a272ef merge model part to the text stream
Former-commit-id: b6fcb832ddaed4647d6f2b926f3dfccd47f3ea84
2024-04-25 08:20:41 +08:00
BUAADreamer
5142349661 remove error
Former-commit-id: 2bcd1c7dc3595f17ae4e2c4475196cc2d03d0e75
2024-04-25 01:01:59 +08:00
BUAADreamer
0e3cc52327 remove conflicts
Former-commit-id: e5750ee202eb67cf5fc54f464548e2eb43d00900
2024-04-25 00:56:06 +08:00
BUAADreamer
6c1db2d012 remove conflicts
Former-commit-id: f8b637eb76cba7ec229e2978068805ad1cca8adb
2024-04-25 00:34:22 +08:00
BUAADreamer
12c51655ce add llava and instructblip
Former-commit-id: 142fb6f4541a1acfefe66ff2574dabde53b00c06
2024-04-25 00:22:43 +08:00
hiyouga
36be12a3b7 update tool template
Former-commit-id: c72a1981859818c257c5271d32e03c9d3c344206
2024-04-25 00:21:34 +08:00
hiyouga
21fac4c98c fix log level
Former-commit-id: 8d21302f6201b3f33c10f61f3559bd95be3363c2
2024-04-24 23:42:59 +08:00
hiyouga
83404c4fa9 support new special token #3420
Former-commit-id: f5c6a47f5193ab3a6c137580992bdcce0b31fdd5
2024-04-24 23:39:31 +08:00
hoshi-hiyouga
12f852b8d4 fix phi template
Former-commit-id: 14a1ff665eaebfc618229efbe96f09848d52faec
2024-04-24 13:55:14 +08:00
hoshi-hiyouga
a88873116a fix webchatmodel
Former-commit-id: dc6d8b5dc42c363dd180aaf90c9a2f2d0cce6725
2024-04-24 13:54:21 +08:00
hoshi-hiyouga
7cfcd69c64 fix inference in llamaboard
Former-commit-id: 5e631915157083b61e2d5a183e0c91f2d11f416e
2024-04-24 13:53:39 +08:00
hiyouga
a5eabbe933 add olmo 1.7
Former-commit-id: 86a3fb3a141d2702b15af08df36ffcf9b3d6de14
2024-04-24 05:50:50 +08:00
hiyouga
aa25716a5d add dbrx and jamba models
Former-commit-id: ce35c80b4b00152185285d6064939803d14487f0
2024-04-24 05:39:52 +08:00
hiyouga
94c8219575 fix bug
Former-commit-id: 38e164fe4aaea6f0baf121a720291ca42643ba8c
2024-04-24 05:21:18 +08:00
hiyouga
ad24a2a0c9 fix bug
Former-commit-id: 271c24d2c82d645fa9072e6de94ca38f20411537
2024-04-24 05:10:07 +08:00
hiyouga
c05027d14a remove redundant code
Former-commit-id: 4a7a7ad2bcdc493458084f5f3d384239228b7d5a
2024-04-24 05:02:18 +08:00
hiyouga
5420905a2e support unsloth generate
Former-commit-id: 0ef1ad9f505dba71db9342f524cc3a7565e5e09e
2024-04-24 04:46:53 +08:00
hiyouga
03f2e3284a refactor patcher
Former-commit-id: 263cfe1294f5c3188f5e8d65791f35ee0d87315a
2024-04-24 03:02:23 +08:00
hiyouga
d2bb1b3a6b reenable sdpa and fast tok by default
Former-commit-id: 9e00902dbedc71d55743d1bf237843506a557891
2024-04-24 02:18:44 +08:00
hiyouga
35c4a2c212 fix #3347 #3387
Former-commit-id: c253c18185a29b59190f3e0ed236c2bb4c788085
2024-04-24 01:30:16 +08:00
hiyouga
1e4010a1fb support phi-3
Former-commit-id: 7e8ffa9beee3893e051ceeade443bd56c4a07b1c
2024-04-24 00:28:53 +08:00
BUAADreamer
1451297c78 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: 67800c565b086f362b8cf131b0c9babaa7a7ebc7
2024-04-23 19:22:42 +08:00
BUAADreamer
0b99b13786 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: b78b5f290aa38a7454e101ee9703fb6fac5064ac
2024-04-23 18:47:03 +08:00
BUAADreamer
f5edbf2b49 Merge branch 'hiyouga:main' into main
Former-commit-id: 6287d1b789c631205c1033adf036e28deaef4167
2024-04-23 18:46:12 +08:00
BUAADreamer
ab6dc0ea30 add multimodal LLM BLIP-2 and InstructBLIP
Former-commit-id: a730f89a972f1a9d37c718c716f199cb8d4903b2
2024-04-23 18:45:43 +08:00
hiyouga
79d34ce0f3 update examples
Former-commit-id: 8bf55682cdfbbdca0f01073eac0084c20a6a09d1
2024-04-23 18:29:46 +08:00
hiyouga
1d2e372a8e update readme
Former-commit-id: d4eaee262a64e716ce475dc4eb18d8d9697d8dd8
2024-04-22 17:09:17 +08:00
hiyouga
f6a53d83c8 update readme
Former-commit-id: 3eab580703ee01a0d2d75e7f01df5165af551386
2024-04-22 00:51:35 +08:00
hiyouga
4ec56dd958 update readme
Former-commit-id: fdca136309709e43d75a831252b9375a5a99635a
2024-04-22 00:42:25 +08:00
hiyouga
ba06eb65ca update readme and examples
Former-commit-id: 27dd9bf201c24f7804811398bc2758966ec78432
2024-04-22 00:37:32 +08:00
hiyouga
be716972fe remove extras
Former-commit-id: d67e972f8c3d5273e589c8c85c0a1620f59785c5
2024-04-22 00:35:41 +08:00
hiyouga
719585a128 update readme
Former-commit-id: 3a8c17907c71f46b1b37501e2afdc99ad89fb4bc
2024-04-22 00:21:01 +08:00
hiyouga
348f29aa50 set dev version
Former-commit-id: b9557887d7506ff57b2b2bf490092aac4e4becf0
2024-04-21 23:14:30 +08:00
zhangzc
7cdc16abdf Supports custom data set sampling quantity
Former-commit-id: fa8325401df27595de4611a89dfcc14644956abd
2024-03-27 14:22:50 +08:00
276 changed files with 12832 additions and 5462 deletions

