Compare commits
456 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3cef844079 | ||
|
|
4dcd47100d | ||
|
|
a412b4ed4a | ||
|
|
544a6259b6 | ||
|
|
c501f377dd | ||
|
|
cb8b8f40cd | ||
|
|
70bed8ad8f | ||
|
|
51f776ae2a | ||
|
|
697bc20941 | ||
|
|
1480e3a88f | ||
|
|
19029d5b0f | ||
|
|
7773ac0ead | ||
|
|
23b881bff1 | ||
|
|
10a6c395bb | ||
|
|
f9a7732a1f | ||
|
|
c37582af02 | ||
|
|
ece67f8c7f | ||
|
|
e1838e76fe | ||
|
|
2eede9ffd6 | ||
|
|
a6f6b406b3 | ||
|
|
279439abbe | ||
|
|
13117b69d7 | ||
|
|
5d03ac642d | ||
|
|
5062ee547e | ||
|
|
59817c27e3 | ||
|
|
759bee48d2 | ||
|
|
514ffafc12 | ||
|
|
8b2a735c14 | ||
|
|
10d59e9e4a | ||
|
|
058ed5e607 | ||
|
|
110c2ce2a5 | ||
|
|
c425436676 | ||
|
|
266fe908e3 | ||
|
|
dbd905438b | ||
|
|
d64c87f928 | ||
|
|
29eebef696 | ||
|
|
7bfbcb1fe3 | ||
|
|
9b210cf4b3 | ||
|
|
f74e640565 | ||
|
|
d1d08d066a | ||
|
|
6be321b5da | ||
|
|
3c792174db | ||
|
|
9aeb88c426 | ||
|
|
00e2a272ef | ||
|
|
5142349661 | ||
|
|
0e3cc52327 | ||
|
|
6c1db2d012 | ||
|
|
12c51655ce | ||
|
|
36be12a3b7 | ||
|
|
21fac4c98c | ||
|
|
83404c4fa9 | ||
|
|
12f852b8d4 | ||
|
|
a88873116a | ||
|
|
7cfcd69c64 | ||
|
|
a5eabbe933 | ||
|
|
aa25716a5d | ||
|
|
94c8219575 | ||
|
|
ad24a2a0c9 | ||
|
|
c05027d14a | ||
|
|
5420905a2e | ||
|
|
03f2e3284a | ||
|
|
d2bb1b3a6b | ||
|
|
35c4a2c212 | ||
|
|
1e4010a1fb | ||
|
|
1451297c78 | ||
|
|
0b99b13786 | ||
|
|
f5edbf2b49 | ||
|
|
ab6dc0ea30 | ||
|
|
79d34ce0f3 | ||
|
|
1d2e372a8e | ||
|
|
f6a53d83c8 | ||
|
|
4ec56dd958 | ||
|
|
ba06eb65ca | ||
|
|
be716972fe | ||
|
|
719585a128 | ||
|
|
348f29aa50 | ||
|
|
c8fe3f544b | ||
|
|
0f1ad7140f | ||
|
|
233e167f68 | ||
|
|
1d341dcd83 | ||
|
|
d16561e7a4 | ||
|
|
f8e219dc81 | ||
|
|
3365cc8cf0 | ||
|
|
3a5e68b7d9 | ||
|
|
0cb596fee1 | ||
|
|
b3b5b530d1 | ||
|
|
9225c15c88 | ||
|
|
abd9fed445 | ||
|
|
44cda2eece | ||
|
|
8397808d1d | ||
|
|
9e1bd6420d | ||
|
|
619264c854 | ||
|
|
1ebac62e3d | ||
|
|
ce9bdb3509 | ||
|
|
0c8d6369ac | ||
|
|
bee796f6b5 | ||
|
|
9f6349a333 | ||
|
|
171a029c5e | ||
|
|
eaefaa0fe0 | ||
|
|
d301f0a64b | ||
|
|
0a1578e4e3 | ||
|
|
a4167fd925 | ||
|
|
42084e08ae | ||
|
|
9d23f5dc89 | ||
|
|
5978427ae0 | ||
|
|
c7c216069c | ||
|
|
cde9d1b917 | ||
|
|
96213f04b0 | ||
|
|
7ecea08b9b | ||
|
|
191971865d | ||
|
|
ff4f587dd9 | ||
|
|
de728d0371 | ||
|
|
d08e09642d | ||
|
|
351493b183 | ||
|
|
86ab47e121 | ||
|
|
6dd6b3e396 | ||
|
|
5f1418a68b | ||
|
|
7b97a79efc | ||
|
|
ce4f653121 | ||
|
|
b053c6454e | ||
|
|
ebf0f4a77c | ||
|
|
efa808069a | ||
|
|
b5c5283dd6 | ||
|
|
b638c65519 | ||
|
|
d4d471450f | ||
|
|
3144bdec2c | ||
|
|
c6d6c4c209 | ||
|
|
f5f1589662 | ||
|
|
276f2cb24e | ||
|
|
952b785bb3 | ||
|
|
72dd676208 | ||
|
|
dfaa31e991 | ||
|
|
86556b1c74 | ||
|
|
0c80751e87 | ||
|
|
9338f878a3 | ||
|
|
fde3d91242 | ||
|
|
19adfb88a9 | ||
|
|
daaafa900a | ||
|
|
0dcc9e0bca | ||
|
|
aeec78b35c | ||
|
|
c991654cb4 | ||
|
|
f328413646 | ||
|
|
106a0104da | ||
|
|
5486ea09e3 | ||
|
|
31bbbb6d13 | ||
|
|
1a77de82fa | ||
|
|
7468f2535c | ||
|
|
38e4f22605 | ||
|
|
2bc2fe7b5e | ||
|
|
6d0140d8a0 | ||
|
|
7856f98965 | ||
|
|
e25ddef08c | ||
|
|
95a4589bbf | ||
|
|
566d71b7a9 | ||
|
|
6030a4a720 | ||
|
|
5dc0cb94d4 | ||
|
|
325dafcbb0 | ||
|
|
1a8a8b8651 | ||
|
|
61a495cb1e | ||
|
|
75866aa020 | ||
|
|
9e4fda326d | ||
|
|
1131ddfaff | ||
|
|
9f437b5c43 | ||
|
|
0cc03d3f05 | ||
|
|
04fc2f78bf | ||
|
|
3ac333fc6a | ||
|
|
a246ac1914 | ||
|
|
48ceac845c | ||
|
|
b1986a06b9 | ||
|
|
43d134ba29 | ||
|
|
1348f7d860 | ||
|
|
f6530222f7 | ||
|
|
a74a7585e0 | ||
|
|
5bf0cca2b8 | ||
|
|
755b6511ff | ||
|
|
35621c6089 | ||
|
|
38b59664e6 | ||
|
|
933a084999 | ||
|
|
c1510d19c7 | ||
|
|
2074cf99fb | ||
|
|
b12176d818 | ||
|
|
117b67ea30 | ||
|
|
03e20bb5c6 | ||
|
|
0c4a1381a4 | ||
|
|
9e14501edb | ||
|
|
1dc963caa6 | ||
|
|
85726c91ce | ||
|
|
40211db275 | ||
|
|
e7f13098c6 | ||
|
|
61eb3a3d46 | ||
|
|
be0a807e8c | ||
|
|
52d402e2a9 | ||
|
|
c5a46f9113 | ||
|
|
00e17a377c | ||
|
|
9abd83adb1 | ||
|
|
f0d2afcf90 | ||
|
|
1aba442bcd | ||
|
|
d764cd8736 | ||
|
|
526111a303 | ||
|
|
b8364046df | ||
|
|
1f617c6e08 | ||
|
|
a6858a36c0 | ||
|
|
6198121923 | ||
|
|
b0efebf853 | ||
|
|
fbd0584391 | ||
|
|
50224b09cc | ||
|
|
32dcc5a491 | ||
|
|
9408366a36 | ||
|
|
f0e564beaa | ||
|
|
14b75a0b93 | ||
|
|
59e6ebf039 | ||
|
|
dc540dfaa8 | ||
|
|
587e65e442 | ||
|
|
a916688723 | ||
|
|
3336422760 | ||
|
|
04423b916f | ||
|
|
bf8d2f8eda | ||
|
|
2a5d02fd0f | ||
|
|
ea550ed9e0 | ||
|
|
02665cd42b | ||
|
|
0c6a94e66d | ||
|
|
ebd6bc2604 | ||
|
|
daab85e3e6 | ||
|
|
769d81a83d | ||
|
|
ac2a401b1d | ||
|
|
bb53c18153 | ||
|
|
04e0fe9147 | ||
|
|
39f75c7001 | ||
|
|
7f99cb1817 | ||
|
|
c555b2cce3 | ||
|
|
2eba1c6851 | ||
|
|
edeed55664 | ||
|
|
92248f9cb2 | ||
|
|
c548ad5e69 | ||
|
|
a57d839e1d | ||
|
|
d88a34bc79 | ||
|
|
60cbc9d0e5 | ||
|
|
d5005e766f | ||
|
|
4d0753cffe | ||
|
|
1cf0f11840 | ||
|
|
052e8b2cc6 | ||
|
|
8963e89633 | ||
|
|
935ee0a023 | ||
|
|
5ed234ca63 | ||
|
|
04884a0911 | ||
|
|
c7af26a9e3 | ||
|
|
d8073488be | ||
|
|
6fc2d7e063 | ||
|
|
e93c7cdb80 | ||
|
|
c32d6c8250 | ||
|
|
757158da63 | ||
|
|
ffdacaa618 | ||
|
|
e194efab10 | ||
|
|
772fc2eac7 | ||
|
|
ed020579dc | ||
|
|
096869c7b6 | ||
|
|
c6873211e9 | ||
|
|
623ee1bd88 | ||
|
|
aabe90343e | ||
|
|
764cfb506d | ||
|
|
249ad56075 | ||
|
|
46f99ff277 | ||
|
|
73f4513c84 | ||
|
|
3c91e86268 | ||
|
|
42473ec150 | ||
|
|
6a4e4b9c5b | ||
|
|
9a784fb4f3 | ||
|
|
43fd80a1aa | ||
|
|
e6ab1a57ea | ||
|
|
282edb9161 | ||
|
|
dff77004f2 | ||
|
|
6c1b4aec75 | ||
|
|
7814db1b42 | ||
|
|
c9ed3fc3a4 | ||
|
|
9ee416a8fc | ||
|
|
4f9a47c026 | ||
|
|
3fcb1c6d09 | ||
|
|
7c492864e9 | ||
|
|
7ff8a064f3 | ||
|
|
c635bbe465 | ||
|
|
4881f4e631 | ||
|
|
c631799f5d | ||
|
|
48846676d8 | ||
|
|
f37d481c5d | ||
|
|
5d7d8bd55c | ||
|
|
8ed1463236 | ||
|
|
43b2ede0f8 | ||
|
|
2f095e2017 | ||
|
|
9b55bb964c | ||
|
|
9b97b23ce7 | ||
|
|
53ab28533e | ||
|
|
940c00e7ae | ||
|
|
18cfd5f349 | ||
|
|
6169df1c52 | ||
|
|
d46c2bbcba | ||
|
|
48d4364586 | ||
|
|
8042c66a76 | ||
|
|
3879d79b89 | ||
|
|
e416cecf62 | ||
|
|
81fcb80466 | ||
|
|
bf812fbe40 | ||
|
|
1e6fb6c8aa | ||
|
|
5d0c95bd02 | ||
|
|
7cd2417002 | ||
|
|
16851d66e5 | ||
|
|
056d2d956a | ||
|
|
9a69cadab3 | ||
|
|
3de642bffd | ||
|
|
286b9d9849 | ||
|
|
cef1ede826 | ||
|
|
5007566588 | ||
|
|
e93fb3cc6c | ||
|
|
7578209735 | ||
|
|
67f02f75d0 | ||
|
|
73d9dfc7ab | ||
|
|
6b407092d9 | ||
|
|
3168abc0a1 | ||
|
|
46ee267cfc | ||
|
|
a10bead9b5 | ||
|
|
3553e301dd | ||
|
|
02b838b9b0 | ||
|
|
b1de6d1025 | ||
|
|
bc67872218 | ||
|
|
0229fffde5 | ||
|
|
3555b87363 | ||
|
|
2dca53962e | ||
|
|
f4f71f2797 | ||
|
|
77ab9457ed | ||
|
|
4fa53b6282 | ||
|
|
790b73586b | ||
|
|
9c29c2a172 | ||
|
|
863960d33e | ||
|
|
330e5381b4 | ||
|
|
5bb411fdb8 | ||
|
|
59a9a5994e | ||
|
|
5306a71b42 | ||
|
|
3eafa2dd9e | ||
|
|
88fddb879d | ||
|
|
71491825bf | ||
|
|
30855b924a | ||
|
|
48d2e6d7fe | ||
|
|
041c83ea03 | ||
|
|
0e621c2dc9 | ||
|
|
544e7a491b | ||
|
|
a2c881fa08 | ||
|
|
c53c7af168 | ||
|
|
a2d93e5269 | ||
|
|
b392e6cfb9 | ||
|
|
13aa2d389a | ||
|
|
1e7962dfc4 | ||
|
|
1c9556c84c | ||
|
|
ca3ca7a5b5 | ||
|
|
0500befdb4 | ||
|
|
f618feab51 | ||
|
|
4b06aa134f | ||
|
|
9cde56d760 | ||
|
|
d0ea203694 | ||
|
|
c5eb3fba62 | ||
|
|
a8bc32553c | ||
|
|
88f3358320 | ||
|
|
a85bdcf2f6 | ||
|
|
caf56b313e | ||
|
|
75603c45fc | ||
|
|
89f86cc970 | ||
|
|
c09a0e4f08 | ||
|
|
7bac6c9460 | ||
|
|
0c7d0bf172 | ||
|
|
a274900188 | ||
|
|
67deefe527 | ||
|
|
823f618cba | ||
|
|
bc16c9a54a | ||
|
|
a3f30038a0 | ||
|
|
e237f618c2 | ||
|
|
688adad665 | ||
|
|
0158812afb | ||
|
|
e52e0d9b07 | ||
|
|
eb2aa2c073 | ||
|
|
debfd46749 | ||
|
|
5ccf8fcd6b | ||
|
|
7bd1991513 | ||
|
|
456e4ca569 | ||
|
|
6bf0fe4913 | ||
|
|
596b6828cb | ||
|
|
b403f8d8a8 | ||
|
|
590b6c2143 | ||
|
|
5537ef1e7d | ||
|
|
5f83860aa1 | ||
|
|
62b6a7971a | ||
|
|
1d16e87c5f | ||
|
|
1955a8ea5a | ||
|
|
a41fa6e730 | ||
|
|
b98a64448a | ||
|
|
1ce82f391a | ||
|
|
4d473894fd | ||
|
|
5788b7c7d0 | ||
|
|
04515f6b55 | ||
|
|
96f8ccf3d5 | ||
|
|
2c3ef480a6 | ||
|
|
fa6873122c | ||
|
|
34bc0c22b1 | ||
|
|
e5484b2729 | ||
|
|
f67f781fed | ||
|
|
b564b97b7e | ||
|
|
0dd68d1e06 | ||
|
|
73f40f1ca4 | ||
|
|
ea53bebac4 | ||
|
|
00418012bd | ||
|
|
5f3d8c514b | ||
|
|
cb39a3f1c4 | ||
|
|
4d78fe6ece | ||
|
|
a3e3ea9846 | ||
|
|
feba34e82d | ||
|
|
e134013e04 | ||
|
|
5589d0296a | ||
|
|
de0ebab464 | ||
|
|
f2e7122a96 | ||
|
|
996cc5d900 | ||
|
|
a2ae5bd867 | ||
|
|
5fa52e87cb | ||
|
|
bcd76d2c7a | ||
|
|
36fcbedc11 | ||
|
|
1dad01cc53 | ||
|
|
5fb21f6e54 | ||
|
|
08dfac8352 | ||
|
|
956751e419 | ||
|
|
fe2ae04c91 | ||
|
|
5b8712d061 | ||
|
|
dc7ff90c1e | ||
|
|
1ace676170 | ||
|
|
8947a87b95 | ||
|
|
786a2f1103 | ||
|
|
36ac14a566 | ||
|
|
7a048fc91d | ||
|
|
3f3756b113 | ||
|
|
b36c4b99cc | ||
|
|
9856a2276e | ||
|
|
b6dc3ed3ad | ||
|
|
75be329994 | ||
|
|
1fe1ca1c8b | ||
|
|
882a6a1d51 | ||
|
|
712ab4ae7a | ||
|
|
18ad259fb3 | ||
|
|
fe4d93c6db | ||
|
|
c6ba588e37 | ||
|
|
3fda60fca0 | ||
|
|
96531a0ef8 | ||
|
|
7abc3065fb | ||
|
|
013ded4bac | ||
|
|
010c3c7348 | ||
|
|
bf075c075c | ||
|
|
41b34e5f60 | ||
|
|
5a889398e7 | ||
|
|
054cae86d8 | ||
|
|
cd1cb8b83c | ||
|
|
a34779c027 | ||
|
|
d19cb77d74 |
11
.dockerignore
Normal file
11
.dockerignore
Normal file
@@ -0,0 +1,11 @@
|
||||
.vscode
|
||||
.git
|
||||
.github
|
||||
.venv
|
||||
cache
|
||||
data
|
||||
examples
|
||||
.dockerignore
|
||||
.gitattributes
|
||||
.gitignore
|
||||
Dockerfile
|
||||
21
.github/CONTRIBUTING.md
vendored
Normal file
21
.github/CONTRIBUTING.md
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
# Contributing to LLaMA Factory
|
||||
|
||||
Everyone is welcome to contribute, and we value everybody's contribution. Code contributions are not the only way to help the community. Answering questions, helping others, and improving the documentation are also immensely valuable.
|
||||
|
||||
It also helps us if you spread the word! Reference the library in blog posts about the awesome projects it made possible, shout out on Twitter every time it has helped you, or simply ⭐️ the repository to say thank you.
|
||||
|
||||
However you choose to contribute, please be mindful and respect our [code of conduct](CODE_OF_CONDUCT.md).
|
||||
|
||||
**This guide was heavily inspired by [transformers guide to contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md).**
|
||||
|
||||
## Ways to contribute
|
||||
|
||||
There are several ways you can contribute to LLaMA Factory:
|
||||
|
||||
* Fix outstanding issues with the existing code.
|
||||
* Submit issues related to bugs or desired new features.
|
||||
* Contribute to the examples or to the documentation.
|
||||
|
||||
### Style guide
|
||||
|
||||
LLaMA Factory follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html), check it for details.
|
||||
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
# What does this PR do?
|
||||
|
||||
Fixes # (issue)
|
||||
|
||||
## Before submitting
|
||||
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
|
||||
7
.github/SECURITY.md
vendored
Normal file
7
.github/SECURITY.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
# Reporting Security Issues
|
||||
|
||||
To report a security issue, please use the GitHub Security Advisory ["Report a Vulnerability"](https://github.com/hiyouga/LLaMA-Factory/security/advisories/new) tab.
|
||||
|
||||
We will send a response indicating the next steps in handling your report. After the initial reply to your report, the security team will keep you informed of the progress towards a fix and full announcement, and may ask for additional information or guidance.
|
||||
|
||||
Report security bugs in third-party modules to the person or team maintaining the module.
|
||||
29
.github/workflows/tests.yml
vendored
Normal file
29
.github/workflows/tests.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ "main" ]
|
||||
pull_request:
|
||||
branches: [ "main" ]
|
||||
|
||||
jobs:
|
||||
check_code_quality:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install ruff
|
||||
|
||||
- name: Check quality
|
||||
run: |
|
||||
make style && make quality
|
||||
37
CITATION.cff
Normal file
37
CITATION.cff
Normal file
@@ -0,0 +1,37 @@
|
||||
cff-version: 1.2.0
|
||||
date-released: 2024-03
|
||||
message: "If you use this software, please cite it as below."