View File

@@ -4,6 +4,8 @@
.venv
cache
data
hf_cache
output
examples
.dockerignore
.gitattributes

View File

@@ -13,6 +13,18 @@ body:
- label: I have read the README and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
@@ -26,7 +38,9 @@ body:
请合理使用 Markdown 标签来格式化您的文本。
placeholder: |
python src/train_bash.py ...
```bash
llamafactory-cli train ...
```
- type: textarea
id: expected-behavior
@@ -38,18 +52,6 @@ body:
Please provide a clear and concise description of what you would expect to happen.
请提供您原本的目的,即这段代码的期望行为。
- type: textarea
id: system-info
validations:
required: false
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **transformers-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **transformers-cli env** 并将其输出复制到该文本框中。
placeholder: transformers version, platform, python version, ...
- type: textarea
id: others
validations:

View File

@@ -5,3 +5,4 @@ Fixes # (issue)
## Before submitting
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
- [ ] Did you write any new necessary tests?

17
.github/workflows/label_issue.yml vendored Normal file
View File

@@ -0,0 +1,17 @@
name: label_issue
on:
issues:
types:
- opened
jobs:
label_issue:
runs-on: ubuntu-latest
steps:
- env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
ISSUE_URL: ${{ github.event.issue.html_url }}
run: |
gh issue edit $ISSUE_URL --add-label "pending"

40
.github/workflows/publish.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: publish
on:
release:
types:
- published
jobs:
publish:
name: Upload release to PyPI
runs-on: ubuntu-latest
environment:
name: release
url: https://pypi.org/p/llamafactory
permissions:
id-token: write
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install build
- name: Build package
run: |
python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@release/v1

View File

@@ -2,28 +2,44 @@ name: tests
on:
push:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
jobs:
check_code_quality:
tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.8"
cache: "pip"
cache-dependency-path: "setup.py"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ruff
python -m pip install .[torch,dev]
- name: Check quality
run: |
make style && make quality
make style && make quality
- name: Test with pytest
run: |
make test

View File

@@ -1,14 +1,47 @@
FROM nvcr.io/nvidia/pytorch:24.01-py3
# Use the NVIDIA official image with PyTorch 2.3.0
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-02.html
FROM nvcr.io/nvidia/pytorch:24.02-py3
# Define installation arguments
ARG INSTALL_BNB=false
ARG INSTALL_VLLM=false
ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.org/simple
# Set the working directory
WORKDIR /app
# Install the requirements
COPY requirements.txt /app/
RUN pip install -r requirements.txt
RUN pip config set global.index-url $PIP_INDEX
RUN python -m pip install --upgrade pip
RUN python -m pip install -r requirements.txt
# Copy the rest of the application into the image
COPY . /app/
RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_BNB" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
fi; \
if [ "$INSTALL_VLLM" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
fi; \
if [ "$INSTALL_DEEPSPEED" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
pip install -e .[$EXTRA_PACKAGES] && \
pip uninstall -y transformer-engine flash-attn
# Set up volumes
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
EXPOSE 7860
CMD [ "python", "src/train_web.py" ]
# Expose port 8000 for the API service
EXPOSE 8000
# Launch LLaMA Board
CMD [ "llamafactory-cli", "webui" ]

1
MANIFEST.in Normal file
View File

@@ -0,0 +1 @@
include LICENSE requirements.txt

View File

@@ -1,4 +1,4 @@
.PHONY: quality style
.PHONY: quality style test
check_dirs := scripts src tests
@@ -9,3 +9,6 @@ quality:
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
test:
CUDA_VISIBLE_DEVICES= pytest tests/