|
||||
authors:
|
||||
- family-names: "Zheng"
|
||||
given-names: "Yaowei"
|
||||
- family-names: "Zhang"
|
||||
given-names: "Richong"
|
||||
- family-names: "Zhang"
|
||||
given-names: "Junhao"
|
||||
- family-names: "Ye"
|
||||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
preferred-citation:
|
||||
type: article
|
||||
authors:
|
||||
- family-names: "Zheng"
|
||||
given-names: "Yaowei"
|
||||
- family-names: "Zhang"
|
||||
given-names: "Richong"
|
||||
- family-names: "Zhang"
|
||||
given-names: "Junhao"
|
||||
- family-names: "Ye"
|
||||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
journal: "arXiv preprint arXiv:2403.13372"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
year: 2024
|
||||
14
Dockerfile
Normal file
14
Dockerfile
Normal file
@@ -0,0 +1,14 @@
|
||||
FROM nvcr.io/nvidia/pytorch:24.01-py3
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY requirements.txt /app/
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
COPY . /app/
|
||||
RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
|
||||
|
||||
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
||||
EXPOSE 7860
|
||||
|
||||
CMD [ "python", "src/train_web.py" ]
|
||||
10
Makefile
10
Makefile
@@ -1,11 +1,11 @@
|
||||
.PHONY: quality style
|
||||
|
||||
check_dirs := src tests
|
||||
check_dirs := scripts src tests
|
||||
|
||||
quality:
|
||||
black --check $(check_dirs)
|
||||
ruff $(check_dirs)
|
||||
ruff check $(check_dirs)
|
||||
ruff format --check $(check_dirs)
|
||||
|
||||
style:
|
||||
black $(check_dirs)
|
||||
ruff $(check_dirs) --fix
|
||||
ruff check $(check_dirs) --fix
|
||||
ruff format $(check_dirs)
|
||||
|
||||
629
README.md
629
README.md
@@ -5,27 +5,30 @@
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://pypi.org/project/llmtuner/)
|
||||
[](https://pypi.org/project/llmtuner/)
|
||||
[](#projects-using-llama-factory)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
|
||||
|
||||
👋 Join our [WeChat](assets/wechat.jpg).
|
||||
|
||||
\[ English | [中文](README_zh.md) \]
|
||||
|
||||
## LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
|
||||
**Fine-tuning a large language model can be easy as...**
|
||||
|
||||
Preview LLaMA Board at **[🤗 Spaces](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** or **[ModelScope](https://modelscope.cn/studios/hiyouga/LLaMA-Board)**.
|
||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89-7ace5698baf6
|
||||
|
||||
Launch LLaMA Board via `CUDA_VISIBLE_DEVICES=0 python src/train_web.py`. (multiple GPUs are not supported yet in this mode)
|
||||
Choose your path:
|
||||
|
||||
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
|
||||
|
||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
|
||||
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
|
||||
- **Local machine**: Please refer to [usage](#getting-started)
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Features](#features)
|
||||
- [Benchmark](#benchmark)
|
||||
- [Changelog](#changelog)
|
||||
- [Supported Models](#supported-models)
|
||||
@@ -38,9 +41,19 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- [Citation](#citation)
|
||||
- [Acknowledgement](#acknowledgement)
|
||||
|
||||
## Features
|
||||
|
||||
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
|
||||
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO and ORPO.
|
||||
- **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8.
|
||||
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and Agent tuning.
|
||||
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
|
||||
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
|
||||
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
|
||||
|
||||
## Benchmark
|
||||
|
||||
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA-Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA-Factory's QLoRA further improves the efficiency regarding the GPU memory.
|
||||
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
|
||||
|
||||

|
||||
|
||||
@@ -49,20 +62,48 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
- **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
|
||||
- **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024)
|
||||
- **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
|
||||
- We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA-Factory's LoRA tuning.
|
||||
- We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA Factory's LoRA tuning.
|
||||
|
||||
</details>
|
||||
|
||||
## Changelog
|
||||
|
||||
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
|
||||
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See `examples/lora_single_gpu/sft_mllm.sh` for usage.
|
||||
|
||||
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves 1.7x speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
|
||||
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
||||
|
||||
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
|
||||
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See `examples/extras/mod` for usage.
|
||||
|
||||
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See `examples/extras/badam` for usage.
|
||||
|
||||
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See `examples/lora_single_gpu` for usage.
|
||||
|
||||
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
|
||||
|
||||
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See `examples/extras/fsdp_qlora` for usage.
|
||||
|
||||
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See `examples/extras/loraplus` for usage.
|
||||
|
||||
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
|
||||
|
||||
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
|
||||
|
||||
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
|
||||
|
||||
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See `examples/extras/llama_pro` for usage.
|
||||
|
||||
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
|
||||
|
||||
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
|
||||
|
||||
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
|
||||
|
||||
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
|
||||
|
||||
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
|
||||
|
||||
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
|
||||
@@ -71,7 +112,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
|
||||
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
|
||||
|
||||
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||
|
||||
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
|
||||
|
||||
@@ -96,43 +137,52 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
||||
## Supported Models
|
||||
|
||||
| Model | Model size | Default module | Template |
|
||||
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
|
||||
| -------------------------------------------------------- | -------------------------------- | ----------------- | --------- |
|
||||
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
|
||||
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM/chatglm3-6b) | 6B | query_key_value | chatglm3 |
|
||||
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
||||
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
||||
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
||||
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
||||
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
||||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
||||
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
|
||||
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
|
||||
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
|
||||
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
|
||||
| [Phi-3](https://huggingface.co/microsoft) | 3.8B | qkv_proj | phi |
|
||||
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
|
||||
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
||||
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
||||
| [Yi](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi |
|
||||
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
||||
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
||||
|
||||
> [!NOTE]
|
||||
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
|
||||
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules for better convergence.
|
||||
>
|
||||
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
|
||||
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
|
||||
>
|
||||
> Remember to use the **SAME** template in training and inference.
|
||||
|
||||
Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list of models we supported.
|
||||
|
||||
You also can add a custom chat template to [template.py](src/llmtuner/data/template.py).
|
||||
|
||||
## Supported Training Approaches
|
||||
|
||||
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
|
||||
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA |
|
||||
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
||||
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
> [!NOTE]
|
||||
> Use `--quantization_bit 4` argument to enable QLoRA.
|
||||
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
## Provided Datasets
|
||||
|
||||
@@ -154,8 +204,8 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
||||
|
||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Self-cognition (zh)](data/self_cognition.json)
|
||||
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Self Cognition (zh)](data/self_cognition.json)
|
||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||
@@ -171,8 +221,10 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
||||
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
||||
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
||||
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
||||
- [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
|
||||
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
||||
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
||||
- [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
|
||||
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
||||
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||
@@ -185,6 +237,17 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
||||
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
||||
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
||||
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
||||
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
|
||||
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
|
||||
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
|
||||
- [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
|
||||
- [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
|
||||
- [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
|
||||
- [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
|
||||
- [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
|
||||
- [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -193,12 +256,13 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||
|
||||
</details>
|
||||
|
||||
Please refer to [data/README.md](data/README.md) for details.
|
||||
|
||||
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
|
||||
|
||||
```bash
|
||||
@@ -208,397 +272,214 @@ huggingface-cli login
|
||||
|
||||
## Requirement
|
||||
|
||||
- Python 3.8+ and PyTorch 1.13.1+
|
||||
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
||||
- sentencepiece, protobuf and tiktoken
|
||||
- jieba, rouge-chinese and nltk (used at evaluation and predict)
|
||||
- gradio and matplotlib (used in web UI)
|
||||
- uvicorn, fastapi and sse-starlette (used in API)
|
||||
| Mandatory | Minimum | Recommend |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.8 | 3.10 |
|
||||
| torch | 1.13.1 | 2.2.0 |
|
||||
| transformers | 4.37.2 | 4.39.3 |
|
||||
| datasets | 2.14.3 | 2.18.0 |
|
||||
| accelerate | 0.27.2 | 0.28.0 |
|
||||
| peft | 0.9.0 | 0.10.0 |
|
||||
| trl | 0.8.1 | 0.8.1 |
|
||||
|
||||
| Optional | Minimum | Recommend |
|
||||
| ------------ | ------- | --------- |
|
||||
| CUDA | 11.6 | 12.2 |
|
||||
| deepspeed | 0.10.0 | 0.14.0 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.0 |
|
||||
| flash-attn | 2.3.0 | 2.5.6 |
|
||||
|
||||
### Hardware Requirement
|
||||
|
||||
| Method | Bits | 7B | 13B | 30B | 65B | 8x7B |
|
||||
| ------ | ---- | ----- | ----- | ----- | ------ | ------ |
|
||||
| Full | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB |
|
||||
| Freeze | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
|
||||
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
|
||||
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
|
||||
\* *estimated*
|
||||
|
||||
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Data Preparation (optional)
|
||||
### Data Preparation
|
||||
|
||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
|
||||
|
||||
> [!NOTE]
|
||||
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
||||
> Please update `data/dataset_info.json` to use your custom dataset.
|
||||
|
||||
### Dependence Installation (optional)
|
||||
### Dependence Installation
|
||||
|
||||
```bash
|
||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
||||
conda create -n llama_factory python=3.10
|
||||
conda activate llama_factory
|
||||
cd LLaMA-Factory
|
||||
pip install -r requirements.txt
|
||||
pip install -e .[metrics]
|
||||
```
|
||||
|
||||
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1.
|
||||
Extra dependencies available: deepspeed, metrics, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
|
||||
|
||||
<details><summary>For Windows users</summary>
|
||||
|
||||
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
|
||||
|
||||
```bash
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||
```
|
||||
|
||||
### Use ModelScope Hub (optional)
|
||||
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
|
||||
|
||||
If you have trouble with downloading models and datasets from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner.
|
||||
</details>
|
||||
|
||||
### Train with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
|
||||
|
||||
> [!IMPORTANT]
|
||||
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#command-line-interface) for distributed training.
|
||||
|
||||
#### Use local environment
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
|
||||
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
|
||||
python src/train_web.py # or python -m llmtuner.webui.interface
|
||||
```
|
||||
|
||||
<details><summary>For Alibaba Cloud users</summary>
|
||||
|
||||
If you encountered display problems in LLaMA Board on Alibaba Cloud, try using the following command to set environment variables before starting LLaMA Board:
|
||||
|
||||
```bash
|
||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### Use Docker
|
||||
|
||||
```bash
|
||||
docker build -f ./Dockerfile -t llama-factory:latest .
|
||||
docker run --gpus=all \
|
||||
-v ./hf_cache:/root/.cache/huggingface/ \
|
||||
-v ./data:/app/data \
|
||||
-v ./output:/app/output \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-p 7860:7860 \
|
||||
--shm-size 16G \
|
||||
--name llama_factory \
|
||||
-d llama-factory:latest
|
||||
```
|
||||
|
||||
#### Use Docker Compose
|
||||
|
||||
```bash
|
||||
docker compose -f ./docker-compose.yml up -d
|
||||
```
|
||||
|
||||
<details><summary>Details about volume</summary>
|
||||
|
||||
- hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
|
||||
- data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
|
||||
- output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
|
||||
|
||||
</details>
|
||||
|
||||
### Train with Command Line Interface
|
||||
|
||||
See [examples/README.md](examples/README.md) for usage.
|
||||
|
||||
Use `python src/train_bash.py -h` to display arguments description.
|
||||
|
||||
### Deploy with OpenAI-style API and vLLM
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--template llama3 \
|
||||
--infer_backend vllm \
|
||||
--vllm_enforce_eager
|
||||
```
|
||||
|
||||
### Download from ModelScope Hub
|
||||
|
||||
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
|
||||
|
||||
```bash
|
||||
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
|
||||
```
|
||||
|
||||
Then you can train the corresponding model by specifying a model ID of the ModelScope Hub. (find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models))
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--model_name_or_path modelscope/Llama-2-7b-ms \
|
||||
... # arguments (same as above)
|
||||
```
|
||||
|
||||
LLaMA Board also supports using the models and datasets on the ModelScope Hub.
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
|
||||
```
|
||||
|
||||
### Train on a single GPU
|
||||
|
||||
> [!IMPORTANT]
|
||||
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
|
||||
|
||||
#### Pre-Training
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage pt \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--dataset wiki_demo \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_pt_checkpoint \
|
||||
--overwrite_cache \
|
||||
--per_device_train_batch_size 4 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--dataset alpaca_gpt4_en \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_sft_checkpoint \
|
||||
--overwrite_cache \
|
||||
--per_device_train_batch_size 4 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### Reward Modeling
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage rm \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset comparison_gpt4_en \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_rm_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-6 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### PPO Training
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage ppo \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset alpaca_gpt4_en \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--reward_model path_to_rm_checkpoint \
|
||||
--output_dir path_to_ppo_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--top_k 0 \
|
||||
--top_p 0.9 \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> Use `--per_device_train_batch_size=1` for LLaMA-2 models in fp16 PPO training.
|
||||
|
||||
#### DPO Training
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage dpo \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset comparison_gpt4_en \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_dpo_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
### Distributed Training
|
||||
|
||||
#### Use Huggingface Accelerate
|
||||
|
||||
```bash
|
||||
accelerate config # configure the environment
|
||||
accelerate launch src/train_bash.py # arguments (same as above)
|
||||
```
|
||||
|
||||
<details><summary>Example config for LoRA training</summary>
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1
|
||||
num_processes: 4
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### Use DeepSpeed
|
||||
|
||||
```bash
|
||||
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
||||
--deepspeed ds_config.json \
|
||||
... # arguments (same as above)
|
||||
```
|
||||
|
||||
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"zero_allow_untested_optimizer": true,
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"initial_scale_power": 16,
|
||||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"overlap_comm": false,
|
||||
"contiguous_gradients": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Merge LoRA weights and export model
|
||||
|
||||
```bash
|
||||
python src/export_model.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--export_dir path_to_export \
|
||||
--export_size 2 \
|
||||
--export_legacy_format False
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> Merging LoRA weights into a quantized model is not supported.
|
||||
|
||||
> [!TIP]
|
||||
> Use `--export_quantization_bit 4` and `--export_quantization_dataset data/c4_demo.json` to quantize the model after merging the LoRA weights.
|
||||
|
||||
### API Demo
|
||||
|
||||
```bash
|
||||
python src/api_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Visit `http://localhost:8000/docs` for API documentation.
|
||||
|
||||
### CLI Demo
|
||||
|
||||
```bash
|
||||
python src/cli_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
### Web Demo
|
||||
|
||||
```bash
|
||||
python src/web_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
### Evaluation
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template vanilla \
|
||||
--finetuning_type lora \
|
||||
--task mmlu \
|
||||
--split test \
|
||||
--lang en \
|
||||
--n_shot 5 \
|
||||
--batch_size 4
|
||||
```
|
||||
|
||||
### Predict
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_predict \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--dataset alpaca_gpt4_en \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--output_dir path_to_predict_result \
|
||||
--per_device_eval_batch_size 8 \
|
||||
--max_samples 100 \
|
||||
--predict_with_generate \
|
||||
--fp16
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> Use `--per_device_train_batch_size=1` for LLaMA-2 models in fp16 predict.
|
||||
|
||||
> [!TIP]
|
||||
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
|
||||
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
|
||||
|
||||
## Projects using LLaMA Factory
|
||||
|
||||
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
||||
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
||||
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
||||
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
||||
- **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
||||
If you have a project that should be incorporated, please contact via email or create a pull request.
|
||||
|
||||
> [!TIP]
|
||||
> If you have a project that should be incorporated, please contact via email or create a pull request.
|
||||
<details><summary>Click to show</summary>
|
||||
|
||||
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
|
||||
1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
|
||||
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
||||
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
||||
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
||||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
||||
|
||||
</details>
|
||||
|
||||
## License
|
||||
|
||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## Citation
|
||||
|
||||
If this work is helpful, please kindly cite as:
|
||||
|
||||
```bibtex
|
||||
@Misc{llama-factory,
|
||||
title = {LLaMA Factory},
|
||||
author = {hiyouga},
|
||||
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
|
||||
year = {2023}
|
||||
@article{zheng2024llamafactory,
|
||||
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Yongqiang Ma},
|
||||
journal={arXiv preprint arXiv:2403.13372},
|
||||
year={2024},
|
||||
url={http://arxiv.org/abs/2403.13372}
|
||||
}
|
||||
```
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
This repo benefits from [PEFT](https://github.com/huggingface/peft), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
|
||||
This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
|
||||
|
||||
## Star History
|
||||
|
||||
|
||||
625
README_zh.md
625
README_zh.md
@@ -5,27 +5,30 @@
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://pypi.org/project/llmtuner/)
|
||||
[](https://pypi.org/project/llmtuner/)
|
||||
[](#使用了-llama-factory-的项目)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
|
||||
|
||||
👋 加入我们的[微信群](assets/wechat.jpg)。
|
||||
|
||||
\[ [English](README.md) | 中文 \]
|
||||
|
||||
## LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory
|
||||
**微调大模型可以像这样轻松…**
|
||||
|
||||
通过 **[🤗 Spaces](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** 或 **[ModelScope](https://modelscope.cn/studios/hiyouga/LLaMA-Board)** 预览 LLaMA Board。
|
||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594
|
||||
|
||||
使用 `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` 启动 LLaMA Board。(该模式目前仅支持单卡训练)
|
||||
选择你的打开方式:
|
||||
|
||||
下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。
|
||||
|
||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
|
||||
- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
|
||||
- **本地机器**:请见[如何使用](#如何使用)
|
||||
|
||||
## 目录
|
||||
|
||||
- [项目特色](#项目特色)
|
||||
- [性能指标](#性能指标)
|
||||
- [更新日志](#更新日志)
|
||||
- [模型](#模型)
|
||||
@@ -38,9 +41,19 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- [引用](#引用)
|
||||
- [致谢](#致谢)
|
||||
|
||||
## 项目特色
|
||||
|
||||
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。
|
||||
- **多种精度**:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
|
||||
- **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
|
||||
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||
|
||||
## 性能指标
|
||||
|
||||
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA-Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA-Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
|
||||
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
|
||||
|
||||

|
||||
|
||||
@@ -49,20 +62,48 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
|
||||
- **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
|
||||
- **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
|
||||
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA-Factory 的 LoRA 微调中采用 `lora_rank=32`。
|
||||
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA Factory 的 LoRA 微调中采用 `lora_rank=32`。
|
||||
|
||||
</details>
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力。
|
||||
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 `examples/lora_single_gpu/sft_mllm.sh`。
|
||||
|
||||
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 1.7 倍的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
||||
|
||||
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
|
||||
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`。
|
||||
|
||||
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 `examples/extras/badam`。
|
||||
|
||||
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`。
|
||||
|
||||
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
|
||||
|
||||
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 `examples/extras/fsdp_qlora`。
|
||||
|
||||
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 `examples/extras/loraplus`。
|
||||
|
||||
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 `examples/extras/galore`。
|
||||
|
||||
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA,请先合并权重。)
|
||||
|
||||
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
|
||||
|
||||
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 `examples/extras/llama_pro`。
|
||||
|
||||
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
|
||||
|
||||
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力。
|
||||
|
||||
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||
|
||||
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
|
||||
|
||||
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
|
||||
|
||||
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune,例如 `--neftune_noise_alpha 5`。
|
||||
@@ -71,7 +112,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
|
||||
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
|
||||
|
||||
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2。
|
||||
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn fa2` 参数以启用 FlashAttention-2。
|
||||
|
||||
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
||||
|
||||
@@ -96,31 +137,42 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
## 模型
|
||||
|
||||
| 模型名 | 模型大小 | 默认模块 | Template |
|
||||
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
|
||||
| -------------------------------------------------------- | -------------------------------- | ----------------- | --------- |
|
||||
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
|
||||
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM/chatglm3-6b) | 6B | query_key_value | chatglm3 |
|
||||
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
||||
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
|
||||
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
|
||||
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
|
||||
| [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
|
||||
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
|
||||
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
|
||||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
||||
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
|
||||
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
|
||||
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
|
||||
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
|
||||
| [Phi-3](https://huggingface.co/microsoft) | 3.8B | qkv_proj | phi |
|
||||
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
|
||||
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
|
||||
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
|
||||
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
|
||||
| [Yi](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi |
|
||||
| [Yi](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
|
||||
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
|
||||
|
||||
> [!NOTE]
|
||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
|
||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以得到更好的效果。
|
||||
>
|
||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Chat)模型请务必使用**对应的模板**。
|
||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
|
||||
>
|
||||
> 请务必在训练和推理时使用**完全一致**的模板。
|
||||
|
||||
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
|
||||
|
||||
您也可以在 [template.py](src/llmtuner/data/template.py) 中添加自己的对话模板。
|
||||
|
||||
## 训练方法
|
||||
|
||||
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
|
||||
@@ -130,9 +182,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
> [!NOTE]
|
||||
> 请使用 `--quantization_bit 4` 参数来启用 QLoRA 训练。
|
||||
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
## 数据集
|
||||
|
||||
@@ -154,8 +204,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
|
||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Self-cognition (zh)](data/self_cognition.json)
|
||||
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Self Cognition (zh)](data/self_cognition.json)
|
||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||
@@ -171,8 +221,10 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
||||
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
||||
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
||||
- [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
|
||||
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
||||
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
||||
- [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
|
||||
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
||||
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||
@@ -185,6 +237,17 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
||||
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
||||
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
||||
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
|
||||
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
|
||||
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
|
||||
- [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
|
||||
- [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
|
||||
- [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
|
||||
- [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
|
||||
- [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
|
||||
- [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -193,12 +256,13 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||
|
||||
</details>
|
||||
|
||||
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
|
||||
|
||||
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
|
||||
|
||||
```bash
|
||||
@@ -208,49 +272,139 @@ huggingface-cli login
|
||||
|
||||
## 软硬件依赖
|
||||
|
||||
- Python 3.8+ 和 PyTorch 1.13.1+
|
||||
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
|
||||
- sentencepiece, protobuf 和 tiktoken
|
||||
- jieba, rouge-chinese 和 nltk (用于评估及预测)
|
||||
- gradio 和 matplotlib (用于网页端交互)
|
||||
- uvicorn, fastapi 和 sse-starlette (用于 API)
|
||||
| 必需项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | --------- |
|
||||
| python | 3.8 | 3.10 |
|
||||
| torch | 1.13.1 | 2.2.0 |
|
||||
| transformers | 4.37.2 | 4.39.3 |
|
||||
| datasets | 2.14.3 | 2.18.0 |
|
||||
| accelerate | 0.27.2 | 0.28.0 |
|
||||
| peft | 0.9.0 | 0.10.0 |
|
||||
| trl | 0.8.1 | 0.8.1 |
|
||||
|
||||
| 可选项 | 至少 | 推荐 |
|
||||
| ------------ | ------- | --------- |
|
||||
| CUDA | 11.6 | 12.2 |
|
||||
| deepspeed | 0.10.0 | 0.14.0 |
|
||||
| bitsandbytes | 0.39.0 | 0.43.0 |
|
||||
| flash-attn | 2.3.0 | 2.5.6 |
|
||||
|
||||
### 硬件依赖
|
||||
|
||||
| 训练方法 | 精度 | 7B | 13B | 30B | 65B | 8x7B |
|
||||
| ------- | ---- | ----- | ----- | ----- | ------ | ------ |
|
||||
| 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB |
|
||||
| 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
|
||||
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
|
||||
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
|
||||
\* *估算值*
|
||||
|
||||
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||
|
||||
## 如何使用
|
||||
|
||||
### 数据准备(可跳过)
|
||||
### 数据准备
|
||||
|
||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
|
||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
|
||||
|
||||
> [!NOTE]
|
||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README_zh.md`。
|
||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
||||
|
||||
### 环境搭建(可跳过)
|
||||
### 安装依赖
|
||||
|
||||
```bash
|
||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
||||
conda create -n llama_factory python=3.10
|
||||
conda activate llama_factory
|
||||
cd LLaMA-Factory
|
||||
pip install -r requirements.txt
|
||||
pip install -e .[metrics]
|
||||
```
|
||||
|
||||
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
|
||||
可选的额外依赖项:deepspeed、metrics、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
|
||||
|
||||
<details><summary>Windows 用户指南</summary>
|
||||
|
||||
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
|
||||
|
||||
```bash
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||
```
|
||||
|
||||
### 使用魔搭社区(可跳过)
|
||||
如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。
|
||||
|
||||
</details>
|
||||
|
||||
### 利用 LLaMA Board 可视化界面训练(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行多 GPU 分布式训练。
|
||||
|
||||
#### 使用本地环境
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
|
||||
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
|
||||
python src/train_web.py # 或 python -m llmtuner.webui.interface
|
||||
```
|
||||
|
||||
<details><summary>阿里云用户指南</summary>
|
||||
|
||||
如果您在阿里云上使用 LLaMA Board 时遇到显示问题,请尝试在启动前使用以下命令设置环境变量:
|
||||
|
||||
```bash
|
||||
export GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### 使用 Docker
|
||||
|
||||
```bash
|
||||
docker build -f ./Dockerfile -t llama-factory:latest .
|
||||
docker run --gpus=all \
|
||||
-v ./hf_cache:/root/.cache/huggingface/ \
|
||||
-v ./data:/app/data \
|
||||
-v ./output:/app/output \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-p 7860:7860 \
|
||||
--shm-size 16G \
|
||||
--name llama_factory \
|
||||
-d llama-factory:latest
|
||||
```
|
||||
|
||||
#### 使用 Docker Compose
|
||||
|
||||
```bash
|
||||
docker compose -f ./docker-compose.yml up -d
|
||||
```
|
||||
|
||||
<details><summary>数据卷详情</summary>
|
||||
|
||||
- hf_cache:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
|
||||
- data:宿主机中存放数据集的文件夹路径。
|
||||
- output:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
|
||||
|
||||
</details>
|
||||
|
||||
### 利用命令行接口训练
|
||||
|
||||
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
|
||||
|
||||
您可以执行 `python src/train_bash.py -h` 来查看参数文档。
|
||||
|
||||
### 利用 vLLM 部署 OpenAI API
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--template llama3 \
|
||||
--infer_backend vllm \
|
||||
--vllm_enforce_eager
|
||||
```
|
||||
|
||||
### 从魔搭社区下载
|
||||
|
||||
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
|
||||
|
||||
@@ -258,347 +412,74 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
|
||||
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
||||
```
|
||||
|
||||
接着即可通过指定模型名称来训练对应的模型。(在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型)
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--model_name_or_path modelscope/Llama-2-7b-ms \
|
||||
... # 参数同上
|
||||
```
|
||||
|
||||
LLaMA Board 同样支持魔搭社区的模型和数据集下载。
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
|
||||
```
|
||||
|
||||
### 单 GPU 训练
|
||||
|
||||
> [!IMPORTANT]
|
||||
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
|
||||
|
||||
#### 预训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage pt \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--dataset wiki_demo \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_pt_checkpoint \
|
||||
--overwrite_cache \
|
||||
--per_device_train_batch_size 4 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### 指令监督微调
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--dataset alpaca_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_sft_checkpoint \
|
||||
--overwrite_cache \
|
||||
--per_device_train_batch_size 4 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### 奖励模型训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage rm \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset comparison_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_rm_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-6 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
#### PPO 训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage ppo \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset alpaca_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--reward_model path_to_rm_checkpoint \
|
||||
--output_dir path_to_ppo_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--top_k 0 \
|
||||
--top_p 0.9 \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> 如果使用 fp16 精度进行 LLaMA-2 模型的 PPO 训练,请使用 `--per_device_train_batch_size=1`。
|
||||
|
||||
#### DPO 训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage dpo \
|
||||
--do_train \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_sft_checkpoint \
|
||||
--create_new_adapter \
|
||||
--dataset comparison_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir path_to_dpo_checkpoint \
|
||||
--per_device_train_batch_size 2 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 1000 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
```
|
||||
|
||||
### 多 GPU 分布式训练
|
||||
|
||||
#### 使用 Huggingface Accelerate
|
||||
|
||||
```bash
|
||||
accelerate config # 首先配置分布式环境
|
||||
accelerate launch src/train_bash.py # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1
|
||||
num_processes: 4
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
#### 使用 DeepSpeed
|
||||
|
||||
```bash
|
||||
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
||||
--deepspeed ds_config.json \
|
||||
... # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"gradient_clipping": "auto",
|
||||
"zero_allow_untested_optimizer": true,
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"loss_scale": 0,
|
||||
"initial_scale_power": 16,
|
||||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 5e8,
|
||||
"overlap_comm": false,
|
||||
"contiguous_gradients": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### 合并 LoRA 权重并导出模型
|
||||
|
||||
```bash
|
||||
python src/export_model.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--export_dir path_to_export \
|
||||
--export_size 2 \
|
||||
--export_legacy_format False
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> 尚不支持量化模型的 LoRA 权重合并及导出。
|
||||
|
||||
> [!TIP]
|
||||
> 合并 LoRA 权重之后可再次使用 `--export_quantization_bit 4` 和 `--export_quantization_dataset data/c4_demo.json` 量化模型。
|
||||
|
||||
### API 服务
|
||||
|
||||
```bash
|
||||
python src/api_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> 关于 API 文档请见 `http://localhost:8000/docs`。
|
||||
|
||||
### 命令行测试
|
||||
|
||||
```bash
|
||||
python src/cli_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
### 浏览器测试
|
||||
|
||||
```bash
|
||||
python src/web_demo.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
```
|
||||
|
||||
### 模型评估
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--template vanilla \
|
||||
--finetuning_type lora \
|
||||
--task ceval \
|
||||
--split validation \
|
||||
--lang zh \
|
||||
--n_shot 5 \
|
||||
--batch_size 4
|
||||
```
|
||||
|
||||
### 模型预测
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_predict \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--adapter_name_or_path path_to_checkpoint \
|
||||
--dataset alpaca_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--output_dir path_to_predict_result \
|
||||
--per_device_eval_batch_size 8 \
|
||||
--max_samples 100 \
|
||||
--predict_with_generate \
|
||||
--fp16
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> 如果使用 fp16 精度进行 LLaMA-2 模型的预测,请使用 `--per_device_eval_batch_size=1`。
|
||||
|
||||
> [!TIP]
|
||||
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
||||
将 `--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
|
||||
|
||||
## 使用了 LLaMA Factory 的项目
|
||||
|
||||
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
||||
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
||||
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
||||
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
||||
- **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
||||
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||
|
||||
> [!TIP]
|
||||
> 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
|
||||
<details><summary>点击显示</summary>
|
||||
|
||||
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
|
||||
1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
|
||||
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
||||
1. **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
||||
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
||||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
||||
|
||||
</details>
|
||||
|
||||
## 协议
|
||||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## 引用
|
||||
|
||||
如果您觉得此项目有帮助,请考虑以下列格式引用
|
||||
|
||||
```bibtex
|
||||
@Misc{llama-factory,
|
||||
title = {LLaMA Factory},
|
||||
author = {hiyouga},
|
||||
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
|
||||
year = {2023}
|
||||
@article{zheng2024llamafactory,
|
||||
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Yongqiang Ma},
|
||||
journal={arXiv preprint arXiv:2403.13372},
|
||||
year={2024},
|
||||
url={http://arxiv.org/abs/2403.13372}
|
||||
}
|
||||
```
|
||||
|
||||
## 致谢
|
||||
|
||||
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
|
||||
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[TRL](https://github.com/huggingface/trl)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
|
||||
|
||||
## Star History
|
||||
|
||||
|
||||
@@ -11,21 +11,32 @@ If you are using a custom dataset, please provide your dataset definition in the
|
||||
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
||||
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
|
||||
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
|
||||
"columns": {
|
||||
"prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)",
|
||||
"query": "the column name in the dataset containing the queries. (default: input, for alpaca)",
|
||||
"response": "the column name in the dataset containing the responses. (default: output, for alpaca)",
|
||||
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
|
||||
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
|
||||
"role": "the key in the message represents the identity. (default: from, for sharegpt)",
|
||||
"content": "the key in the message represents the content. (default: value, for sharegpt)",
|
||||
"system": "the column name in the dataset containing the system prompts. (default: None, for both)"
|
||||
"columns (optional)": {
|
||||
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
|
||||
"query": "the column name in the dataset containing the queries. (default: input)",
|
||||
"response": "the column name in the dataset containing the responses. (default: output)",
|
||||
"history": "the column name in the dataset containing the histories. (default: None)",
|
||||
"messages": "the column name in the dataset containing the messages. (default: conversations)",
|
||||
"system": "the column name in the dataset containing the system prompts. (default: None)",
|
||||
"tools": "the column name in the dataset containing the tool description. (default: None)",
|
||||
"images": "the column name in the dataset containing the image inputs. (default: None)"
|
||||
},
|
||||
"tags (optional, used for the sharegpt format)": {
|
||||
"role_tag": "the key in the message represents the identity. (default: from)",
|
||||
"content_tag": "the key in the message represents the content. (default: value)",
|
||||
"user_tag": "the value of the role_tag represents the user. (default: human)",
|
||||
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
|
||||
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
|
||||
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
|
||||
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
|
||||
|
||||
----
|
||||
|
||||
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
|
||||
|
||||
```json
|
||||
@@ -57,9 +68,9 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
||||
}
|
||||
```
|
||||
|
||||
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
|
||||
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
|
||||
|
||||
The `system` column will be used as the system prompt in the template. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
|
||||
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
|
||||
|
||||
For the pre-training datasets, only the `prompt` column will be used for training.
|
||||
|
||||
@@ -76,6 +87,10 @@ For the preference datasets, the `response` column should be a string list whose
|
||||
}
|
||||
```
|
||||
|
||||
Remember to set `"ranking": true` for the preference datasets.
|
||||
|
||||
----
|
||||
|
||||
The dataset in sharegpt format should follow the below format:
|
||||
|
||||
```json
|
||||
@@ -91,7 +106,8 @@ The dataset in sharegpt format should follow the below format:
|
||||
"value": "model response"
|
||||
}
|
||||
],
|
||||
"system": "system prompt (optional)"
|
||||
"system": "system prompt (optional)",
|
||||
"tools": "tool description (optional)"
|
||||
}
|
||||
]
|
||||
```
|
||||
@@ -102,13 +118,18 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
||||
"dataset_name": {
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"role": "from",
|
||||
"content": "value",
|
||||
"system": "system"
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "from",
|
||||
"content_tag": "value",
|
||||
"user_tag": "human",
|
||||
"assistant_tag": "gpt"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order.
|
||||
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
|
||||
|
||||
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
|
||||
|
||||
@@ -11,21 +11,32 @@
|
||||
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
||||
"ranking": "是否为偏好数据集(可选,默认:False)",
|
||||
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
|
||||
"columns": {
|
||||
"prompt": "数据集代表提示词的表头名称(默认:instruction,用于 alpaca 格式)",
|
||||
"query": "数据集代表请求的表头名称(默认:input,用于 alpaca 格式)",
|
||||
"response": "数据集代表回答的表头名称(默认:output,用于 alpaca 格式)",
|
||||
"history": "数据集代表历史对话的表头名称(默认:None,用于 alpaca 格式)",
|
||||
"messages": "数据集代表消息列表的表头名称(默认:conversations,用于 sharegpt 格式)",
|
||||
"role": "消息中代表发送者身份的键名(默认:from,用于 sharegpt 格式)",
|
||||
"content": "消息中代表文本内容的键名(默认:value,用于 sharegpt 格式)",
|
||||
"system": "数据集代表系统提示的表头名称(默认:None,用于两种格式)"
|
||||
"columns(可选)": {
|
||||
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
|
||||
"query": "数据集代表请求的表头名称(默认:input)",
|
||||
"response": "数据集代表回答的表头名称(默认:output)",
|
||||
"history": "数据集代表历史对话的表头名称(默认:None)",
|
||||
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
|
||||
"system": "数据集代表系统提示的表头名称(默认:None)",
|
||||
"tools": "数据集代表工具描述的表头名称(默认:None)",
|
||||
"images": "数据集代表图像输入的表头名称(默认:None)"
|
||||
},
|
||||
"tags(可选,用于 sharegpt 格式)": {
|
||||
"role_tag": "消息中代表发送者身份的键名(默认:from)",
|
||||
"content_tag": "消息中代表文本内容的键名(默认:value)",
|
||||
"user_tag": "消息中代表用户的 role_tag(默认:human)",
|
||||
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
|
||||
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
|
||||
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
|
||||
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system 列)"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
|
||||
|
||||
----
|
||||
|
||||
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
|
||||
|
||||
```json
|
||||
@@ -57,9 +68,9 @@
|
||||
}
|
||||
```
|
||||
|
||||
其中 `prompt` 和 `response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
|
||||
其中 `query` 列对应的内容会与 `prompt` 列对应的内容拼接后作为用户指令,即用户指令为 `prompt\nquery`。`response` 列对应的内容为模型回答。
|
||||
|
||||
`system` 为模板中的系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
|
||||
`system` 列对应的内容将被作为系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意历史消息中的回答**也会被用于训练**。
|
||||
|
||||
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
|
||||
|
||||
@@ -76,6 +87,10 @@
|
||||
}
|
||||
```
|
||||
|
||||
添加偏好数据集需要额外指定 `"ranking": true`。
|
||||
|
||||
----
|
||||
|
||||
而 sharegpt 格式的数据集按照以下方式组织:
|
||||
|
||||
```json
|
||||
@@ -91,7 +106,8 @@
|
||||
"value": "模型回答"
|
||||
}
|
||||
],
|
||||
"system": "系统提示词(选填)"
|
||||
"system": "系统提示词(选填)",
|
||||
"tools": "工具描述(选填)"
|
||||
}
|
||||
]
|
||||
```
|
||||
@@ -102,13 +118,18 @@
|
||||
"数据集名称": {
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"role": "from",
|
||||
"content": "value",
|
||||
"system": "system"
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "from",
|
||||
"content_tag": "value",
|
||||
"user_tag": "human",
|
||||
"assistant_tag": "gpt"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
其中 `messages` 列必须为偶数长度的列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
||||
其中 `messages` 列应当是一个列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
||||
|
||||
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
|
||||
|
||||
@@ -1 +1 @@
|
||||
fc9a6a3458caca2af8dafc6181773fe10c6d8657
|
||||
a97cf9475291591843976554878568e046d8a46d
|
||||
@@ -1,7 +1,11 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import datasets
|
||||
|
||||
|
||||
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||
|
||||
_DESCRIPTION = "BELLE multiturn chat dataset."