359
README.md
View File

@@ -3,15 +3,17 @@
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![Citation](https://img.shields.io/badge/citation-34-green)](#projects-using-llama-factory)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-44-green)](#projects-using-llama-factory)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
👋 Join our [WeChat](assets/wechat.jpg).
@@ -24,6 +26,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89
Choose your path:
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Local machine**: Please refer to [usage](#getting-started)
## Table of Contents
@@ -43,10 +46,10 @@ Choose your path:
## Features
- **Various models**: LLaMA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, supervised fine-tuning, reward modeling, PPO, DPO and ORPO.
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and Agent tuning.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
@@ -68,55 +71,69 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See `examples/extras/mod` for usage.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/04/19] We supported **Meta Llama 3** model series.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See `examples/extras/badam` for usage.
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See `examples/lora_single_gpu` for usage.
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage.
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See `examples/extras/fsdp_qlora` for usage.
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage.
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See `examples/extras/loraplus` for usage.
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training.
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See `examples/extras/llama_pro` for usage.
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage.
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall_en`.
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage.
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings.
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage.
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
[23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode.
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
@@ -128,44 +145,50 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
</details>
## Supported Models
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | att_proj | olmo |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| Model | Model size | Template |
| --------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
> Remember to use the **SAME** template in training and inference.
Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list of models we supported.
Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
You also can add a custom chat template to [template.py](src/llmtuner/data/template.py).
You also can add a custom chat template to [template.py](src/llamafactory/data/template.py).
## Supported Training Approaches
@@ -176,7 +199,9 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
## Provided Datasets
@@ -189,6 +214,8 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -196,12 +223,12 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
<details><summary>Supervised fine-tuning datasets</summary>
- [Identity (en&zh)](data/identity.json)
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self Cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
@@ -210,7 +237,6 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
@@ -223,15 +249,20 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
@@ -246,13 +277,13 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
<details><summary>Preference datasets</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [DPO mix (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
</details>
@@ -267,59 +298,57 @@ huggingface-cli login
| Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| Optional | Minimum | Recommend |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### Hardware Requirement
\* *estimated*
| Method | Bits | 7B | 13B | 30B | 70B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB | 48GB |
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
## Getting Started
### Data Preparation
### Installation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Dependence Installation
> [!IMPORTANT]
> Installation is mandatory.
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[metrics]
pip install -e ".[torch,metrics]"
```
Extra dependencies available: deepspeed, metrics, unsloth, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
Extra dependencies available: torch, torch_npu, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.
<details><summary>For Windows users</summary>
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
@@ -329,38 +358,100 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
</details>
### LLaMA Board GUI
<details><summary>For Ascend NPU users</summary>
> [!IMPORTANT]
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#command-line-interface) for distributed training.
Join [NPU user group](assets/wechat_npu.jpg).
#### Use local environment
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e '.[torch-npu,metrics]'`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
```bash
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
python src/train_web.py # or python -m llmtuner.webui.interface
# replace the url according to your CANN version and devices
# install CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# install CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# set env variables
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| Requirement | Minimum | Recommend |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker image:
- 32GB: [Download page](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
- 64GB: [Download page](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
</details>
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Quickstart
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
> [!TIP]
> Use `llamafactory-cli help` to show help information.
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
```bash
llamafactory-cli webui
```
### Build Docker
#### Use Docker
```bash
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
docker build -f ./Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
-t llamafactory:latest .
docker run -it --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llama_factory \
-d llama-factory:latest
--name llamafactory \
llamafactory:latest
```
#### Use Docker Compose
```bash
docker compose -f ./docker-compose.yml up -d
docker-compose up -d
docker-compose exec llamafactory bash
```
<details><summary>Details about volume</summary>
@@ -371,23 +462,16 @@ docker compose -f ./docker-compose.yml up -d
</details>
### Command Line Interface
See [examples/README.md](examples/README.md) for usage.
Use `python src/train_bash.py -h` to display arguments description.
### Deploy with OpenAI-style API and vLLM
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--model_name_or_path mistralai/Mistral-7B-Instruct-v0.2 \
--template mistral \
--infer_backend vllm \
--vllm_enforce_eager
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### Use ModelScope Hub
> [!TIP]
> Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
### Download from ModelScope Hub
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
@@ -395,7 +479,18 @@ If you have trouble with downloading models and datasets from Hugging Face, you
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
```
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `modelscope/Llama-2-7b-ms`.
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
### Use W&B Logger
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
```yaml
report_to: wandb
run_name: test_run # optional
```
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
## Projects using LLaMA Factory
@@ -424,6 +519,7 @@ If you have a project that should be incorporated, please contact via email or c
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
@@ -431,12 +527,21 @@ If you have a project that should be incorporated, please contact via email or c
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
</details>
@@ -444,7 +549,7 @@ If you have a project that should be incorporated, please contact via email or c
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation

View File

@@ -3,15 +3,17 @@
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![Citation](https://img.shields.io/badge/citation-34-green)](#使用了-llama-factory-的项目)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-44-green)](#使用了-llama-factory-的项目)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
👋 加入我们的[微信群](assets/wechat.jpg)。
@@ -23,7 +25,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
选择你的打开方式:
- **Colab**https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **Colab**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **本地机器**:请见[如何使用](#如何使用)
## 目录
@@ -43,10 +46,10 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 项目特色
- **多种模型**LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**增量预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练ORPO 训练。
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等
- **多种精度**32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
@@ -68,55 +71,69 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)
[24/04/19] 我们支持了 **Meta Llama 3** 系列模型
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 `examples/extras/badam`
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练24GB 可训练 Llama-2-7B-56k。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)
<details><summary>展开日志</summary>
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练24GB 可训练 Llama-2-7B-56k。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 `examples/extras/fsdp_qlora`
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 `examples/extras/loraplus`
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 `examples/extras/galore`
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA请先合并权重。
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 `examples/extras/llama_pro`
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)
[24/02/05] Qwen1.5Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力。
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall_zh` 即可使模型获得工具调用能力。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#魔搭社区下载)。
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune,例如 `--neftune_noise_alpha 5`
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。
[23/07/31] 我们支持了**数据流式加载**。请使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
[23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true``max_steps: 10000` 参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
@@ -128,44 +145,50 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)
</details>
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | att_proj | olmo |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| 模型名 | 模型大小 | Template |
| --------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块
> 对于所有“基座”Base模型`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用**对应的模板**
> 请务必在训练和推理时采用**完全一致**的模板。
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
您也可以在 [template.py](src/llmtuner/data/template.py) 中添加自己的对话模板。
您也可以在 [template.py](src/llamafactory/data/template.py) 中添加自己的对话模板。
## 训练方法
@@ -176,7 +199,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
## 数据集
@@ -189,6 +214,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@@ -196,12 +223,12 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
<details><summary>指令微调数据集</summary>
- [Identity (en&zh)](data/identity.json)
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self Cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
@@ -210,7 +237,6 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
@@ -223,15 +249,20 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
@@ -246,13 +277,13 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
<details><summary>偏好数据集</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [DPO mix (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
</details>
@@ -267,55 +298,53 @@ huggingface-cli login
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### 硬件依赖
\* *估算值*
| 方法 | 精度 | 7B | 13B | 30B | 70B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB | 48GB |
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
## 如何使用
### 数据准备
### 安装 LLaMA Factory
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 安装依赖
> [!IMPORTANT]
> 此步骤为必需。
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[metrics]
pip install -e ".[torch,metrics]"
```
可选的额外依赖项:deepspeed、metrics、unsloth、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
可选的额外依赖项:torch、torch_npu、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
<details><summary>Windows 用户指南</summary>
@@ -329,38 +358,100 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
</details>
### LLaMA Board 可视化界面
<details><summary>昇腾 NPU 用户指南</summary>
> [!IMPORTANT]
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行分布式训练。
加入 [NPU 用户群](assets/wechat_npu.jpg)。
#### 使用本地环境
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e '.[torch-npu,metrics]'` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
```bash
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
python src/train_web.py # 或 python -m llmtuner.webui.interface
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
# 安装 CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# 安装 CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker 镜像:
- 32GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
- 64GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`
</details>
### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
> [!TIP]
> 使用 `llamafactory-cli help` 显示帮助信息。
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
```bash
llamafactory-cli webui
```
### 构建 Docker
#### 使用 Docker
```bash
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
docker build -f ./Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
-t llamafactory:latest .
docker run -it --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llama_factory \
-d llama-factory:latest
--name llamafactory \
llamafactory:latest
```
#### 使用 Docker Compose
```bash
docker compose -f ./docker-compose.yml up -d
docker-compose up -d
docker-compose exec llamafactory bash
```
<details><summary>数据卷详情</summary>
@@ -371,23 +462,16 @@ docker compose -f ./docker-compose.yml up -d
</details>
### 命令行接口
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
使用 `python src/train_bash.py -h` 查看参数文档。
### 使用 OpenAI 风格 API 和 vLLM 部署
### 利用 vLLM 部署 OpenAI API
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--model_name_or_path mistralai/Mistral-7B-Instruct-v0.2 \
--template mistral \
--infer_backend vllm \
--vllm_enforce_eager
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### 使用魔搭社区
> [!TIP]
> API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。
### 从魔搭社区下载
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
@@ -395,7 +479,18 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
```
`--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `modelscope/Llama-2-7b-ms`
`model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`
### 使用 W&B 面板
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
```yaml
report_to: wandb
run_name: test_run # 可选
```
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
## 使用了 LLaMA Factory 的项目
@@ -424,6 +519,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
@@ -431,12 +527,21 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**MBTI性格大模型项目根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
</details>
@@ -444,7 +549,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用

View File

@@ -1,16 +1,18 @@
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
@@ -18,7 +20,11 @@ If you are using a custom dataset, please provide your dataset definition in the
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)"
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
@@ -32,31 +38,38 @@ If you are using a custom dataset, please provide your dataset definition in the
}
```
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
## Alpaca Format
----
### Supervised Fine-Tuning Dataset
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
The `system` column will be used as the system prompt if specified.
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
@@ -67,30 +80,135 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
}
```
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
### Pre-training Dataset
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
- [Example dataset](c4_demo.json)
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
In pre-training, only the `text` column will be used for model learning.
```json
{
"instruction": "user instruction",
"input": "user input",
"output": [
"chosen answer",
"rejected answer"
]
[
{"text": "document"},
{"text": "document"}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
Remember to set `"ranking": true` for the preference datasets.
### Preference Dataset
----
Preference datasets are used for reward modeling, DPO training and ORPO training.
The dataset in sharegpt format should follow the below format:
It requires a better response in `chosen` column and a worse response in `rejected` column.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
- [Example dataset](kto_en_demo.json)
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"kto_tag": "human feedback [true/false] (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### Multimodal Dataset
- [Example dataset](mllm_demo.json)
Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"images": [
"image path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt Format
### Supervised Fine-Tuning Dataset
- [Example dataset](glaive_toolcall_en_demo.json)
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
```json
[
@@ -98,7 +216,15 @@ The dataset in sharegpt format should follow the below format:
"conversations": [
{
"from": "human",
"value": "user instruction"
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
@@ -111,24 +237,114 @@ The dataset in sharegpt format should follow the below format:
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
```
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
### Preference Dataset
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
- [Example dataset](dpo_en_demo.json)
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
```json
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.
Pre-training datasets are **incompatible** with the sharegpt format.