|
||||
|
||||
_CITATION = """\
|
||||
@@ -13,37 +17,25 @@ _CITATION = """\
|
||||
}
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M"
|
||||
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT)
|
||||
_LICENSE = "gpl-3.0"
|
||||
_URL = "https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
|
||||
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT)
|
||||
|
||||
|
||||
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||
|
||||
VERSION = datasets.Version("0.0.0")
|
||||
|
||||
def _info(self):
|
||||
features = datasets.Features({
|
||||
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
|
||||
})
|
||||
features = datasets.Features(
|
||||
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
|
||||
)
|
||||
return datasets.DatasetInfo(
|
||||
description=_DESCRIPTION,
|
||||
features=features,
|
||||
homepage=_HOMEPAGE,
|
||||
license=_LICENSE,
|
||||
citation=_CITATION
|
||||
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||
)
|
||||
|
||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||
file_path = dl_manager.download(_URL)
|
||||
return [
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepath": file_path
|
||||
}
|
||||
)
|
||||
]
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
||||
|
||||
def _generate_examples(self, filepath: str):
|
||||
with open(filepath, "r", encoding="utf-8") as f:
|
||||
@@ -55,7 +47,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||
|
||||
assist_idx = prompt.rfind("Assistant:")
|
||||
human_idx = prompt.rfind("Human:")
|
||||
query = prompt[human_idx+6:assist_idx].strip()
|
||||
query = prompt[human_idx + 6 : assist_idx].strip()
|
||||
prompt = prompt[:human_idx].strip()
|
||||
conversations.insert(0, {"from": "gpt", "value": response})
|
||||
conversations.insert(0, {"from": "human", "value": query})
|
||||
@@ -64,8 +56,8 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||
assist_idx = prompt.rfind("Assistant:")
|
||||
human_idx = prompt.rfind("Human:")
|
||||
if human_idx != -1:
|
||||
old_query = prompt[human_idx+6:assist_idx].strip()
|
||||
old_resp = prompt[assist_idx+10:].strip()
|
||||
old_query = prompt[human_idx + 6 : assist_idx].strip()
|
||||
old_resp = prompt[assist_idx + 10 :].strip()
|
||||
conversations.insert(0, {"from": "gpt", "value": old_resp})
|
||||
conversations.insert(0, {"from": "human", "value": old_query})
|
||||
else:
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import json
|
||||
from typing import Any, Dict, Generator, List, Tuple
|
||||
|
||||
import datasets
|
||||
from typing import Any, Dict, List
|
||||
|
||||
|
||||
_DESCRIPTION = "An example of dataset."
|
||||
@@ -11,36 +12,26 @@ _URL = "examples.json"
|
||||
|
||||
|
||||
class ExampleDataset(datasets.GeneratorBasedBuilder):
|
||||
|
||||
VERSION = datasets.Version("0.0.0")
|
||||
|
||||
def _info(self) -> datasets.DatasetInfo:
|
||||
features = datasets.Features({
|
||||
features = datasets.Features(
|
||||
{
|
||||
"instruction": datasets.Value("string"),
|
||||
"input": datasets.Value("string"),
|
||||
"output": datasets.Value("string"),
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
||||
})
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
||||
}
|
||||
)
|
||||
return datasets.DatasetInfo(
|
||||
description=_DESCRIPTION,
|
||||
features=features,
|
||||
homepage=_HOMEPAGE,
|
||||
license=_LICENSE,
|
||||
citation=_CITATION
|
||||
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||
)
|
||||
|
||||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
||||
file_path = dl_manager.download(_URL)
|
||||
return [
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepath": file_path
|
||||
}
|
||||
)
|
||||
]
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
||||
|
||||
def _generate_examples(self, filepath: str) -> Dict[int, Dict[str, Any]]:
|
||||
def _generate_examples(self, filepath: str) -> Generator[Tuple[int, Dict[str, Any]], None, None]:
|
||||
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
|
||||
for key, example in enumerate(example_dataset):
|
||||
yield key, example
|
||||
|
||||
@@ -1,62 +1,52 @@
|
||||
import json
|
||||
import datasets
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
|
||||
|
||||
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
|
||||
_CITATION = ""
|
||||
_HOMEPAGE = "https://huggingface.co/datasets/Anthropic/hh-rlhf"
|
||||
_HOMEPAGE = "{}/datasets/Anthropic/hh-rlhf".format(_HF_ENDPOINT)
|
||||
_LICENSE = "mit"
|
||||
_URL = "https://huggingface.co/datasets/Anthropic/hh-rlhf/resolve/main/"
|
||||
_URL = "{}/datasets/Anthropic/hh-rlhf/resolve/main/".format(_HF_ENDPOINT)
|
||||
_URLS = {
|
||||
"train": [
|
||||
_URL + "harmless-base/train.jsonl.gz",
|
||||
_URL + "helpful-base/train.jsonl.gz",
|
||||
_URL + "helpful-online/train.jsonl.gz",
|
||||
_URL + "helpful-rejection-sampled/train.jsonl.gz"
|
||||
_URL + "helpful-rejection-sampled/train.jsonl.gz",
|
||||
],
|
||||
"test": [
|
||||
_URL + "harmless-base/test.jsonl.gz",
|
||||
_URL + "helpful-base/test.jsonl.gz",
|
||||
_URL + "helpful-online/test.jsonl.gz",
|
||||
_URL + "helpful-rejection-sampled/test.jsonl.gz"
|
||||
]
|
||||
_URL + "helpful-rejection-sampled/test.jsonl.gz",
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
|
||||
VERSION = datasets.Version("0.0.0")
|
||||
|
||||
def _info(self) -> datasets.DatasetInfo:
|
||||
features = datasets.Features({
|
||||
features = datasets.Features(
|
||||
{
|
||||
"instruction": datasets.Value("string"),
|
||||
"output": datasets.Sequence(datasets.Value("string")),
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
||||
})
|
||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
||||
}
|
||||
)
|
||||
return datasets.DatasetInfo(
|
||||
description=_DESCRIPTION,
|
||||
features=features,
|
||||
homepage=_HOMEPAGE,
|
||||
license=_LICENSE,
|
||||
citation=_CITATION
|
||||
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||
)
|
||||
|
||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||
file_path = dl_manager.download_and_extract(_URLS)
|
||||
return [
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepaths": file_path["train"]
|
||||
}
|
||||
),
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TEST,
|
||||
gen_kwargs={
|
||||
"filepaths": file_path["test"]
|
||||
}
|
||||
)
|
||||
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_path["train"]}),
|
||||
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
|
||||
]
|
||||
|
||||
def _generate_examples(self, filepaths: List[str]):
|
||||
@@ -69,12 +59,12 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
rejected = data["rejected"]
|
||||
|
||||
assist_idx = rejected.rfind("\n\nAssistant: ")
|
||||
r_reject = rejected[assist_idx+13:].strip()
|
||||
r_reject = rejected[assist_idx + 13 :].strip()
|
||||
assist_idx = chosen.rfind("\n\nAssistant: ")
|
||||
r_accept = chosen[assist_idx+13:].strip()
|
||||
r_accept = chosen[assist_idx + 13 :].strip()
|
||||
|
||||
human_idx = chosen.rfind("\n\nHuman: ")
|
||||
query = chosen[human_idx+9:assist_idx].strip()
|
||||
query = chosen[human_idx + 9 : assist_idx].strip()
|
||||
prompt = chosen[:human_idx]
|
||||
history = []
|
||||
|
||||
@@ -82,16 +72,12 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||
assist_idx = prompt.rfind("\n\nAssistant: ")
|
||||
human_idx = prompt.rfind("\n\nHuman: ")
|
||||
if human_idx != -1:
|
||||
old_query = prompt[human_idx+9:assist_idx].strip()
|
||||
old_resp = prompt[assist_idx+13:].strip()
|
||||
old_query = prompt[human_idx + 9 : assist_idx].strip()
|
||||
old_resp = prompt[assist_idx + 13 :].strip()
|
||||
history.insert(0, (old_query, old_resp))
|
||||
else:
|
||||
break
|
||||
prompt = prompt[:human_idx]
|
||||
|
||||
yield key, {
|
||||
"instruction": query,
|
||||
"output": [r_accept, r_reject],
|
||||
"history": history
|
||||
}
|
||||
yield key, {"instruction": query, "output": [r_accept, r_reject], "history": history}
|
||||
key += 1
|
||||
|
||||
1
data/orca_rlhf.json.REMOVED.git-id
Normal file
1
data/orca_rlhf.json.REMOVED.git-id
Normal file
@@ -0,0 +1 @@
|
||||
736bcedea2b24a1414765c6d69cbdafaea839f3c
|
||||
@@ -1,7 +1,11 @@
|
||||
import json
|
||||
import datasets
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
|
||||
|
||||
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||
|
||||
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
|
||||
|
||||
@@ -16,37 +20,25 @@ _CITATION = """\
|
||||
}
|
||||
"""
|
||||
|
||||
_HOMEPAGE = "https://huggingface.co/datasets/stingning/ultrachat"
|
||||
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT)
|
||||
_LICENSE = "cc-by-nc-4.0"
|
||||
_BASE_DATA_URL = "https://huggingface.co/datasets/stingning/ultrachat/resolve/main/train_{idx}.jsonl"
|
||||
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT)
|
||||
|
||||
|
||||
class UltraChat(datasets.GeneratorBasedBuilder):
|
||||
|
||||
VERSION = datasets.Version("0.0.0")
|
||||
|
||||
def _info(self):
|
||||
features = datasets.Features({
|
||||
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
|
||||
})
|
||||
features = datasets.Features(
|
||||
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
|
||||
)
|
||||
return datasets.DatasetInfo(
|
||||
description=_DESCRIPTION,
|
||||
features=features,
|
||||
homepage=_HOMEPAGE,
|
||||
license=_LICENSE,
|
||||
citation=_CITATION
|
||||
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||
)
|
||||
|
||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
|
||||
return [
|
||||
datasets.SplitGenerator(
|
||||
name=datasets.Split.TRAIN,
|
||||
gen_kwargs={
|
||||
"filepaths": file_paths
|
||||
}
|
||||
)
|
||||
]
|
||||
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
|
||||
|
||||
def _generate_examples(self, filepaths: List[str]):
|
||||
for filepath in filepaths:
|
||||
@@ -54,7 +46,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
|
||||
for row in f:
|
||||
try:
|
||||
data = json.loads(row)
|
||||
except:
|
||||
except Exception:
|
||||
continue
|
||||
key: int = data["id"]
|
||||
content: List[str] = data["data"]
|
||||
@@ -62,8 +54,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
|
||||
content.pop(-1)
|
||||
if len(content) < 2:
|
||||
continue
|
||||
conversations = [{
|
||||
"from": "human" if i % 2 == 0 else "gpt",
|
||||
"value": content[i]
|
||||
} for i in range(len(content))]
|
||||
conversations = [
|
||||
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content))
|
||||
]
|
||||
yield key, {"conversations": conversations}
|
||||
|
||||
25
docker-compose.yml
Normal file
25
docker-compose.yml
Normal file
@@ -0,0 +1,25 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
llama-factory:
|
||||
build:
|
||||
dockerfile: Dockerfile
|
||||
context: .
|
||||
container_name: llama_factory
|
||||
volumes:
|
||||
- ./hf_cache:/root/.cache/huggingface/
|
||||
- ./data:/app/data
|
||||
- ./output:/app/output
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
ports:
|
||||
- "7860:7860"
|
||||
ipc: host
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: "all"
|
||||
capabilities: [gpu]
|
||||
restart: unless-stopped
|
||||
50
examples/README.md
Normal file
50
examples/README.md
Normal file
@@ -0,0 +1,50 @@
|
||||
We provide diverse examples about fine-tuning LLMs.
|
||||
|
||||
```
|
||||
examples/
|
||||
├── lora_single_gpu/
|
||||
│ ├── pretrain.sh: Do continuous pre-training using LoRA
|
||||
│ ├── sft.sh: Do supervised fine-tuning using LoRA
|
||||
│ ├── reward.sh: Do reward modeling using LoRA
|
||||
│ ├── ppo.sh: Do PPO training using LoRA
|
||||
│ ├── dpo.sh: Do DPO training using LoRA
|
||||
│ ├── orpo.sh: Do ORPO training using LoRA
|
||||
│ ├── sft_mllm.sh: Do supervised fine-tuning on multimodal data using LoRA
|
||||
│ ├── prepare.sh: Save tokenized dataset
|
||||
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
|
||||
├── qlora_single_gpu/
|
||||
│ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models using QLoRA
|
||||
│ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models using QLoRA
|
||||
│ ├── awq.sh: Fine-tune 4-bit AWQ models using QLoRA
|
||||
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
|
||||
├── lora_multi_gpu/
|
||||
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
|
||||
│ ├── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
|
||||
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA (weight sharding)
|
||||
├── full_multi_gpu/
|
||||
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
|
||||
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
|
||||
│ └── predict.sh: Do parallel batch predict and compute BLEU and ROUGE scores after full tuning
|
||||
├── merge_lora/
|
||||
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
|
||||
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ
|
||||
├── inference/
|
||||
│ ├── cli_demo.sh: Chat with fine-tuned model in the CLI with LoRA adapters
|
||||
│ ├── api_demo.sh: Chat with fine-tuned model in an OpenAI-style API with LoRA adapters
|
||||
│ ├── web_demo.sh: Chat with fine-tuned model in the Web browser with LoRA adapters
|
||||
│ └── evaluate.sh: Evaluate model on the MMLU/CMMLU/C-Eval benchmarks with LoRA adapters
|
||||
└── extras/
|
||||
├── galore/
|
||||
│ └── sft.sh: Fine-tune model with GaLore
|
||||
├── badam/
|
||||
│ └── sft.sh: Fine-tune model with BAdam
|
||||
├── loraplus/
|
||||
│ └── sft.sh: Fine-tune model using LoRA+
|
||||
├── mod/
|
||||
│ └── sft.sh: Fine-tune model using Mixture-of-Depths
|
||||
├── llama_pro/
|
||||
│ ├── expand.sh: Expand layers in the model
|
||||
│ └── sft.sh: Fine-tune the expanded model
|
||||
└── fsdp_qlora/
|
||||
└── sft.sh: Fine-tune quantized model with FSDP+QLoRA
|
||||
```
|
||||
50
examples/README_zh.md
Normal file
50
examples/README_zh.md
Normal file
@@ -0,0 +1,50 @@
|
||||
我们提供了多样化的大模型微调示例脚本。
|
||||
|
||||
```
|
||||
examples/
|
||||
├── lora_single_gpu/
|
||||
│ ├── pretrain.sh: 基于 LoRA 进行增量预训练
|
||||
│ ├── sft.sh: 基于 LoRA 进行指令监督微调
|
||||
│ ├── reward.sh: 基于 LoRA 进行奖励模型训练
|
||||
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
|
||||
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
|
||||
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
|
||||
│ ├── sft_mllm.sh: 基于 LoRA 进行多模态指令监督微调
|
||||
│ ├── prepare.sh: 保存预处理后的数据集
|
||||
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
|
||||
├── qlora_single_gpu/
|
||||
│ ├── bitsandbytes.sh: 基于 QLoRA 微调 4/8 比特 BNB 模型
|
||||
│ ├── gptq.sh: 基于 QLoRA 微调 4/8 比特 GPTQ 模型
|
||||
│ ├── awq.sh: 基于 QLoRA 微调 4 比特 AWQ 模型
|
||||
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
|
||||
├── lora_multi_gpu/
|
||||
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
|
||||
│ ├── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
|
||||
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练(拆分权重)
|
||||
├── full_multi_gpu/
|
||||
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
|
||||
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
|
||||
│ └── predict.sh: 基于全量训练进行多卡批量预测并计算 BLEU 和 ROUGE 分数
|
||||
├── merge_lora/
|
||||
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
|
||||
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型
|
||||
├── inference/
|
||||
│ ├── cli_demo.sh: 启动 LoRA 模型的命令行推理接口
|
||||
│ ├── api_demo.sh: 启动 LoRA 模型的 OpenAI 风格 API
|
||||
│ ├── web_demo.sh: 启动 LoRA 模型的浏览器推理接口
|
||||
│ └── evaluate.sh: 在 MMLU/CMMLU/C-Eval 数据集上评测 LoRA 模型
|
||||
└── extras/
|
||||
├── galore/
|
||||
│ └── sft.sh: 使用 GaLore 训练模型
|
||||
├── badam/
|
||||
│ └── sft.sh: 使用 BAdam 训练模型
|
||||
├── loraplus/
|
||||
│ └── sft.sh: 使用 LoRA+ 训练模型
|
||||
├── mod/
|
||||
│ └── sft.sh: 使用深度混合训练模型
|
||||
├── llama_pro/
|
||||
│ ├── expand.sh: 扩展模型中的层
|
||||
│ └── sft.sh: 训练扩展后的模型
|
||||
└── fsdp_qlora/
|
||||
└── sft.sh: 使用 FSDP+QLoRA 微调量化模型
|
||||
```
|
||||
25
examples/accelerate/fsdp_config.yaml
Normal file
25
examples/accelerate/fsdp_config.yaml
Normal file
@@ -0,0 +1,25 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: FSDP
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch: BACKWARD_PRE
|
||||
fsdp_cpu_ram_efficient_loading: true
|
||||
fsdp_forward_prefetch: false
|
||||
fsdp_offload_params: true
|
||||
fsdp_sharding_strategy: FULL_SHARD
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_sync_module_states: true
|
||||
fsdp_use_orig_params: false
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 2 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
18
examples/accelerate/master_config.yaml
Normal file
18
examples/accelerate/master_config.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_process_ip: 192.168.0.1
|
||||
main_process_port: 29555
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 2 # the number of nodes
|
||||
num_processes: 8 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
16
examples/accelerate/single_config.yaml
Normal file
16
examples/accelerate/single_config.yaml
Normal file
@@ -0,0 +1,16 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 1 # the number of nodes
|
||||
num_processes: 4 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
18
examples/accelerate/slave_config.yaml
Normal file
18
examples/accelerate/slave_config.yaml
Normal file
@@ -0,0 +1,18 @@
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 1
|
||||
main_process_ip: 192.168.0.1
|
||||
main_process_port: 29555
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
num_machines: 2 # the number of nodes
|
||||
num_processes: 8 # the number of GPUs in all nodes
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
35
examples/extras/badam/sft.sh
Normal file
35
examples/extras/badam/sft.sh
Normal file
@@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--use_badam \
|
||||
--badam_switch_mode descending \
|
||||
--badam_switch_block_every 50 \
|
||||
--badam_verbose 2 \
|
||||
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--pure_bf16
|
||||
41
examples/extras/fsdp_qlora/sft.sh
Normal file
41
examples/extras/fsdp_qlora/sft.sh
Normal file
@@ -0,0 +1,41 @@
|
||||
#!/bin/bash
|
||||
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
|
||||
|
||||
pip install "transformers>=4.39.1"
|
||||
pip install "accelerate>=0.28.0"
|
||||
pip install "bitsandbytes>=0.43.0"
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
||||
--config_file ../../accelerate/fsdp_config.yaml \
|
||||
../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-70b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--quantization_bit 4 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
36
examples/extras/galore/sft.sh
Normal file
36
examples/extras/galore/sft.sh
Normal file
@@ -0,0 +1,36 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--use_galore \
|
||||
--galore_layerwise \
|
||||
--galore_target mlp,self_attn \