View File

@@ -1,16 +1,18 @@
如果您使用自定义数据集,请务必`dataset_info.json` 文件中按照以下格式提供数据集定义
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**`dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练",
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"ranking": "是否为偏好数据集可选默认False",
"subset": "数据集子集的名称可选默认None",
"folder": "Hugging Face 仓库的文件夹名称可选默认None",
"ranking": "是否为偏好数据集(可选,默认:False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"num_samples": "该数据集中用于训练的样本数量。(可选,默认:None",
"columns可选": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
@@ -18,7 +20,11 @@
"history": "数据集代表历史对话的表头名称默认None",
"messages": "数据集代表消息列表的表头名称默认conversations",
"system": "数据集代表系统提示的表头名称默认None",
"tools": "数据集代表工具描述的表头名称默认None"
"tools": "数据集代表工具描述的表头名称默认None",
"images": "数据集代表图像输入的表头名称默认None",
"chosen": "数据集代表更优回答的表头名称默认None",
"rejected": "数据集代表更差回答的表头名称默认None",
"kto_tag": "数据集代表 KTO 标签的表头名称默认None"
},
"tags可选用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名默认from",
@@ -27,22 +33,28 @@
"assistant_tag": "消息中代表助手的 role_tag默认gpt",
"observation_tag": "消息中代表工具返回结果的 role_tag默认observation",
"function_tag": "消息中代表工具调用的 role_tag默认function_call",
"system_tag": "消息中代表系统提示的 role_tag默认system会覆盖 system "
"system_tag": "消息中代表系统提示的 role_tag默认system会覆盖 system column"
}
}
```
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
## Alpaca 格式
----
### 指令监督微调数据集
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
如果指定,`system` 列对应的内容将被作为系统提示词。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
```json
[
{
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
@@ -53,10 +65,11 @@
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
@@ -67,30 +80,135 @@
}
```
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery``response` 列对应的内容为模型回答。
### 预训练数据集
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意历史消息中的回答**也会被用于训练**。
- [样例数据集](c4_demo.json)
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
预训练时,只有 `text` 列中的内容会用于模型学习
```json
{
"instruction": "用户指令",
"input": "用户输入",
"output": [
"优质回答",
"劣质回答"
]
[
{"text": "document"},
{"text": "document"}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
添加偏好数据集需要额外指定 `"ranking": true`
### 偏好数据集
----
偏好数据集用于奖励模型训练、DPO 训练和 ORPO 训练。
而 sharegpt 格式的数据集按照以下方式组织:
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
- [样例数据集](kto_en_demo.json)
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"kto_tag": "人类反馈 [true/false](必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### 多模态数据集
- [样例数据集](mllm_demo.json)
多模态数据集需要额外添加一个 `images` 列,包含输入图像的路径。目前我们仅支持单张图像输入。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"images": [
"图像路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt 格式
### 指令监督微调数据集
- [样例数据集](glaive_toolcall_zh_demo.json)
相比 alpaca 格式的数据集sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置gpt 和 function 必须出现在偶数位置。
```json
[
@@ -98,7 +216,15 @@
"conversations": [
{
"from": "human",
"value": "用户指令"
"value": "人类指令"
},
{
"from": "function_call",
"value": "工具参数"
},
{
"from": "observation",
"value": "工具结果"
},
{
"from": "gpt",
@@ -111,24 +237,114 @@
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
```
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
### 偏好数据集
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
- [样例数据集](dpo_zh_demo.json)
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
},
{
"from": "human",
"value": "人类指令"
}
],
"chosen": {
"from": "gpt",
"value": "优质回答"
},
"rejected": {
"from": "gpt",
"value": "劣质回答"
}
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
```json
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "人类指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
Sharegpt 格式中的 KTO 数据集和多模态数据集与 alpaca 格式的类似。
预训练数据集**不支持** sharegpt 格式。

View File

@@ -1 +0,0 @@
3779ddbc040543ab1834ef216c983d6fcc06cc9a

View File

@@ -1 +0,0 @@
a97cf9475291591843976554878568e046d8a46d

View File

@@ -1 +0,0 @@
25508714b7879a1e5a6764ba7f979a980f549f1a

View File

@@ -1 +0,0 @@
7cb6a7d11455bddc3d495750a2392683d775b184

View File

@@ -1 +0,0 @@
f5cb08305ff5dc9c17a09809c54c8c8834aadc70

View File

@@ -1 +0,0 @@
aee47b7b443496e37808d7f34ef10403ff99bcc3

View File

@@ -1,37 +0,0 @@
import json
from typing import Any, Dict, Generator, List, Tuple
import datasets
_DESCRIPTION = "An example of dataset."
_CITATION = ""
_HOMEPAGE = ""
_LICENSE = ""
_URL = "examples.json"
class ExampleDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"input": datasets.Value("string"),
"output": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_path = dl_manager.download(_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
def _generate_examples(self, filepath: str) -> Generator[Tuple[int, Dict[str, Any]], None, None]:
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
for key, example in enumerate(example_dataset):
yield key, example

View File

@@ -1 +0,0 @@
4748dff00d1dc42768a5b6cc772143c313017812

View File

@@ -34,7 +34,8 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
features = datasets.Features(
{
"instruction": datasets.Value("string"),
"output": datasets.Sequence(datasets.Value("string")),
"chosen": datasets.Value("string"),
"rejected": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
}
)
@@ -79,5 +80,5 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
break
prompt = prompt[:human_idx]
yield key, {"instruction": query, "output": [r_accept, r_reject], "history": history}
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
key += 1

View File

@@ -1 +0,0 @@
274079ea921762be356de85b18f13fa60b7ba8cb

View File

@@ -1 +0,0 @@
57fd080be5bffe4153fe3ee26a175e3d56da30f3

View File

@@ -1 +0,0 @@
736bcedea2b24a1414765c6d69cbdafaea839f3c

30
data/wiki_demo.txt Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1 +0,0 @@
c9cf509b7fdac5490cfd6dae72c2d7b8a60af6cb

View File

@@ -1,20 +1,25 @@
version: '3.8'
services:
llama-factory:
llamafactory:
build:
dockerfile: Dockerfile
context: .
container_name: llama_factory
args:
INSTALL_BNB: false
INSTALL_VLLM: false
INSTALL_DEEPSPEED: false
PIP_INDEX: https://pypi.org/simple
container_name: llamafactory
volumes:
- ./hf_cache:/root/.cache/huggingface/
- ./data:/app/data
- ./output:/app/output
environment:
- CUDA_VISIBLE_DEVICES=0
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
stdin_open: true
command: bash
deploy:
resources:
reservations:

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
@@ -133,25 +134,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "test", f"{task_name}_test.csv"
),
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "val", f"{task_name}_val.csv"
),
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "dev", f"{task_name}_dev.csv"
),
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
},
),
]

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
@@ -37,73 +38,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
_URL = "cmmlu.zip"
task_list = [
'agronomy',
'anatomy',
'ancient_chinese',
'arts',
'astronomy',
'business_ethics',
'chinese_civil_service_exam',
'chinese_driving_rule',
'chinese_food_culture',
'chinese_foreign_policy',
'chinese_history',
'chinese_literature',
'chinese_teacher_qualification',
'clinical_knowledge',
'college_actuarial_science',
'college_education',
'college_engineering_hydrology',
'college_law',
'college_mathematics',
'college_medical_statistics',
'college_medicine',
'computer_science',
'computer_security',
'conceptual_physics',
'construction_project_management',
'economics',
'education',
'electrical_engineering',
'elementary_chinese',
'elementary_commonsense',
'elementary_information_and_technology',
'elementary_mathematics',
'ethnology',
'food_science',
'genetics',
'global_facts',
'high_school_biology',
'high_school_chemistry',
'high_school_geography',
'high_school_mathematics',
'high_school_physics',
'high_school_politics',
'human_sexuality',
'international_law',
'journalism',
'jurisprudence',
'legal_and_moral_basis',
'logical',
'machine_learning',
'management',
'marketing',
'marxist_theory',
'modern_chinese',
'nutrition',
'philosophy',
'professional_accounting',
'professional_law',
'professional_medicine',
'professional_psychology',
'public_relations',
'security_study',
'sociology',
'sports_science',
'traditional_chinese_medicine',
'virology',
'world_history',
'world_religions',
"agronomy",
"anatomy",
"ancient_chinese",
"arts",
"astronomy",
"business_ethics",
"chinese_civil_service_exam",
"chinese_driving_rule",
"chinese_food_culture",
"chinese_foreign_policy",
"chinese_history",
"chinese_literature",
"chinese_teacher_qualification",
"clinical_knowledge",
"college_actuarial_science",
"college_education",
"college_engineering_hydrology",
"college_law",
"college_mathematics",
"college_medical_statistics",
"college_medicine",
"computer_science",
"computer_security",
"conceptual_physics",
"construction_project_management",
"economics",
"education",
"electrical_engineering",
"elementary_chinese",
"elementary_commonsense",
"elementary_information_and_technology",
"elementary_mathematics",
"ethnology",
"food_science",
"genetics",
"global_facts",
"high_school_biology",
"high_school_chemistry",
"high_school_geography",
"high_school_mathematics",
"high_school_physics",
"high_school_politics",
"human_sexuality",
"international_law",
"journalism",
"jurisprudence",
"legal_and_moral_basis",
"logical",
"machine_learning",
"management",
"marketing",
"marxist_theory",
"modern_chinese",
"nutrition",
"philosophy",
"professional_accounting",
"professional_law",
"professional_medicine",
"professional_psychology",
"public_relations",
"security_study",
"sociology",
"sports_science",
"traditional_chinese_medicine",
"virology",
"world_history",
"world_religions",
]

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
@@ -136,31 +137,25 @@ class MMLU(datasets.GeneratorBasedBuilder):
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "test", f"{task_name}_test.csv"
),
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "val", f"{task_name}_val.csv"
),
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "dev", f"{task_name}_dev.csv"
),
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
for i, instance in enumerate(df.to_dict(orient="records")):

View File

@@ -1,48 +1,221 @@
We provide diverse examples about fine-tuning LLMs.
Make sure to execute these commands in the `LLaMA-Factory` directory.
## Table of Contents
- [LoRA Fine-Tuning](#lora-fine-tuning)
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
## Examples
### LoRA Fine-Tuning
#### (Continuous) Pre-Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
examples/
├── lora_single_gpu/
│ ├── pretrain.sh: Do continuous pre-training using LoRA
│ ├── sft.sh: Do supervised fine-tuning using LoRA
│ ├── reward.sh: Do reward modeling using LoRA
│ ├── ppo.sh: Do PPO training using LoRA
│ ├── dpo.sh: Do DPO training using LoRA
│ ├── orpo.sh: Do ORPO training using LoRA
│ ├── prepare.sh: Save tokenized dataset
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
├── qlora_single_gpu/
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models using QLoRA
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models using QLoRA
│ ├── awq.sh: Fine-tune 4-bit AWQ models using QLoRA
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
├── lora_multi_gpu/
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
│ └── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
├── full_multi_gpu/
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after full tuning
├── merge_lora/
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ
├── inference/
│ ├── cli_demo.sh: Launch a command line interface with LoRA adapters
│ ├── api_demo.sh: Launch an OpenAI-style API with LoRA adapters
│ ├── web_demo.sh: Launch a web interface with LoRA adapters
│ └── evaluate.sh: Evaluate model on the MMLU/CMMLU/C-Eval benchmarks with LoRA adapters
└── extras/
├── galore/
│ └── sft.sh: Fine-tune model with GaLore
├── badam/
│ └── sft.sh: Fine-tune model with BAdam
├── loraplus/
│ └── sft.sh: Fine-tune model using LoRA+
├── mod/
│ └── sft.sh: Fine-tune model using Mixture-of-Depths
├── llama_pro/
│ ├── expand.sh: Expand layers in the model
│ └── sft.sh: Fine-tune the expanded model
└── fsdp_qlora/
└── sft.sh: Fine-tune quantized model with FSDP+QLoRA
#### Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
```
#### Reward Modeling
```bash
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### KTO Training
```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### Preprocess Dataset
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
### QLoRA Fine-Tuning
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### Full-Parameter Fine-Tuning
#### Supervised Fine-Tuning on Single Node
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### Merging LoRA Adapters and Quantization
#### Merge LoRA Adapters
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### Quantizing Model using AutoGPTQ
```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### Inferring LoRA Fine-Tuned Models
#### Use CLI
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### Use Web UI
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### Launch OpenAI-style API
```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### Extras
#### Full-Parameter Fine-Tuning using GaLore
```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA Fine-Tuning
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### Mixture-of-Depths Fine-Tuning