|
||||
--galore_rank 128 \
|
||||
--galore_scale 2.0 \
|
||||
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--pure_bf16
|
||||
6
examples/extras/llama_pro/expand.sh
Normal file
6
examples/extras/llama_pro/expand.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
python ../../../scripts/llama_pro.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--output_dir ../../../models/llama2-7b-pro \
|
||||
--num_expand 8
|
||||
34
examples/extras/llama_pro/sft.sh
Normal file
34
examples/extras/llama_pro/sft.sh
Normal file
@@ -0,0 +1,34 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path ../../../models/llama2-7b-pro \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type freeze \
|
||||
--name_module_trainable all \
|
||||
--num_layer_trainable 8 \
|
||||
--use_llama_pro \
|
||||
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
33
examples/extras/loraplus/sft.sh
Normal file
33
examples/extras/loraplus/sft.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--loraplus_lr_ratio 16.0 \
|
||||
--output_dir ../../saves/LLaMA2-7B/loraplus/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
33
examples/extras/mod/sft.sh
Normal file
33
examples/extras/mod/sft.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--mixture_of_depths convert \
|
||||
--output_dir ../../../saves/LLaMA2-7B/mod/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--optim paged_adamw_8bit \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--pure_bf16
|
||||
38
examples/full_multi_gpu/multi_node.sh
Normal file
38
examples/full_multi_gpu/multi_node.sh
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/bin/bash
|
||||
|
||||
python -m torch.distributed.run \
|
||||
--nproc_per_node $NPROC_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT \
|
||||
../../src/train_bash.py \
|
||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--output_dir ../../saves/LLaMA2-7B/full/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
20
examples/full_multi_gpu/predict.sh
Normal file
20
examples/full_multi_gpu/predict.sh
Normal file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||
--config_file ../accelerate/single_config.yaml \
|
||||
../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_predict \
|
||||
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--output_dir ../../saves/LLaMA2-7B/full/predict \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--max_samples 20 \
|
||||
--predict_with_generate
|
||||
32
examples/full_multi_gpu/single_node.sh
Normal file
32
examples/full_multi_gpu/single_node.sh
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type full \
|
||||
--output_dir ../../saves/LLaMA2-7B/full/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
7
examples/inference/api_demo.sh
Normal file
7
examples/inference/api_demo.sh
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
7
examples/inference/cli_demo.sh
Normal file
7
examples/inference/cli_demo.sh
Normal file
@@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
12
examples/inference/evaluate.sh
Normal file
12
examples/inference/evaluate.sh
Normal file
@@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--template fewshot \
|
||||
--finetuning_type lora \
|
||||
--task mmlu \
|
||||
--split test \
|
||||
--lang en \
|
||||
--n_shot 5 \
|
||||
--batch_size 4
|
||||
8
examples/inference/web_demo.sh
Normal file
8
examples/inference/web_demo.sh
Normal file
@@ -0,0 +1,8 @@
|
||||
#!/bin/bash
|
||||
# add `--visual_inputs True` to load MLLM
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--template default \
|
||||
--finetuning_type lora
|
||||
33
examples/lora_multi_gpu/ds_zero3.sh
Normal file
33
examples/lora_multi_gpu/ds_zero3.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
36
examples/lora_multi_gpu/multi_node.sh
Normal file
36
examples/lora_multi_gpu/multi_node.sh
Normal file
@@ -0,0 +1,36 @@
|
||||
#!/bin/bash
|
||||
# also launch it on slave machine using slave_config.yaml
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||
--config_file ../accelerate/master_config.yaml \
|
||||
../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
35
examples/lora_multi_gpu/single_node.sh
Normal file
35
examples/lora_multi_gpu/single_node.sh
Normal file
@@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||
--config_file ../accelerate/single_config.yaml \
|
||||
../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--ddp_timeout 180000000 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
35
examples/lora_single_gpu/dpo.sh
Normal file
35
examples/lora_single_gpu/dpo.sh
Normal file
@@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage dpo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--val_size 0.1 \
|
||||
--dpo_ftx 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
32
examples/lora_single_gpu/orpo.sh
Normal file
32
examples/lora_single_gpu/orpo.sh
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage orpo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
32
examples/lora_single_gpu/ppo.sh
Normal file
32
examples/lora_single_gpu/ppo.sh
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage ppo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset alpaca_gpt4_en \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--reward_model ../../saves/LLaMA2-7B/lora/reward \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 512 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--top_k 0 \
|
||||
--top_p 0.9 \
|
||||
--max_new_tokens 256 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
19
examples/lora_single_gpu/predict.sh
Normal file
19
examples/lora_single_gpu/predict.sh
Normal file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_predict \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/predict \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--max_samples 20 \
|
||||
--predict_with_generate
|
||||
18
examples/lora_single_gpu/prepare.sh
Normal file
18
examples/lora_single_gpu/prepare.sh
Normal file
@@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES= python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--max_samples 3000 \
|
||||
--tokenized_path ../../saves/datasets/sft
|
||||
31
examples/lora_single_gpu/pretrain.sh
Normal file
31
examples/lora_single_gpu/pretrain.sh
Normal file
@@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage pt \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset c4_demo \
|
||||
--dataset_dir ../../data \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 10000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
33
examples/lora_single_gpu/reward.sh
Normal file
33
examples/lora_single_gpu/reward.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage rm \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/reward \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 5000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
32
examples/lora_single_gpu/sft.sh
Normal file
32
examples/lora_single_gpu/sft.sh
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
33
examples/lora_single_gpu/sft_mllm.sh
Normal file
33
examples/lora_single_gpu/sft_mllm.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
||||
--visual_inputs \
|
||||
--dataset mllm_demo \
|
||||
--dataset_dir ../../data \
|
||||
--template vicuna \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 100.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
12
examples/merge_lora/merge.sh
Normal file
12
examples/merge_lora/merge.sh
Normal file
@@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
# DO NOT use quantized model or quantization_bit when merging lora weights
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--export_dir ../../models/llama2-7b-sft \
|
||||
--export_size 2 \
|
||||
--export_device cpu \
|
||||
--export_legacy_format False
|
||||
11
examples/merge_lora/quantize.sh
Normal file
11
examples/merge_lora/quantize.sh
Normal file
@@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
# NEED TO run `merge.sh` before using this script
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
||||
--model_name_or_path ../../models/llama2-7b-sft \
|
||||
--template default \
|
||||
--export_dir ../../models/llama2-7b-sft-int4 \
|
||||
--export_quantization_bit 4 \
|
||||
--export_quantization_dataset ../../data/c4_demo.json \
|
||||
--export_size 2 \
|
||||
--export_legacy_format False
|
||||
30
examples/qlora_single_gpu/aqlm.sh
Normal file
30
examples/qlora_single_gpu/aqlm.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
30
examples/qlora_single_gpu/awq.sh
Normal file
30
examples/qlora_single_gpu/awq.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
31
examples/qlora_single_gpu/bitsandbytes.sh
Normal file
31
examples/qlora_single_gpu/bitsandbytes.sh
Normal file
@@ -0,0 +1,31 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--quantization_bit 4 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
30
examples/qlora_single_gpu/gptq.sh
Normal file
30
examples/qlora_single_gpu/gptq.sh
Normal file
@@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -2,23 +2,19 @@
|
||||
requires = ["setuptools>=61.0"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.black]
|
||||
line-length = 119
|
||||
target-version = ["py38"]
|
||||
|
||||
[tool.ruff]
|
||||
target-version = "py38"
|
||||
line-length = 119
|
||||
indent-width = 4
|
||||
|
||||
[tool.ruff.lint]
|
||||
ignore = ["C408", "C901", "E501", "E731", "E741", "W605"]
|
||||
select = ["C", "E", "F", "I", "W"]
|
||||
line-length = 119
|
||||
|
||||
[tool.ruff.isort]
|
||||
[tool.ruff.lint.isort]
|
||||
lines-after-imports = 2
|
||||
known-first-party = ["llmtuner"]
|
||||
|
||||
[isort]
|
||||
default_section = "FIRSTPARTY"
|
||||
known_first_party = "llmtuner"
|
||||
known_third_party = [
|
||||
known-third-party = [
|
||||
"accelerate",
|
||||
"datasets",
|
||||
"gradio",
|
||||
@@ -28,10 +24,10 @@ known_third_party = [
|
||||
"transformers",
|
||||
"trl"
|
||||
]
|
||||
line_length = 119
|
||||
lines_after_imports = 2
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = true
|
||||
force_grid_wrap = 0
|
||||
use_parentheses = true
|
||||
ensure_newline_before_comments = true
|
||||
|
||||
[tool.ruff.format]
|
||||
quote-style = "double"
|
||||
indent-style = "space"
|
||||
docstring-code-format = true
|
||||
skip-magic-trailing-comma = false
|
||||
line-ending = "auto"
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
torch>=1.13.1
|
||||
transformers>=4.36.2
|
||||
transformers>=4.37.2
|
||||
datasets>=2.14.3
|
||||
accelerate>=0.21.0
|
||||
peft>=0.7.0
|
||||
trl>=0.7.6
|
||||
gradio>=3.38.0,<4.0.0
|
||||
accelerate>=0.27.2
|
||||
peft>=0.10.0
|
||||
trl>=0.8.1
|
||||
gradio>=4.0.0
|
||||
scipy
|
||||
einops
|
||||
sentencepiece
|
||||
protobuf
|
||||
jieba
|
||||
rouge-chinese
|
||||
nltk
|
||||
uvicorn
|
||||
pydantic
|
||||
fastapi
|
||||
sse-starlette
|
||||
matplotlib
|
||||
fire
|
||||
packaging
|
||||
|
||||
@@ -10,12 +10,12 @@ import fire
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||
|
||||
from llmtuner.data import get_dataset
|
||||
from llmtuner.extras.constants import IGNORE_INDEX
|
||||
from llmtuner.hparams import get_train_args
|
||||
from llmtuner.model import load_model_and_tokenizer
|
||||
from llmtuner.model import load_tokenizer
|
||||
|
||||
|
||||
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models
|
||||
@@ -24,26 +24,36 @@ BASE_BS = 4_000_000 # from llama paper
|
||||
|
||||
def calculate_lr(
|
||||
model_name_or_path: str,
|
||||
dataset: str,
|
||||
cutoff_len: int, # i.e. maximum input length during training
|
||||
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
|
||||
is_mistral: bool, # mistral model uses a smaller learning rate,
|
||||
stage: Optional[str] = "sft",
|
||||
dataset: Optional[str] = "alpaca_en",
|
||||
dataset_dir: Optional[str] = "data",
|
||||
template: Optional[str] = "default",
|
||||
cutoff_len: Optional[int] = 1024, # i.e. maximum input length during training
|
||||
is_mistral: Optional[bool] = False, # mistral model uses a smaller learning rate,
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
model_args, data_args, training_args, _, _ = get_train_args(
|
||||
dict(
|
||||
stage="sft",
|
||||
stage=stage,
|
||||
model_name_or_path=model_name_or_path,
|
||||
dataset=dataset,
|
||||
dataset_dir=dataset_dir,
|
||||
template="default",
|
||||
template=template,
|
||||
cutoff_len=cutoff_len,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset=trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, pin_memory=True
|
||||
)
|
||||
52
scripts/length_cdf.py
Normal file
52
scripts/length_cdf.py
Normal file
@@ -0,0 +1,52 @@
|
||||
# coding=utf-8
|
||||
# Calculates the distribution of the input lengths in the dataset.
|
||||
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import Optional
|
||||
|
||||
import fire
|
||||
from tqdm import tqdm
|
||||
|
||||
from llmtuner.data import get_dataset
|
||||
from llmtuner.hparams import get_train_args
|
||||
from llmtuner.model import load_tokenizer
|
||||
|
||||
|
||||
def length_cdf(
|
||||
model_name_or_path: str,
|
||||
dataset: Optional[str] = "alpaca_en",
|
||||
dataset_dir: Optional[str] = "data",
|
||||
template: Optional[str] = "default",
|
||||
interval: Optional[int] = 1000,
|
||||
):
|
||||
model_args, data_args, training_args, _, _ = get_train_args(
|
||||
dict(
|
||||
stage="sft",
|
||||
model_name_or_path=model_name_or_path,
|
||||
dataset=dataset,
|
||||
dataset_dir=dataset_dir,
|
||||
template=template,
|
||||
cutoff_len=1_000_000,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
total_num = len(trainset)
|
||||
length_dict = defaultdict(int)
|
||||
for sample in tqdm(trainset["input_ids"]):
|
||||
length_dict[len(sample) // interval * interval] += 1
|
||||
|
||||
length_tuples = list(length_dict.items())
|
||||
length_tuples.sort()
|
||||
count_accu, prob_accu = 0, 0
|
||||
for length, count in length_tuples:
|
||||
count_accu += count
|
||||
prob_accu += count / total_num * 100
|
||||
print("{:d} ({:.2f}%) samples have length < {}.".format(count_accu, prob_accu, length + interval))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(length_cdf)
|
||||
115
scripts/llama_pro.py
Normal file
115
scripts/llama_pro.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# coding=utf-8
|
||||
# Performs block expansion for LLaMA, Mistral or Qwen1.5 models.
|
||||
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
|
||||
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
|
||||
|
||||
import json
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from safetensors.torch import save_file
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.modeling_utils import (
|
||||
SAFE_WEIGHTS_INDEX_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
shard_checkpoint,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
|
||||
def change_name(name: str, old_index: int, new_index: int) -> str:
|
||||
return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index))
|
||||
|
||||
|
||||
def block_expansion(
|
||||
model_name_or_path: str,
|
||||
output_dir: str,
|
||||
num_expand: int,
|
||||
shard_size: Optional[str] = "2GB",
|
||||
save_safetensors: Optional[bool] = False,
|
||||
):
|
||||
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
|
||||
num_layers = getattr(config, "num_hidden_layers")
|
||||
setattr(config, "num_hidden_layers", num_layers + num_expand)
|
||||
config.save_pretrained(output_dir)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||
tokenizer.save_pretrained(output_dir)
|
||||
|
||||
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one
|
||||
if save_safetensors:
|
||||
setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights
|
||||
|
||||
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path,
|
||||
config=config,
|
||||
torch_dtype="auto",
|
||||
trust_remote_code=True,
|
||||
low_cpu_mem_usage=True,
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
|
||||
if num_layers % num_expand != 0:
|
||||
raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand))
|
||||
|
||||
split = num_layers // num_expand
|
||||
layer_cnt = 0
|
||||
output_state_dict = OrderedDict()
|
||||
for i in range(num_layers):
|
||||
for key, value in state_dict.items():
|
||||
if ".{:d}.".format(i) in key:
|
||||
output_state_dict[change_name(key, i, layer_cnt)] = value
|
||||
|
||||
print("Add layer {} copied from layer {}".format(layer_cnt, i))
|
||||
layer_cnt += 1
|
||||
if (i + 1) % split == 0:
|
||||
for key, value in state_dict.items():
|
||||
if ".{:d}.".format(i) in key:
|
||||
if "down_proj" in key or "o_proj" in key:
|
||||
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value)
|
||||
else:
|
||||
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)
|
||||
|
||||
print("Add layer {} expanded from layer {}".format(layer_cnt, i))
|
||||
layer_cnt += 1
|
||||
|
||||
for key, value in state_dict.items():
|
||||
if key not in output_state_dict:
|
||||
output_state_dict[key] = value
|
||||
|
||||
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||
|
||||
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||
if save_safetensors:
|
||||
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||
|
||||
if index is None:
|
||||
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
|
||||
else:
|
||||
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||
json.dump(index, f, indent=2, sort_keys=True)
|
||||
print("Model weights saved in {}".format(output_dir))
|
||||
|
||||
print("Fine-tune this model with:")
|
||||
print(" --model_name_or_path {} \\".format(output_dir))
|
||||
print(" --finetuning_type freeze \\")
|
||||
print(" --name_module_trainable all \\")
|
||||
print(" --num_layer_trainable {} \\".format(num_expand))
|
||||
print(" --use_llama_pro")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(block_expansion)
|
||||
@@ -1,6 +1,6 @@
|
||||
# coding=utf-8
|
||||
# Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
|
||||
# Usage: python llamafy_baichuan2.py --input_dir input --output_dir output --shard_size 10GB
|
||||
# Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
|
||||
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
|
||||
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
|
||||
|
||||
@@ -76,7 +76,9 @@ def save_config(input_dir: str, output_dir: str):
|
||||
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
|
||||
|
||||
|
||||
def llamafy_baichuan2(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False):
|
||||
def llamafy_baichuan2(
|
||||
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
|
||||
):
|
||||
try:
|
||||
os.makedirs(output_dir, exist_ok=False)
|
||||
except Exception as e:
|
||||
@@ -1,6 +1,6 @@
|
||||
# coding=utf-8
|
||||
# Converts the Qwen models in the same format as LLaMA2.
|
||||
# Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB
|
||||
# Usage: python llamafy_qwen.py --input_dir input --output_dir output
|
||||
# Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied
|
||||
|
||||
import json
|
||||
@@ -128,7 +128,9 @@ def save_config(input_dir: str, output_dir: str, torch_dtype: str):
|
||||
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
|
||||
|
||||
|
||||
def llamafy_qwen(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False):
|
||||
def llamafy_qwen(
|
||||
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
|
||||
):
|
||||
try:
|
||||
os.makedirs(output_dir, exist_ok=False)
|
||||
except Exception as e:
|
||||
@@ -26,7 +26,7 @@ class Shell(nn.Module):
|
||||
|
||||
|
||||
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
|
||||
for name in set([k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k]): # noqa: C403
|
||||
for name in {k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k}:
|
||||
parent_name = ".".join(name.split(".")[:-1])
|
||||
child_name = name.split(".")[-1]
|
||||
parent_module = model.get_submodule(parent_name)
|
||||
28
setup.py
28
setup.py
@@ -1,13 +1,14 @@
|
||||
import os
|
||||
import re
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
|
||||
def get_version():
|
||||
with open(os.path.join("src", "llmtuner", "__init__.py"), "r", encoding="utf-8") as f:
|
||||
file_content = f.read()
|
||||
pattern = r"{0}\W*=\W*\"([^\"]+)\"".format("__version__")
|
||||
version, = re.findall(pattern, file_content)
|
||||
(version,) = re.findall(pattern, file_content)
|
||||
return version
|
||||
|
||||
|
||||
@@ -18,8 +19,23 @@ def get_requires():
|
||||
return lines
|
||||
|
||||
|
||||
def main():
|
||||
extra_require = {
|
||||
"deepspeed": ["deepspeed>=0.10.0"],
|
||||
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||
"galore": ["galore-torch"],
|
||||
"badam": ["badam"],
|
||||
"vllm": ["vllm>=0.4.0"],
|
||||
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
||||
"gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
|
||||
"awq": ["autoawq"],
|
||||
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
||||
"qwen": ["tiktoken", "transformers_stream_generator"],
|
||||
"modelscope": ["modelscope"],
|
||||
"quality": ["ruff"],
|
||||
}
|
||||
|
||||
|
||||
def main():
|
||||
setup(
|
||||
name="llmtuner",
|
||||
version=get_version(),
|
||||
@@ -35,8 +51,9 @@ def main():
|
||||
packages=find_packages("src"),
|
||||
python_requires=">=3.8.0",
|
||||
install_requires=get_requires(),
|
||||
extras_require=extra_require,
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Education",
|
||||
"Intended Audience :: Science/Research",
|
||||
@@ -46,8 +63,9 @@ def main():
|
||||
"Programming Language :: Python :: 3.8",
|
||||
"Programming Language :: Python :: 3.9",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
"Programming Language :: Python :: 3.11",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
]
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -2,8 +2,7 @@ from llmtuner import Evaluator
|
||||
|
||||
|
||||
def main():
|
||||
evaluator = Evaluator()
|
||||
evaluator.eval()
|
||||
Evaluator().eval()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -7,5 +7,5 @@ from .train import export_model, run_exp
|
||||
from .webui import create_ui, create_web_demo
|
||||
|
||||
|
||||
__version__ = "0.5.0"
|
||||
__version__ = "0.7.0"
|
||||
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
from contextlib import asynccontextmanager
|
||||
@@ -73,7 +72,13 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
|
||||
role_mapping = {
|
||||
Role.USER: DataRole.USER.value,
|
||||
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||
Role.TOOL: DataRole.OBSERVATION.value,
|
||||
}
|
||||
|
||||
@app.get("/v1/models", response_model=ModelList)
|
||||
async def list_models():
|
||||
@@ -82,49 +87,53 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
if not chat_model.can_generate:
|
||||
if not chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
if len(request.messages) == 0 or request.messages[-1].role != Role.USER:
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||
|
||||
messages = [dictify(message) for message in request.messages]
|
||||
if len(messages) and messages[0]["role"] == Role.SYSTEM:
|
||||
system = messages.pop(0)["content"]
|
||||
if request.messages[0].role == Role.SYSTEM:
|
||||
system = request.messages.pop(0).content
|
||||
else:
|
||||
system = None
|
||||
system = ""
|
||||
|
||||
if len(messages) % 2 == 0:
|
||||
if len(request.messages) % 2 == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||
|
||||
for i in range(len(messages)):
|
||||
if i % 2 == 0 and messages[i]["role"] not in [Role.USER, Role.TOOL]:
|
||||
input_messages = []
|
||||
for i, message in enumerate(request.messages):
|
||||
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
elif i % 2 == 1 and messages[i]["role"] not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||
elif messages[i]["role"] == Role.TOOL:
|
||||
messages[i]["role"] = DataRole.OBSERVATION
|
||||
|
||||
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||
name = message.tool_calls[0].function.name
|
||||
arguments = message.tool_calls[0].function.arguments
|
||||
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
|
||||
input_messages.append({"role": role_mapping[Role.FUNCTION], "content": content})
|
||||
else:
|
||||
input_messages.append({"role": role_mapping[message.role], "content": message.content})
|
||||
|
||||
tool_list = request.tools
|
||||
if len(tool_list):
|
||||
if isinstance(tool_list, list) and len(tool_list):
|
||||
try:
|
||||
tools = json.dumps([tool_list[0]["function"]], ensure_ascii=False)
|
||||
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||
else:
|
||||
tools = ""
|
||||
|
||||
async with semaphore:
|
||||
loop = asyncio.get_running_loop()
|
||||
return await loop.run_in_executor(None, chat_completion, messages, system, tools, request)
|
||||
|
||||
def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest):
|
||||
if request.stream:
|
||||
generate = stream_chat_completion(messages, system, tools, request)
|
||||
if tools:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||
|
||||
generate = stream_chat_completion(input_messages, system, tools, request)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
responses = chat_model.chat(
|
||||
messages,
|
||||
responses = await chat_model.achat(
|
||||
input_messages,
|
||||
system,
|
||||
tools,
|
||||
do_sample=request.do_sample,
|
||||
@@ -138,7 +147,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
choices = []
|
||||
for i, response in enumerate(responses):
|
||||
if tools:
|
||||
result = chat_model.template.format_tools.extract(response.response_text)
|
||||
result = chat_model.engine.template.format_tools.extract(response.response_text)
|
||||
else:
|
||||
result = response.response_text
|
||||
|
||||
@@ -167,7 +176,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
|
||||
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
|
||||
|
||||
def stream_chat_completion(
|
||||
async def stream_chat_completion(
|
||||
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
|
||||
):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
@@ -176,7 +185,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
||||
yield jsonify(chunk)
|
||||
|
||||
for new_text in chat_model.stream_chat(
|
||||
async for new_token in chat_model.astream_chat(
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
@@ -185,11 +194,11 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
top_p=request.top_p,
|
||||
max_new_tokens=request.max_tokens,
|
||||
):
|
||||
if len(new_text) == 0:
|
||||
if len(new_token) == 0:
|
||||
continue
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0, delta=ChatCompletionMessage(content=new_text), finish_reason=None
|
||||
index=0, delta=ChatCompletionMessage(content=new_token), finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
|
||||
yield jsonify(chunk)
|
||||
@@ -203,18 +212,13 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||
|
||||
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
|
||||
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||
if chat_model.can_generate:
|
||||
if chat_model.engine.can_generate:
|
||||
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||
|
||||
if len(request.messages) == 0:
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||
|
||||
async with semaphore:
|
||||
loop = asyncio.get_running_loop()
|
||||
return await loop.run_in_executor(None, get_score, request)
|
||||
|
||||
def get_score(request: ScoreEvaluationRequest):
|
||||
scores = chat_model.get_scores(request.messages, max_length=request.max_length)
|
||||
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||
|
||||
return app
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import time
|
||||
from enum import Enum, unique
|
||||
from typing import List, Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Literal
|
||||
@@ -39,6 +39,17 @@ class Function(BaseModel):
|
||||
arguments: str
|
||||
|
||||
|
||||
class FunctionDefinition(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
parameters: Dict[str, Any]
|
||||
|
||||
|
||||
class FunctionAvailable(BaseModel):
|
||||
type: Literal["function", "code_interpreter"] = "function"
|
||||
function: Optional[FunctionDefinition] = None
|
||||
|
||||
|
||||
class FunctionCall(BaseModel):
|
||||
id: Literal["call_default"] = "call_default"
|
||||
type: Literal["function"] = "function"
|
||||
@@ -47,7 +58,8 @@ class FunctionCall(BaseModel):
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Role
|
||||
content: str
|
||||
content: Optional[str] = None
|
||||
tool_calls: Optional[List[FunctionCall]] = None
|
||||
|
||||
|
||||
class ChatCompletionMessage(BaseModel):
|
||||
@@ -59,7 +71,7 @@ class ChatCompletionMessage(BaseModel):
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
tools: Optional[list] = []
|
||||
tools: Optional[List[FunctionAvailable]] = None
|
||||
do_sample: bool = True
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from .base_engine import BaseEngine
|
||||
from .chat_model import ChatModel
|
||||
|
||||
|
||||
__all__ = ["ChatModel"]
|
||||
__all__ = ["BaseEngine", "ChatModel"]
|
||||
|
||||
69
src/llmtuner/chat/base_engine.py
Normal file
69
src/llmtuner/chat/base_engine.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from vllm import AsyncLLMEngine
|
||||
|
||||
from ..data import Template
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
@dataclass
|
||||
class Response:
|
||||
response_text: str
|
||||
response_length: int
|
||||
prompt_length: int
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class BaseEngine(ABC):
|
||||
model: Union["PreTrainedModel", "AsyncLLMEngine"]
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
can_generate: bool
|
||||
template: "Template"
|
||||
generating_args: Dict[str, Any]
|
||||
|
||||
@abstractmethod
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None: ...
|
||||
|
||||
@abstractmethod
|
||||
async def start(
|
||||
self,
|
||||
) -> None: ...
|
||||
|
||||
@abstractmethod
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]: ...
|
||||
|
||||
@abstractmethod
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]: ...
|
||||
|
||||
@abstractmethod
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]: ...
|
||||
@@ -1,161 +1,97 @@
|
||||
from dataclasses import dataclass
|
||||
import asyncio
|
||||
from threading import Thread
|
||||
from typing import Any, Dict, Generator, List, Literal, Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..hparams import get_infer_args
|
||||
from ..model import dispatch_model, load_model_and_tokenizer
|
||||
from .hf_engine import HuggingfaceEngine
|
||||
from .vllm_engine import VllmEngine
|
||||
|
||||
|
||||
@dataclass
|
||||
class Response:
|
||||
response_text: str
|
||||
response_length: int
|
||||
prompt_length: int
|
||||
finish_reason: Literal["stop", "length"]
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
def _start_background_loop(loop: asyncio.AbstractEventLoop) -> None:
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_forever()
|
||||
|
||||
|
||||
class ChatModel:
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.model = dispatch_model(self.model)
|
||||
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
|
||||
model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
|
||||
if model_args.infer_backend == "huggingface":
|
||||
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
|
||||
elif model_args.infer_backend == "vllm":
|
||||
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
|
||||
else:
|
||||
raise NotImplementedError("Unknown backend: {}".format(model_args.infer_backend))
|
||||
|
||||
def _process_args(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
**input_kwargs,
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
prompt, _ = self.template.encode_oneturn(
|
||||
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
prompt_length = len(prompt)
|
||||
input_ids = torch.tensor([prompt], device=self.model.device)
|
||||
self._loop = asyncio.new_event_loop()
|
||||
self._thread = Thread(target=_start_background_loop, args=(self._loop,), daemon=True)
|
||||
self._thread.start()
|
||||
asyncio.run_coroutine_threadsafe(self.engine.start(), self._loop)
|
||||
|
||||
do_sample = input_kwargs.pop("do_sample", None)
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
|
||||
generating_args = self.generating_args.to_dict()
|
||||
generating_args.update(
|
||||
dict(
|
||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||
generating_args["do_sample"] = True
|
||||
|
||||
if max_length:
|
||||
generating_args.pop("max_new_tokens", None)
|
||||
generating_args["max_length"] = max_length
|
||||
|
||||
if max_new_tokens:
|
||||
generating_args.pop("max_length", None)
|
||||
generating_args["max_new_tokens"] = max_new_tokens
|
||||
|
||||
gen_kwargs = dict(
|
||||
inputs=input_ids,
|
||||
generation_config=GenerationConfig(**generating_args),
|
||||
logits_processor=get_logits_processor(),
|
||||
)
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@torch.inference_mode()
|
||||
def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List[Response]:
|
||||
gen_kwargs, prompt_length = self._process_args(messages, system, tools, **input_kwargs)
|
||||
generate_output = self.model.generate(**gen_kwargs)
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
response = self.tokenizer.batch_decode(
|
||||
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
||||
)
|
||||
results = []
|
||||
for i in range(len(response)):
|
||||
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero()
|
||||
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
|
||||
results.append(
|
||||
Response(
|
||||
response_text=response[i],
|
||||
response_length=response_length,
|
||||
prompt_length=prompt_length,
|
||||
finish_reason="stop" if len(eos_index) else "length",
|
||||
)
|
||||
)
|
||||
) -> List["Response"]:
|
||||
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop)
|
||||
return task.result()
|
||||
|
||||
return results
|
||||
async def achat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
return await self.engine.chat(messages, system, tools, image, **input_kwargs)
|
||||
|
||||
@torch.inference_mode()
|
||||
def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> Generator[str, None, None]:
|
||||
gen_kwargs, _ = self._process_args(messages, system, tools, **input_kwargs)
|
||||
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
generator = self.astream_chat(messages, system, tools, image, **input_kwargs)
|
||||
while True:
|
||||
try:
|
||||
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
|
||||
yield task.result()
|
||||
except StopAsyncIteration:
|
||||
break
|
||||
|
||||
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
async def astream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs):
|
||||
yield new_token
|
||||
|
||||
yield from streamer
|
||||
def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
task = asyncio.run_coroutine_threadsafe(self.aget_scores(batch_input, **input_kwargs), self._loop)
|
||||
return task.result()
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_scores(self, batch_input: List[str], **input_kwargs) -> List[float]:
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
device = getattr(self.model.pretrained_model, "device", "cuda")
|
||||
|
||||
inputs = self.tokenizer(
|
||||
batch_input,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024),
|
||||
return_tensors="pt",
|
||||
add_special_tokens=True,
|
||||
).to(device)
|
||||
|
||||
input_ids: torch.Tensor = inputs["input_ids"]
|
||||
_, _, values = self.model(**inputs, output_hidden_states=True, return_dict=True)
|
||||
|
||||
if getattr(self.model.config, "model_type", None) == "chatglm":
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
scores = []
|
||||
for i in range(input_ids.size(0)):
|
||||
end_indexes = (input_ids[i] != self.tokenizer.pad_token_id).nonzero()
|
||||
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
||||
scores.append(values[i, end_index].nan_to_num().item())
|
||||
|
||||
return scores
|
||||
async def aget_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||
|
||||
288
src/llmtuner/chat/hf_engine.py
Normal file
288
src/llmtuner/chat/hf_engine.py
Normal file
@@ -0,0 +1,288 @@
|
||||
import asyncio
|
||||
import concurrent.futures
|
||||
import os
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import GenerationConfig, TextIteratorStreamer
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from trl import PreTrainedModelWrapper
|
||||
|
||||
from ..data import Template
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
class HuggingfaceEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
) # must after fixing tokenizer to resize vocab
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
@staticmethod
|
||||
def _process_args(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
if processor is not None and image is not None and "<image>" not in messages[0]["content"]:
|
||||
messages[0]["content"] = "<image>" + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
prompt_ids, _ = template.encode_oneturn(
|
||||
tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
prompt_length = len(prompt_ids)
|
||||
inputs = torch.tensor([prompt_ids], device=model.device)
|
||||
|
||||
do_sample = input_kwargs.pop("do_sample", None)
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
|
||||
generating_args.update(
|
||||
dict(
|
||||
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
|
||||
generating_args["do_sample"] = True
|
||||
|
||||
if max_length:
|
||||
generating_args.pop("max_new_tokens", None)
|
||||
generating_args["max_length"] = max_length
|
||||
|
||||
if max_new_tokens:
|
||||
generating_args.pop("max_length", None)
|
||||
generating_args["max_new_tokens"] = max_new_tokens
|
||||
|
||||
gen_kwargs = dict(
|
||||
inputs=inputs,
|
||||
generation_config=GenerationConfig(**generating_args),
|
||||
logits_processor=get_logits_processor(),
|
||||
)
|
||||
|
||||
if processor is not None and image is not None:
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
pixel_values: "torch.Tensor" = image_processor(image, return_tensors="pt")["pixel_values"]
|
||||
gen_kwargs["pixel_values"] = pixel_values.to(model.device)
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
@staticmethod
|
||||
@torch.inference_mode()
|
||||
def _chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List["Response"]:
|
||||
gen_kwargs, prompt_length = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
generate_output = model.generate(**gen_kwargs)
|
||||
response_ids = generate_output[:, prompt_length:]
|
||||
response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
results = []
|
||||
for i in range(len(response)):
|
||||
eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero()
|
||||
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
|
||||
results.append(
|
||||
Response(
|
||||
response_text=response[i],
|
||||
response_length=response_length,
|
||||
prompt_length=prompt_length,
|
||||
finish_reason="stop" if len(eos_index) else "length",
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
@torch.inference_mode()
|
||||
def _stream_chat(
|
||||
model: "PreTrainedModel",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
template: "Template",
|
||||
generating_args: Dict[str, Any],
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> Callable[[], str]:
|
||||
gen_kwargs, _ = HuggingfaceEngine._process_args(
|
||||
model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs
|
||||
)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
|
||||
thread.start()
|
||||
|
||||
def stream():
|
||||
try:
|
||||
return streamer.__next__()
|
||||
except StopIteration:
|
||||
raise StopAsyncIteration()
|
||||
|
||||
return stream
|
||||
|
||||
@staticmethod
|
||||
@torch.inference_mode()
|
||||
def _get_scores(
|
||||
model: "PreTrainedModelWrapper",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
batch_input: List[str],
|
||||
input_kwargs: Optional[Dict[str, Any]] = {},
|
||||
) -> List[float]:
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
device = getattr(model.pretrained_model, "device", "cuda")
|
||||
inputs = tokenizer(
|
||||
batch_input,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=max_length or getattr(model.config, "max_position_embeddings", 1024),
|
||||
return_tensors="pt",
|
||||
add_special_tokens=True,
|
||||
).to(device)
|
||||
|
||||
input_ids: torch.Tensor = inputs["input_ids"]
|
||||
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
|
||||
|
||||
if getattr(model.config, "model_type", None) == "chatglm":
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
scores = []
|
||||
for i in range(input_ids.size(0)):
|
||||
end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero()
|
||||
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
||||
scores.append(values[i, end_index].nan_to_num().item())
|
||||
|
||||
return scores
|
||||
|
||||
async def start(self) -> None:
|
||||
self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
if not self.can_generate:
|
||||
raise ValueError("The current model does not support `chat`.")
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
with concurrent.futures.ThreadPoolExecutor() as pool:
|
||||
return await loop.run_in_executor(pool, self._chat, *input_args)
|
||||
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
if not self.can_generate:
|
||||
raise ValueError("The current model does not support `stream_chat`.")
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
input_args = (
|
||||
self.model,
|
||||
self.tokenizer,
|
||||
self.processor,
|
||||
self.template,
|
||||
self.generating_args,
|
||||
messages,
|
||||
system,
|
||||
tools,
|
||||
image,
|
||||
input_kwargs,
|
||||
)
|
||||
async with self._semaphore:
|
||||
with concurrent.futures.ThreadPoolExecutor() as pool:
|
||||
stream = self._stream_chat(*input_args)
|
||||
while True:
|
||||
try:
|
||||
yield await loop.run_in_executor(pool, stream)
|
||||
except StopAsyncIteration:
|
||||
break
|
||||
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
if self.can_generate:
|
||||
raise ValueError("Cannot get scores using an auto-regressive model.")
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
input_args = (self.model, self.tokenizer, batch_input, input_kwargs)
|
||||
async with self._semaphore:
|
||||
with concurrent.futures.ThreadPoolExecutor() as pool:
|
||||
return await loop.run_in_executor(pool, self._get_scores, *input_args)
|
||||
196
src/llmtuner/chat/vllm_engine.py
Normal file
196
src/llmtuner/chat/vllm_engine.py
Normal file
@@ -0,0 +1,196 @@
|
||||
import uuid
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.misc import get_device_count, infer_optim_dtype
|
||||
from ..extras.packages import is_vllm_available
|
||||
from ..model import load_config, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
if is_vllm_available():
|
||||
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sequence import MultiModalData
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from numpy.typing import NDArray
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
class VllmEngine(BaseEngine):
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
config = load_config(model_args) # may download model from ms hub
|
||||
infer_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
infer_dtype = str(infer_dtype).split(".")[-1]
|
||||
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
self.tokenizer = tokenizer_module["tokenizer"]
|
||||
self.processor = tokenizer_module["processor"]
|
||||
self.tokenizer.padding_side = "left"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
engine_args = {
|
||||
"model": model_args.model_name_or_path,
|
||||
"trust_remote_code": True,
|
||||
"download_dir": model_args.cache_dir,
|
||||
"dtype": infer_dtype,
|
||||
"max_model_len": model_args.vllm_maxlen,
|
||||
"tensor_parallel_size": get_device_count() or 1,
|
||||
"gpu_memory_utilization": model_args.vllm_gpu_util,
|
||||
"disable_log_stats": True,
|
||||
"disable_log_requests": True,
|
||||
"enforce_eager": model_args.vllm_enforce_eager,
|
||||
"enable_lora": model_args.adapter_name_or_path is not None,
|
||||
}
|
||||
|
||||
if model_args.visual_inputs:
|
||||
# TODO: auto derive from config
|
||||
# https://github.com/vllm-project/vllm/pull/3042#issuecomment-1984893549
|
||||
self.image_feature_size = 576
|
||||
engine_args["image_input_type"] = "pixel_values"
|
||||
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids("<image>")
|
||||
engine_args["image_input_shape"] = "1,3,336,336"
|
||||
engine_args["image_feature_size"] = self.image_feature_size
|
||||
|
||||
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
||||
else:
|
||||
self.lora_request = None
|
||||
|
||||
async def _generate(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncIterator["RequestOutput"]:
|
||||
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||
if self.processor is not None and image is not None and "<image>" not in messages[0]["content"]:
|
||||
messages[0]["content"] = "<image>" * self.image_feature_size + messages[0]["content"]
|
||||
|
||||
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
||||
prompt_ids, _ = self.template.encode_oneturn(
|
||||
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
||||
)
|
||||
prompt_length = len(prompt_ids)
|
||||
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
|
||||
generating_args = self.generating_args.copy()
|
||||
generating_args.update(
|
||||
dict(
|
||||
temperature=temperature or generating_args["temperature"],
|
||||
top_p=top_p or generating_args["top_p"],
|
||||
top_k=top_k or generating_args["top_k"],
|
||||
num_return_sequences=num_return_sequences or 1,
|
||||
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
|
||||
)
|
||||
)
|
||||
|
||||
if max_length:
|
||||
generating_args["max_new_tokens"] = max_length - prompt_length
|
||||
|
||||
if max_new_tokens:
|
||||
generating_args["max_new_tokens"] = max_new_tokens
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
n=generating_args["num_return_sequences"],
|
||||
repetition_penalty=generating_args["repetition_penalty"],
|
||||
temperature=generating_args["temperature"],
|
||||
top_p=generating_args["top_p"],
|
||||
top_k=generating_args["top_k"],
|
||||
use_beam_search=generating_args["num_beams"] > 1,
|
||||
length_penalty=generating_args["length_penalty"],
|
||||
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
max_tokens=generating_args["max_new_tokens"],
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
|
||||
if self.processor is not None and image is not None:
|
||||
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
||||
pixel_values: "torch.Tensor" = image_processor(image, return_tensors="pt")["pixel_values"]
|
||||
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
||||
else:
|
||||
multi_modal_data = None
|
||||
|
||||
result_generator = self.model.generate(
|
||||
prompt=None,
|
||||
sampling_params=sampling_params,
|
||||
request_id=request_id,
|
||||
prompt_token_ids=prompt_ids,
|
||||
lora_request=self.lora_request,
|
||||
multi_modal_data=multi_modal_data,
|
||||
)
|
||||
return result_generator
|
||||
|
||||
async def start(self) -> None:
|
||||
pass
|
||||
|
||||
async def chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> List["Response"]:
|
||||
final_output = None
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for request_output in generator:
|
||||
final_output = request_output
|
||||
|
||||
results = []
|
||||
for output in final_output.outputs:
|
||||
results.append(
|
||||
Response(
|
||||
response_text=output.text,
|
||||
response_length=len(output.token_ids),
|
||||
prompt_length=len(final_output.prompt_token_ids),
|
||||
finish_reason=output.finish_reason,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
async def stream_chat(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
image: Optional["NDArray"] = None,
|
||||
**input_kwargs,
|
||||
) -> AsyncGenerator[str, None]:
|
||||
generated_text = ""
|
||||
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
||||
async for result in generator:
|
||||
delta_text = result.outputs[0].text[len(generated_text) :]
|
||||
generated_text = result.outputs[0].text
|
||||
yield delta_text
|
||||
|
||||
async def get_scores(
|
||||
self,
|
||||
batch_input: List[str],
|
||||
**input_kwargs,
|
||||
) -> List[float]:
|
||||
raise NotImplementedError("vLLM engine does not support get_scores.")