```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro Fine-Tuning
```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA Fine-Tuning
```bash
bash examples/extras/fsdp_qlora/train.sh
```

View File

@@ -1,48 +1,221 @@
我们提供了多样化的大模型微调示例脚本。
请确保在 `LLaMA-Factory` 目录下执行下述命令。
## 目录
- [LoRA 微调](#lora-微调)
- [QLoRA 微调](#qlora-微调)
- [全参数微调](#全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)
使用 `CUDA_VISIBLE_DEVICES`GPU`ASCEND_RT_VISIBLE_DEVICES`NPU选择计算设备。
## 示例
### LoRA 微调
#### (增量)预训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
examples/
├── lora_single_gpu/
│ ├── pretrain.sh: 基于 LoRA 进行增量预训练
│ ├── sft.sh: 基于 LoRA 进行指令监督微调
│ ├── reward.sh: 基于 LoRA 进行奖励模型训练
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
│ ├── prepare.sh: 保存预处理后的数据集
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
├── qlora_single_gpu/
│ ├── bitsandbytes.sh: 基于 QLoRA 微调 4/8 比特 BNB 模型
│ ├── gptq.sh: 基于 QLoRA 微调 4/8 比特 GPTQ 模型
│ ├── awq.sh: 基于 QLoRA 微调 4 比特 AWQ 模型
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
├── lora_multi_gpu/
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
│ └── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
├── full_multi_gpu/
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
│ └── predict.sh: 基于全量训练进行批量预测并计算 BLEU 和 ROUGE 分数
├── merge_lora/
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型
├── inference/
│ ├── cli_demo.sh: 启动 LoRA 模型的命令行推理接口
│ ├── api_demo.sh: 启动 LoRA 模型的 OpenAI 风格 API
│ ├── web_demo.sh: 启动 LoRA 模型的浏览器推理接口
│ └── evaluate.sh: 在 MMLU/CMMLU/C-Eval 数据集上评测 LoRA 模型
└── extras/
├── galore/
│ └── sft.sh: 使用 GaLore 训练模型
├── badam/
│ └── sft.sh: 使用 BAdam 训练模型
├── loraplus/
│ └── sft.sh: 使用 LoRA+ 训练模型
├── mod/
│ └── sft.sh: 使用深度混合训练模型
├── llama_pro/
│ ├── expand.sh: 扩展模型中的层
│ └── sft.sh: 训练扩展后的模型
└── fsdp_qlora/
└── sft.sh: 使用 FSDP+QLoRA 微调量化模型
#### 指令监督微调
```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### 多模态指令监督微调
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
```
#### 奖励模型训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### KTO 训练
```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### 预处理数据集
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### 在 MMLU/CMMLU/C-Eval 上评估
```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
#### 多机指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
### QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### 基于 4 比特 AWQ 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### 基于 2 比特 AQLM 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### 全参数微调
#### 在单机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### 在多机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### 合并 LoRA 适配器与模型量化
#### 合并 LoRA 适配器
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### 使用 AutoGPTQ 量化模型
```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### 推理 LoRA 模型
#### 使用命令行接口
```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### 使用浏览器界面
```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### 启动 OpenAI 风格 API
```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### 杂项
#### 使用 GaLore 进行全参数训练
```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ 微调
```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA 微调
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### 深度混合微调
```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro 微调
```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA 微调
```bash
bash examples/extras/fsdp_qlora/train.sh
```

View File

@@ -5,16 +5,16 @@ downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: fp16
mixed_precision: fp16 # or bf16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static

View File

@@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,16 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1 # the number of nodes
num_processes: 4 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 1
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--mixture_of_depths convert \
--output_dir ../../../saves/LLaMA2-7B/mod/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--optim paged_adamw_8bit \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 2
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_badam \
--badam_switch_mode descending \
--badam_switch_block_every 50 \
--badam_verbose 2 \
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,40 +0,0 @@
#!/bin/bash
pip install "transformers>=4.39.1"
pip install "accelerate>=0.28.0"
pip install "bitsandbytes>=0.43.0"
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file ../../accelerate/fsdp_config.yaml \
../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-70b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,6 @@
#!/bin/bash
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file examples/accelerate/fsdp_config.yaml \
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_galore: true
galore_layerwise: true
galore_target: mlp,self_attn
galore_rank: 128
galore_scale: 2.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,36 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_galore \
--galore_layerwise \
--galore_target mlp,self_attn \
--galore_rank 128 \
--galore_scale 2.0 \
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@@ -1,6 +1,6 @@
#!/bin/bash
python ../../../scripts/llama_pro.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--output_dir ../../../models/llama2-7b-pro \
python scripts/llama_pro.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-instruct-pro \
--num_expand 8

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: models/llama3-8b-instruct-pro
### method
stage: sft
do_train: true
finetuning_type: freeze
freeze_trainable_layers: 8
freeze_trainable_modules: all
use_llama_pro: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,34 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path ../../../models/llama2-7b-pro \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type freeze \
--name_module_trainable all \
--num_layer_trainable 8 \
--use_llama_pro \
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
loraplus_lr_ratio: 16.0
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--loraplus_lr_ratio 16.0 \
--output_dir ../../saves/LLaMA2-7B/loraplus/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
mixture_of_depths: convert
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b-mod/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
optim: paged_adamw_8bit
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
pissa_init: true
pissa_iter: 4
pissa_convert: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,38 +0,0 @@
#!/bin/bash
python -m torch.distributed.run \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,18 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/predict \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_eval_batch_size 1 \