|
||||
@@ -1,6 +1,15 @@
|
||||
from .collator import PairwiseDataCollatorWithPadding
|
||||
from .loader import get_dataset
|
||||
from .template import get_template_and_fix_tokenizer, templates
|
||||
from .template import Template, get_template_and_fix_tokenizer, templates
|
||||
from .utils import Role, split_dataset
|
||||
|
||||
|
||||
__all__ = ["get_dataset", "get_template_and_fix_tokenizer", "templates", "Role", "split_dataset"]
|
||||
__all__ = [
|
||||
"PairwiseDataCollatorWithPadding",
|
||||
"get_dataset",
|
||||
"Template",
|
||||
"get_template_and_fix_tokenizer",
|
||||
"templates",
|
||||
"Role",
|
||||
"split_dataset",
|
||||
]
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
|
||||
from datasets import Features
|
||||
|
||||
from .utils import Role
|
||||
|
||||
|
||||
@@ -11,27 +14,45 @@ if TYPE_CHECKING:
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
||||
def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]:
|
||||
outputs = []
|
||||
if dataset_attr.load_from in ["script", "file"]:
|
||||
for image in images:
|
||||
if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)):
|
||||
outputs.append(os.path.join(data_args.dataset_dir, image))
|
||||
else:
|
||||
outputs.append(image)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_alpaca(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
for i in range(len(examples[dataset_attr.prompt])):
|
||||
prompt = []
|
||||
if dataset_attr.history:
|
||||
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
|
||||
for old_prompt, old_response in examples[dataset_attr.history][i]:
|
||||
prompt.append({"role": Role.USER, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT, "content": old_response})
|
||||
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
||||
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
||||
|
||||
content = []
|
||||
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
|
||||
content.append(examples[dataset_attr.prompt][i])
|
||||
|
||||
instruction = examples[dataset_attr.prompt][i]
|
||||
if dataset_attr.query and examples[dataset_attr.query][i]:
|
||||
instruction += "\n" + examples[dataset_attr.query][i]
|
||||
prompt.append({"role": Role.USER, "content": instruction})
|
||||
content.append(examples[dataset_attr.query][i])
|
||||
|
||||
if dataset_attr.response:
|
||||
if isinstance(examples[dataset_attr.response][i], list):
|
||||
prompt.append({"role": Role.USER.value, "content": "\n".join(content)})
|
||||
|
||||
if dataset_attr.response and isinstance(examples[dataset_attr.response][i], list):
|
||||
response = [
|
||||
{"role": Role.ASSISTANT, "content": content} for content in examples[dataset_attr.response][i]
|
||||
{"role": Role.ASSISTANT.value, "content": content} for content in examples[dataset_attr.response][i]
|
||||
]
|
||||
else:
|
||||
response = [{"role": Role.ASSISTANT, "content": examples[dataset_attr.response][i]}]
|
||||
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str):
|
||||
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
||||
else:
|
||||
response = []
|
||||
|
||||
@@ -39,44 +60,51 @@ def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr")
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["tools"].append("")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
||||
def convert_sharegpt(
|
||||
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
||||
) -> Dict[str, List[Any]]:
|
||||
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []}
|
||||
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
|
||||
tag_mapping = {
|
||||
dataset_attr.user_tag: Role.USER,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION,
|
||||
dataset_attr.function_tag: Role.FUNCTION,
|
||||
dataset_attr.user_tag: Role.USER.value,
|
||||
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
||||
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
||||
dataset_attr.function_tag: Role.FUNCTION.value,
|
||||
dataset_attr.system_tag: Role.SYSTEM.value,
|
||||
}
|
||||
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
||||
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
||||
accept_tags = (odd_tags, even_tags)
|
||||
for i, messages in enumerate(examples[dataset_attr.messages]):
|
||||
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
|
||||
system = messages[0][dataset_attr.content_tag]
|
||||
messages = messages[1:]
|
||||
else:
|
||||
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
|
||||
|
||||
messages = messages[: len(messages) // 2 * 2] # should be multiples of 2
|
||||
if len(messages) == 0:
|
||||
continue
|
||||
|
||||
prompt = []
|
||||
response = []
|
||||
aligned_messages = []
|
||||
for turn_idx, message in enumerate(messages):
|
||||
if turn_idx % 2 == 0:
|
||||
accept_tags = [dataset_attr.user_tag, dataset_attr.observation_tag]
|
||||
else:
|
||||
accept_tags = [dataset_attr.assistant_tag, dataset_attr.function_tag]
|
||||
|
||||
if message[dataset_attr.role_tag] not in accept_tags:
|
||||
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
||||
raise ValueError("Invalid role tag in {}.".format(messages))
|
||||
|
||||
prompt.append(
|
||||
aligned_messages.append(
|
||||
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
||||
)
|
||||
|
||||
last_message = prompt.pop(-1)
|
||||
response.append(last_message)
|
||||
outputs["prompt"].append(prompt)
|
||||
outputs["response"].append(response)
|
||||
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
||||
outputs["prompt"].append(aligned_messages[:-1])
|
||||
outputs["response"].append(aligned_messages[-1:])
|
||||
outputs["system"].append(system)
|
||||
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
||||
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else [])
|
||||
|
||||
return outputs
|
||||
|
||||
@@ -86,17 +114,31 @@ def align_dataset(
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
r"""
|
||||
Aligned dataset:
|
||||
prompt: [{"role": "user", "content": "..."}]
|
||||
response: [{"role": "assistant", "content": "..."}]
|
||||
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
||||
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
||||
system: "..."
|
||||
tools: "..."
|
||||
tools: "...",
|
||||
images: [],
|
||||
"""
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr)
|
||||
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
|
||||
else:
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr)
|
||||
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
|
||||
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
features = Features.from_dict(
|
||||
{
|
||||
"prompt": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"response": [
|
||||
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
||||
],
|
||||
"system": {"dtype": "string", "_type": "Value"},
|
||||
"tools": {"dtype": "string", "_type": "Value"},
|
||||
"images": [{"_type": "Image"}],
|
||||
}
|
||||
)
|
||||
kwargs = {}
|
||||
if not data_args.streaming:
|
||||
kwargs = dict(
|
||||
@@ -105,4 +147,10 @@ def align_dataset(
|
||||
desc="Converting format of dataset",
|
||||
)
|
||||
|
||||
return dataset.map(convert_func, batched=True, remove_columns=column_names, **kwargs)
|
||||
return dataset.map(
|
||||
convert_func,
|
||||
batched=True,
|
||||
remove_columns=column_names,
|
||||
features=features,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@@ -6,12 +6,15 @@ from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
|
||||
r"""
|
||||
Masks out the input ids except for the responses.
|
||||
"""
|
||||
padded_labels = []
|
||||
for feature, (prompt_len, answer_len) in zip(batch, positions):
|
||||
if self.tokenizer.padding_side == "left":
|
||||
@@ -43,12 +46,6 @@ class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
)
|
||||
label_positions.append((prompt_len, answer_len))
|
||||
|
||||
batch = self.tokenizer.pad(
|
||||
concatenated_features,
|
||||
padding=self.padding,
|
||||
max_length=self.max_length,
|
||||
pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
return_tensors=self.return_tensors,
|
||||
)
|
||||
batch = super().__call__(concatenated_features)
|
||||
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
|
||||
return batch
|
||||
@@ -2,7 +2,7 @@ import json
|
||||
import re
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Literal, Sequence, Set, Tuple, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union
|
||||
|
||||
|
||||
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
|
||||
@@ -15,11 +15,11 @@ JSON_FORMAT_PROMPT = (
|
||||
|
||||
TOOL_SYSTEM_PROMPT = (
|
||||
"You have access to the following tools:\n{tool_text}"
|
||||
"Use the following format to answer the question:\n"
|
||||
"Use the following format if using a tool:\n"
|
||||
"```\n"
|
||||
"Action: tool name (one of [{tool_names}]).\n"
|
||||
"Action Input: the input to the tool{format_prompt}.\n"
|
||||
"```\n"
|
||||
"Action: the action to take, should be one of [{tool_names}] if using a tool.\n"
|
||||
"Action Input: the input to the action{format_prompt}.\n"
|
||||
"```"
|
||||
)
|
||||
|
||||
|
||||
@@ -31,12 +31,16 @@ def default_tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
||||
for name, param in tool["parameters"]["properties"].items():
|
||||
required = ", required" if name in tool["parameters"].get("required", []) else ""
|
||||
enum = ", should be one of [{}]".format(", ".join(param["enum"])) if param.get("enum", None) else ""
|
||||
param_text += " - {name} ({type}{required}): {desc}{enum}\n".format(
|
||||
items = (
|
||||
", where each item should be {}".format(param["items"].get("type", "")) if param.get("items") else ""
|
||||
)
|
||||
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
|
||||
name=name,
|
||||
type=param.get("type", ""),
|
||||
required=required,
|
||||
desc=param.get("description", ""),
|
||||
enum=enum,
|
||||
items=items,
|
||||
)
|
||||
|
||||
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
|
||||
@@ -68,11 +72,10 @@ def default_tool_extractor(content: str) -> Union[str, Tuple[str, str]]:
|
||||
@dataclass
|
||||
class Formatter(ABC):
|
||||
slots: SLOTS = field(default_factory=list)
|
||||
tool_format: Literal["default"] = "default"
|
||||
tool_format: Optional[Literal["default"]] = None
|
||||
|
||||
@abstractmethod
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
...
|
||||
def apply(self, **kwargs) -> SLOTS: ...
|
||||
|
||||
def extract(self, content: str) -> Union[str, Tuple[str, str]]:
|
||||
raise NotImplementedError
|
||||
@@ -80,29 +83,61 @@ class Formatter(ABC):
|
||||
|
||||
@dataclass
|
||||
class EmptyFormatter(Formatter):
|
||||
def __post_init__(self):
|
||||
has_placeholder = False
|
||||
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
||||
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
|
||||
has_placeholder = True
|
||||
|
||||
if has_placeholder:
|
||||
raise ValueError("Empty formatter should not contain any placeholder.")
|
||||
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
return self.slots
|
||||
|
||||
|
||||
@dataclass
|
||||
class StringFormatter(Formatter):
|
||||
def __post_init__(self):
|
||||
has_placeholder = False
|
||||
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
||||
if re.search(r"\{\{[a-zA-Z_][a-zA-Z0-9_]*\}\}", slot):
|
||||
has_placeholder = True
|
||||
|
||||
if not has_placeholder:
|
||||
raise ValueError("A placeholder is required in the string formatter.")
|
||||
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
elements = []
|
||||
for slot in self.slots:
|
||||
if isinstance(slot, str):
|
||||
for name, value in kwargs.items():
|
||||
if not isinstance(value, str):
|
||||
raise RuntimeError("Expected a string, got {}".format(value))
|
||||
|
||||
slot = slot.replace("{{" + name + "}}", value, 1)
|
||||
elements.append(slot)
|
||||
elif isinstance(slot, (dict, set)):
|
||||
elements.append(slot)
|
||||
else:
|
||||
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
||||
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
||||
|
||||
return elements
|
||||
|
||||
|
||||
@dataclass
|
||||
class FunctionFormatter(Formatter):
|
||||
def __post_init__(self):
|
||||
has_name, has_args = False, False
|
||||
for slot in filter(lambda s: isinstance(s, str), self.slots):
|
||||
if "{{name}}" in slot:
|
||||
has_name = True
|
||||
if "{{arguments}}" in slot:
|
||||
has_args = True
|
||||
|
||||
if not has_name or not has_args:
|
||||
raise ValueError("Name and arguments placeholders are required in the function formatter.")
|
||||
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
content = kwargs.pop("content")
|
||||
try:
|
||||
@@ -120,13 +155,17 @@ class FunctionFormatter(Formatter):
|
||||
elif isinstance(slot, (dict, set)):
|
||||
elements.append(slot)
|
||||
else:
|
||||
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
||||
raise RuntimeError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
|
||||
|
||||
return elements
|
||||
|
||||
|
||||
@dataclass
|
||||
class ToolFormatter(Formatter):
|
||||
def __post_init__(self):
|
||||
if self.tool_format is None:
|
||||
raise ValueError("Tool format was not found.")
|
||||
|
||||
def apply(self, **kwargs) -> SLOTS:
|
||||
content = kwargs.pop("content")
|
||||
try:
|
||||
|
||||
@@ -1,21 +1,22 @@
|
||||
import inspect
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Literal, Union
|
||||
from typing import TYPE_CHECKING, Literal, Optional, Union
|
||||
|
||||
from datasets import concatenate_datasets, interleave_datasets, load_dataset, load_from_disk
|
||||
from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import has_tokenized_data
|
||||
from .aligner import align_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum
|
||||
from .utils import checksum, merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments, ModelArguments
|
||||
@@ -29,7 +30,8 @@ def load_single_dataset(
|
||||
dataset_attr: "DatasetAttr",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
):
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
logger.info("Loading dataset {}...".format(dataset_attr))
|
||||
data_path, data_name, data_dir, data_files = None, None, None, None
|
||||
if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
|
||||
data_path = dataset_attr.dataset_name
|
||||
@@ -43,7 +45,7 @@ def load_single_dataset(
|
||||
|
||||
elif dataset_attr.load_from == "file":
|
||||
data_files = []
|
||||
local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
|
||||
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
|
||||
if os.path.isdir(local_path): # is directory
|
||||
for file_name in os.listdir(local_path):
|
||||
data_files.append(os.path.join(local_path, file_name))
|
||||
@@ -60,7 +62,7 @@ def load_single_dataset(
|
||||
if data_path is None:
|
||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||
|
||||
checksum(data_files, dataset_attr.dataset_sha1)
|
||||
checksum(data_files, dataset_attr.file_sha1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -79,7 +81,9 @@ def load_single_dataset(
|
||||
cache_dir=cache_dir,
|
||||
token=model_args.ms_hub_token,
|
||||
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||
).to_hf_dataset()
|
||||
)
|
||||
if isinstance(dataset, MsDataset):
|
||||
dataset = dataset.to_hf_dataset()
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
else:
|
||||
@@ -110,63 +114,43 @@ def load_single_dataset(
|
||||
return align_dataset(dataset, dataset_attr, data_args)
|
||||
|
||||
|
||||
def merge_dataset(
|
||||
all_datasets: List[Union["Dataset", "IterableDataset"]],
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
if len(all_datasets) == 1:
|
||||
return all_datasets[0]
|
||||
elif data_args.mix_strategy == "concat":
|
||||
if data_args.streaming:
|
||||
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
|
||||
return concatenate_datasets(all_datasets)
|
||||
elif data_args.mix_strategy.startswith("interleave"):
|
||||
if not data_args.streaming:
|
||||
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
return interleave_datasets(
|
||||
datasets=all_datasets,
|
||||
probabilities=data_args.interleave_probs,
|
||||
seed=training_args.seed,
|
||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown mixing strategy.")
|
||||
|
||||
|
||||
def get_dataset(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
# split: Optional[str] = "train", # TODO: add split
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"] = None,
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
template = get_template_and_fix_tokenizer(data_args.template, tokenizer)
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
if data_args.train_on_prompt and template.efficient_eos:
|
||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||
|
||||
# Load from cache
|
||||
if data_args.cache_path is not None:
|
||||
if os.path.exists(data_args.cache_path):
|
||||
# Load tokenized dataset
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.cache_path)
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
if data_args.streaming:
|
||||
dataset = dataset.to_iterable_dataset()
|
||||
return dataset
|
||||
|
||||
if data_args.streaming:
|
||||
raise ValueError("Turn off dataset streaming to save cache files.")
|
||||
raise ValueError("Turn off `streaming` when saving dataset to disk.")
|
||||
|
||||
with training_args.main_process_first(desc="load dataset"):
|
||||
all_datasets = []
|
||||
for dataset_attr in get_dataset_list(data_args): # TODO: add split
|
||||
for dataset_attr in get_dataset_list(data_args):
|
||||
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
|
||||
raise ValueError("The dataset is not applicable in the current training stage.")
|
||||
|
||||
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
|
||||
dataset = merge_dataset(all_datasets, data_args, training_args)
|
||||
|
||||
with training_args.main_process_first(desc="pre-process dataset"):
|
||||
preprocess_func, print_function = get_preprocess_and_print_func(
|
||||
tokenizer, template, data_args, training_args, stage
|
||||
data_args, training_args, stage, template, tokenizer, processor
|
||||
)
|
||||
column_names = list(next(iter(dataset)).keys())
|
||||
kwargs = {}
|
||||
@@ -179,15 +163,18 @@ def get_dataset(
|
||||
|
||||
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
||||
|
||||
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
|
||||
if data_args.tokenized_path is not None:
|
||||
if training_args.should_save:
|
||||
dataset.save_to_disk(data_args.cache_path)
|
||||
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
|
||||
dataset.save_to_disk(data_args.tokenized_path)
|
||||
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
||||
logger.info("Please restart the training with `--tokenized_path {}`.".format(data_args.tokenized_path))
|
||||
|
||||
exit(0)
|
||||
|
||||
if training_args.should_log:
|
||||
try:
|
||||
print_function(next(iter(dataset)))
|
||||
except StopIteration:
|
||||
raise RuntimeError("Empty dataset!")
|
||||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
|
||||
return dataset
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, List, Literal, Optional
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional
|
||||
|
||||
from ..extras.constants import DATA_CONFIG
|
||||
from ..extras.misc import use_modelscope
|
||||
@@ -13,42 +13,60 @@ if TYPE_CHECKING:
|
||||
|
||||
@dataclass
|
||||
class DatasetAttr:
|
||||
r"""
|
||||
Dataset attributes.