--max_samples 20 \
--predict_with_generate

View File

@@ -1,32 +0,0 @@
#!/bin/bash
deepspeed --num_gpus 4 ../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type full \
--output_dir ../../saves/LLaMA2-7B/full/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -1,12 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template fewshot \
--finetuning_type lora \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4

View File

@@ -0,0 +1,2 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3

View File

@@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora

View File

@@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: vllm
vllm_enforce_eager: true

View File

@@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file ../accelerate/master_config.yaml \
../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch \
--config_file ../accelerate/single_config.yaml \
../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16

View File

@@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage dpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--dpo_ftx 1.0 \
--plot_loss \
--fp16

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage orpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage ppo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset alpaca_gpt4_en \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--reward_model ../../saves/LLaMA2-7B/lora/reward \
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 512 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--top_k 0 \
--top_p 0.9 \
--max_new_tokens 256 \
--plot_loss \
--fp16

View File

@@ -1,19 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--output_dir ../../saves/LLaMA2-7B/lora/predict \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_eval_batch_size 1 \
--max_samples 20 \
--predict_with_generate

View File

@@ -1,18 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES= python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--max_samples 3000 \
--tokenized_path ../../saves/datasets/sft

View File

@@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage pt \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset c4_demo \
--dataset_dir ../../data \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 10000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage rm \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/reward \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 5000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,11 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
### export
export_dir: models/llama3_gptq
export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.json
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@@ -0,0 +1,13 @@
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora
### export
export_dir: models/llama3_lora_sft
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@@ -1,11 +0,0 @@
#!/bin/bash
# DO NOT use quantized model or quantization_bit when merging lora weights
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora \
--export_dir ../../models/llama2-7b-sft \
--export_size 2 \
--export_legacy_format False

View File

@@ -1,10 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
--model_name_or_path ../../models/llama2-7b-sft \
--template default \
--export_dir ../../models/llama2-7b-sft-int4 \
--export_quantization_bit 4 \
--export_quantization_dataset ../../data/c4_demo.json \
--export_size 2 \
--export_legacy_format False

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@@ -0,0 +1,23 @@
### model
model_name_or_path: saves/llama3-8b/full/sft
### method
stage: sft
do_predict: true
finetuning_type: full
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,41 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: dpo
do_train: true
finetuning_type: lora
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid # [sigmoid (dpo), orpo, simpo]
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/dpo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,19 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
finetuning_type: lora
### dataset
task: mmlu
split: test
template: fewshot
lang: en
n_shot: 5
### output
save_dir: saves/llama3-8b/lora/eval
### eval
batch_size: 4

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: kto
do_train: true
finetuning_type: lora
lora_target: all
pref_beta: 0.1
### dataset
dataset: kto_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/kto
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
reward_model: saves/llama3-8b/lora/reward
### method
stage: ppo
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/ppo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### generate
max_new_tokens: 512
top_k: 0
top_p: 0.9

View File

@@ -0,0 +1,25 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
stage: sft
do_predict: true
finetuning_type: lora
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
ddp_timeout: 180000000

View File

@@ -0,0 +1,38 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: pt
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: c4_demo
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: rm
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: dpo_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/reward
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
deepspeed: examples/deepspeed/ds_z0_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,21 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
tokenized_path: saves/llama3-8b/dataset/sft
### output
output_dir: saves/llama3-8b/lora/sft
overwrite_output_dir: true

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: llava-hf/llava-1.5-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: mllm_demo
template: vicuna
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llava1_5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -0,0 +1,39 @@
### model
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -13,7 +13,7 @@ select = ["C", "E", "F", "I", "W"]
[tool.ruff.lint.isort]
lines-after-imports = 2
known-first-party = ["llmtuner"]
known-first-party = ["llamafactory"]
known-third-party = [
"accelerate",
"datasets",

View File

@@ -1,17 +1,20 @@
torch>=1.13.1
transformers>=4.37.2
datasets>=2.14.3
accelerate>=0.27.2
peft>=0.10.0
trl>=0.8.1
transformers>=4.41.2
datasets>=2.16.0
accelerate>=0.30.1
peft>=0.11.1
trl>=0.8.6
gradio>=4.0.0
pandas>=2.0.0
scipy
einops
sentencepiece
tiktoken
protobuf
uvicorn
pydantic
fastapi
sse-starlette
matplotlib
matplotlib>=3.7.0
fire
packaging
pyyaml

Some files were not shown because too many files have changed in this diff Show More