|
||||
"""
|
||||
|
||||
""" basic configs """
|
||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||
dataset_name: Optional[str] = None
|
||||
dataset_sha1: Optional[str] = None
|
||||
dataset_name: str
|
||||
""" extra configs """
|
||||
file_sha1: Optional[str] = None
|
||||
subset: Optional[str] = None
|
||||
folder: Optional[str] = None
|
||||
ranking: Optional[bool] = False
|
||||
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca"
|
||||
|
||||
ranking: bool = False
|
||||
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
|
||||
""" columns """
|
||||
system: Optional[str] = None
|
||||
|
||||
images: Optional[str] = None
|
||||
""" columns for the alpaca format """
|
||||
prompt: Optional[str] = "instruction"
|
||||
query: Optional[str] = "input"
|
||||
response: Optional[str] = "output"
|
||||
history: Optional[str] = None
|
||||
|
||||
""" columns for the sharegpt format """
|
||||
messages: Optional[str] = "conversations"
|
||||
tools: Optional[str] = None
|
||||
|
||||
""" tags for the sharegpt format """
|
||||
role_tag: Optional[str] = "from"
|
||||
content_tag: Optional[str] = "value"
|
||||
user_tag: Optional[str] = "human"
|
||||
assistant_tag: Optional[str] = "gpt"
|
||||
observation_tag: Optional[str] = "observation"
|
||||
function_tag: Optional[str] = "function_call"
|
||||
system_tag: Optional[str] = "system"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return self.dataset_name
|
||||
|
||||
def set_attr(self, key: str, obj: Dict[str, Any], default: Optional[Any] = None) -> None:
|
||||
setattr(self, key, obj.get(key, default))
|
||||
|
||||
|
||||
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
|
||||
if data_args.dataset is not None:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")]
|
||||
else:
|
||||
dataset_names = []
|
||||
|
||||
if data_args.dataset_dir == "ONLINE":
|
||||
dataset_info = None
|
||||
else:
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if data_args.dataset is not None:
|
||||
if len(dataset_names) != 0:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
@@ -59,6 +77,12 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
|
||||
dataset_list: List[DatasetAttr] = []
|
||||
for name in dataset_names:
|
||||
if dataset_info is None:
|
||||
load_from = "ms_hub" if use_modelscope() else "hf_hub"
|
||||
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
||||
dataset_list.append(dataset_attr)
|
||||
continue
|
||||
|
||||
if name not in dataset_info:
|
||||
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
||||
|
||||
@@ -73,30 +97,36 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
elif "script_url" in dataset_info[name]:
|
||||
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
|
||||
else:
|
||||
dataset_attr = DatasetAttr(
|
||||
"file",
|
||||
dataset_name=dataset_info[name]["file_name"],
|
||||
dataset_sha1=dataset_info[name].get("file_sha1", None),
|
||||
)
|
||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||
|
||||
dataset_attr.subset = dataset_info[name].get("subset", None)
|
||||
dataset_attr.folder = dataset_info[name].get("folder", None)
|
||||
dataset_attr.ranking = dataset_info[name].get("ranking", False)
|
||||
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca")
|
||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
||||
dataset_attr.set_attr("subset", dataset_info[name])
|
||||
dataset_attr.set_attr("folder", dataset_info[name])
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
|
||||
|
||||
if "columns" in dataset_info[name]:
|
||||
column_names = ["system", "images"]
|
||||
if dataset_attr.formatting == "alpaca":
|
||||
column_names = ["prompt", "query", "response", "history"]
|
||||
column_names.extend(["prompt", "query", "response", "history"])
|
||||
else:
|
||||
column_names = ["messages", "tools"]
|
||||
column_names.extend(["messages", "tools"])
|
||||
|
||||
column_names += ["system"]
|
||||
for column_name in column_names:
|
||||
setattr(dataset_attr, column_name, dataset_info[name]["columns"].get(column_name, None))
|
||||
dataset_attr.set_attr(column_name, dataset_info[name]["columns"])
|
||||
|
||||
if dataset_attr.formatting == "sharegpt" and "tags" in dataset_info[name]:
|
||||
for tag in ["role_tag", "content_tag", "user_tag", "assistant_tag", "observation_tag", "function_tag"]:
|
||||
setattr(dataset_attr, tag, dataset_info[name]["tags"].get(tag, None))
|
||||
tag_names = (
|
||||
"role_tag",
|
||||
"content_tag",
|
||||
"user_tag",
|
||||
"assistant_tag",
|
||||
"observation_tag",
|
||||
"function_tag",
|
||||
"system_tag",
|
||||
)
|
||||
for tag in tag_names:
|
||||
dataset_attr.set_attr(tag, dataset_info[name]["tags"])
|
||||
|
||||
dataset_list.append(dataset_attr)
|
||||
|
||||
|
||||
@@ -1,13 +1,22 @@
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple
|
||||
|
||||
from ..extras.constants import IGNORE_INDEX
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_pillow_available
|
||||
from .utils import Role
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from numpy.typing import NDArray
|
||||
from PIL.Image import Image as ImageObject
|
||||
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments
|
||||
@@ -17,48 +26,72 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _preprocess_visual_inputs(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
||||
# process visual inputs (currently only supports a single image)
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||
return image_processor(image, return_tensors="pt")["pixel_values"][0]
|
||||
|
||||
|
||||
def preprocess_pretrain_dataset(
|
||||
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...`
|
||||
text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))]
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
for i in range(len(tokenized_examples["input_ids"])):
|
||||
tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id]
|
||||
tokenized_examples["attention_mask"][i] += [1]
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
|
||||
|
||||
if not data_args.packing:
|
||||
if data_args.template == "gemma":
|
||||
text_examples = [tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
|
||||
else:
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.cutoff_len
|
||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# split by chunks of cutoff_len
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if data_args.template == "gemma":
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
preprocess_visual_inputs = partial(_preprocess_visual_inputs, processor=processor)
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
continue
|
||||
|
||||
if processor is not None:
|
||||
examples["prompt"][i][0]["content"] = "<image>" + examples["prompt"][i][0]["content"]
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = [], []
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(
|
||||
template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
@@ -78,14 +111,16 @@ def preprocess_supervised_dataset(
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(preprocess_visual_inputs(examples["images"][i]))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_packed_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
@@ -93,16 +128,16 @@ def preprocess_packed_supervised_dataset(
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
input_ids, labels = [], []
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
continue
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(
|
||||
template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i])
|
||||
for source_ids, target_ids in template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i]
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
elif len(input_ids) != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
@@ -120,6 +155,7 @@ def preprocess_packed_supervised_dataset(
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# split by chunks of cutoff_len
|
||||
for i in range(0, total_length, block_size):
|
||||
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
|
||||
model_inputs["input_ids"].append(input_ids[i : i + block_size])
|
||||
model_inputs["attention_mask"].append([1] * block_size)
|
||||
model_inputs["labels"].append(labels[i : i + block_size])
|
||||
@@ -129,20 +165,36 @@ def preprocess_packed_supervised_dataset(
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
preprocess_visual_inputs = partial(_preprocess_visual_inputs, processor=processor)
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
|
||||
if len(examples["prompt"][i]) % 2 != 1:
|
||||
continue
|
||||
|
||||
if processor is not None:
|
||||
examples["prompt"][i][0]["content"] = "<image>" + examples["prompt"][i][0]["content"]
|
||||
|
||||
if len(examples["response"][i]) == 1:
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
else:
|
||||
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
@@ -151,30 +203,49 @@ def preprocess_unsupervised_dataset(
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(preprocess_visual_inputs(examples["images"][i]))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_pairwise_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
||||
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
preprocess_visual_inputs = partial(_preprocess_visual_inputs, processor=processor)
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) < 2:
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
continue
|
||||
|
||||
if processor is not None:
|
||||
examples["prompt"][i][0]["content"] = "<image>" + examples["prompt"][i][0]["content"]
|
||||
|
||||
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
|
||||
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
|
||||
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||
tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
tokenizer,
|
||||
chosen_messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
_, rejected_ids = template.encode_oneturn(
|
||||
tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
|
||||
tokenizer,
|
||||
rejected_messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
@@ -184,6 +255,8 @@ def preprocess_pairwise_dataset(
|
||||
model_inputs["prompt_ids"].append(prompt_ids)
|
||||
model_inputs["chosen_ids"].append(chosen_ids)
|
||||
model_inputs["rejected_ids"].append(rejected_ids)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(preprocess_visual_inputs(examples["images"][i]))
|
||||
|
||||
return model_inputs
|
||||
|
||||
@@ -214,34 +287,54 @@ def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer:
|
||||
|
||||
|
||||
def get_preprocess_and_print_func(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
template: "Template",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Tuple[Callable, Callable]:
|
||||
if stage == "pt":
|
||||
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
|
||||
preprocess_func = partial(
|
||||
preprocess_pretrain_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "sft" and not training_args.predict_with_generate:
|
||||
if data_args.sft_packing:
|
||||
if data_args.packing:
|
||||
preprocess_func = partial(
|
||||
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_packed_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
data_args=data_args,
|
||||
)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_supervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "rm":
|
||||
preprocess_func = partial(
|
||||
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_pairwise_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_unsupervised_dataset,
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ from .utils import Role, infer_max_len
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
from .formatter import Formatter
|
||||
from .formatter import SLOTS, Formatter
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -36,8 +36,8 @@ class Template:
|
||||
messages: List[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
cutoff_len: Optional[int] = 1_000_000,
|
||||
reserved_label_len: Optional[int] = 16,
|
||||
cutoff_len: int = 1_000_000,
|
||||
reserved_label_len: int = 1,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
r"""
|
||||
Returns a single pair of token ids representing prompt and response respectively.
|
||||
@@ -56,8 +56,8 @@ class Template:
|
||||
messages: List[Dict[str, str]],
|
||||
system: Optional[str] = None,
|
||||
tools: Optional[str] = None,
|
||||
cutoff_len: Optional[int] = 1_000_000,
|
||||
reserved_label_len: Optional[int] = 16,
|
||||
cutoff_len: int = 1_000_000,
|
||||
reserved_label_len: int = 1,
|
||||
) -> Sequence[Tuple[List[int], List[int]]]:
|
||||
r"""
|
||||
Returns multiple pairs of token ids representing prompts and responses respectively.
|
||||
@@ -88,16 +88,16 @@ class Template:
|
||||
elif i > 0 and i % 2 == 0:
|
||||
elements += self.format_separator.apply()
|
||||
|
||||
if message["role"] == Role.USER:
|
||||
if message["role"] == Role.USER.value:
|
||||
elements += self.format_user.apply(content=message["content"], idx=str(i // 2))
|
||||
elif message["role"] == Role.ASSISTANT:
|
||||
elif message["role"] == Role.ASSISTANT.value:
|
||||
elements += self.format_assistant.apply(content=message["content"])
|
||||
elif message["role"] == Role.OBSERVATION:
|
||||
elif message["role"] == Role.OBSERVATION.value:
|
||||
elements += self.format_observation.apply(content=message["content"])
|
||||
elif message["role"] == Role.FUNCTION:
|
||||
elif message["role"] == Role.FUNCTION.value:
|
||||
elements += self.format_function.apply(content=message["content"])
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
|
||||
|
||||
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
|
||||
|
||||
@@ -117,9 +117,9 @@ class Template:
|
||||
elif isinstance(elem, dict):
|
||||
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))]
|
||||
elif isinstance(elem, set):
|
||||
if "bos_token" in elem and tokenizer.bos_token_id:
|
||||
if "bos_token" in elem and tokenizer.bos_token_id is not None:
|
||||
token_ids += [tokenizer.bos_token_id]
|
||||
elif "eos_token" in elem and tokenizer.eos_token_id:
|
||||
elif "eos_token" in elem and tokenizer.eos_token_id is not None:
|
||||
token_ids += [tokenizer.eos_token_id]
|
||||
else:
|
||||
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem)))
|
||||
@@ -144,10 +144,10 @@ class Template:
|
||||
max_len=(cutoff_len - total_length),
|
||||
reserved_label_len=reserved_label_len,
|
||||
)
|
||||
encoded_messages[i] = encoded_messages[i][:max_source_len]
|
||||
encoded_messages[i + 1] = encoded_messages[i + 1][:max_target_len]
|
||||
total_length += len(encoded_messages[i]) + len(encoded_messages[i + 1])
|
||||
encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1]))
|
||||
source_ids = encoded_messages[i][:max_source_len]
|
||||
target_ids = encoded_messages[i + 1][:max_target_len]
|
||||
total_length += len(source_ids) + len(target_ids)
|
||||
encoded_pairs.append((source_ids, target_ids))
|
||||
|
||||
return encoded_pairs
|
||||
|
||||
@@ -179,16 +179,16 @@ class Llama2Template(Template):
|
||||
elif i > 0 and i % 2 == 0:
|
||||
elements += self.format_separator.apply()
|
||||
|
||||
if message["role"] == Role.USER:
|
||||
if message["role"] == Role.USER.value:
|
||||
elements += self.format_user.apply(content=system_text + message["content"])
|
||||
elif message["role"] == Role.ASSISTANT:
|
||||
elif message["role"] == Role.ASSISTANT.value:
|
||||
elements += self.format_assistant.apply(content=message["content"])
|
||||
elif message["role"] == Role.OBSERVATION:
|
||||
elif message["role"] == Role.OBSERVATION.value:
|
||||
elements += self.format_observation.apply(content=message["content"])
|
||||
elif message["role"] == Role.FUNCTION:
|
||||
elif message["role"] == Role.FUNCTION.value:
|
||||
elements += self.format_function.apply(content=message["content"])
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError("Unexpected role: {}".format(message["role"]))
|
||||
|
||||
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))
|
||||
|
||||
@@ -198,7 +198,7 @@ class Llama2Template(Template):
|
||||
templates: Dict[str, Template] = {}
|
||||
|
||||
|
||||
def register_template(
|
||||
def _register_template(
|
||||
name: str,
|
||||
format_user: Optional["Formatter"] = None,
|
||||
format_assistant: Optional["Formatter"] = None,
|
||||
@@ -207,18 +207,44 @@ def register_template(
|
||||
format_observation: Optional["Formatter"] = None,
|
||||
format_tools: Optional["Formatter"] = None,
|
||||
format_separator: Optional["Formatter"] = None,
|
||||
default_system: Optional[str] = "",
|
||||
stop_words: Optional[List[str]] = [],
|
||||
efficient_eos: Optional[bool] = False,
|
||||
replace_eos: Optional[bool] = False,
|
||||
force_system: Optional[bool] = False,
|
||||
default_system: str = "",
|
||||
stop_words: List[str] = [],
|
||||
efficient_eos: bool = False,
|
||||
replace_eos: bool = False,
|
||||
force_system: bool = False,
|
||||
) -> None:
|
||||
r"""
|
||||
Registers a chat template.
|
||||
|
||||
To add the following chat template:
|
||||
```
|
||||
[HUMAN]:
|
||||
user prompt here
|
||||
[AI]:
|
||||
model response here
|
||||
|
||||
[HUMAN]:
|
||||
user prompt here
|
||||
[AI]:
|
||||
model response here
|
||||
```
|
||||
|
||||
The corresponding code should be:
|
||||
```
|
||||
_register_template(
|
||||
name="custom",
|
||||
format_user=StringFormatter(slots=["[HUMAN]:\n{{content}}\n[AI]:\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
```
|
||||
"""
|
||||
eos_slots = [] if efficient_eos else [{"eos_token"}]
|
||||
template_class = Llama2Template if name.startswith("llama2") else Template
|
||||
default_user_formatter = StringFormatter(slots=["{{content}}"])
|
||||
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots)
|
||||
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots)
|
||||
default_tool_formatter = ToolFormatter(slots="default")
|
||||
default_tool_formatter = ToolFormatter(tool_format="default")
|
||||
default_separator_formatter = EmptyFormatter()
|
||||
templates[name] = template_class(
|
||||
format_user=format_user or default_user_formatter,
|
||||
@@ -236,50 +262,136 @@ def register_template(
|
||||
)
|
||||
|
||||
|
||||
def get_template_and_fix_tokenizer(name: str, tokenizer: "PreTrainedTokenizer") -> Template:
|
||||
if tokenizer.eos_token_id is None:
|
||||
tokenizer.eos_token = "<|endoftext|>"
|
||||
def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None:
|
||||
is_added = tokenizer.eos_token_id is None
|
||||
num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token})
|
||||
|
||||
if is_added:
|
||||
logger.info("Add eos token: {}".format(tokenizer.eos_token))
|
||||
else:
|
||||
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
|
||||
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
logger.info("Add pad token: {}".format(tokenizer.pad_token))
|
||||
if num_added_tokens > 0:
|
||||
logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
|
||||
|
||||
if name is None: # for pre-training
|
||||
return None
|
||||
|
||||
def _jinja_escape(content: str) -> str:
|
||||
return content.replace("\n", r"\n").replace("'", r"\'")
|
||||
|
||||
|
||||
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
|
||||
slot_items = []
|
||||
for slot in slots:
|
||||
if isinstance(slot, str):
|
||||
slot_pieces = slot.split("{{content}}")
|
||||
if slot_pieces[0]:
|
||||
slot_items.append("'" + _jinja_escape(slot_pieces[0]) + "'")
|
||||
if len(slot_pieces) > 1:
|
||||
slot_items.append(placeholder)
|
||||
if slot_pieces[1]:
|
||||
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'")
|
||||
elif isinstance(slot, set):
|
||||
if "bos_token" in slot:
|
||||
slot_items.append("'" + tokenizer.bos_token + "'")
|
||||
elif "eos_token" in slot: # do not use {{ eos_token }} since it may be replaced
|
||||
slot_items.append("'" + tokenizer.eos_token + "'")
|
||||
elif isinstance(slot, dict):
|
||||
raise ValueError("Dict is not supported.")
|
||||
|
||||
return " + ".join(slot_items)
|
||||
|
||||
|
||||
def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str:
|
||||
jinja_template = ""
|
||||
|
||||
if template.default_system:
|
||||
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}"
|
||||
|
||||
jinja_template += (
|
||||
"{% if messages[0]['role'] == 'system' %}" "{% set system_message = messages[0]['content'] %}" "{% endif %}"
|
||||
)
|
||||
|
||||
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message")
|
||||
if isinstance(template, Llama2Template):
|
||||
pass
|
||||
elif template.force_system:
|
||||
jinja_template += "{{ " + system_message + " }}"
|
||||
else:
|
||||
jinja_template += "{% if system_message is defined %}{{ " + system_message + " }}{% endif %}"
|
||||
|
||||
jinja_template += "{% for message in messages %}"
|
||||
jinja_template += "{% set content = message['content'] %}"
|
||||
if isinstance(template, Llama2Template):
|
||||
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}"
|
||||
jinja_template += "{% set content = " + system_message + " + message['content'] %}"
|
||||
jinja_template += "{% endif %}"
|
||||
jinja_template += "{% if message['role'] == 'user' %}"
|
||||
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer)
|
||||
jinja_template += "{{ " + user_message + " }}"
|
||||
jinja_template += "{% elif message['role'] == 'assistant' %}"
|
||||
assistant_message = _convert_slots_to_jinja(
|
||||
template.format_assistant.apply() + template.format_separator.apply(), tokenizer
|
||||
)
|
||||
jinja_template += "{{ " + assistant_message + " }}"
|
||||
jinja_template += "{% endif %}"
|
||||
jinja_template += "{% endfor %}"
|
||||
return jinja_template
|
||||
|
||||
|
||||
def get_template_and_fix_tokenizer(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
name: Optional[str] = None,
|
||||
) -> Template:
|
||||
if name is None:
|
||||
template = templates["empty"] # placeholder
|
||||
else:
|
||||
template = templates.get(name, None)
|
||||
assert template is not None, "Template {} does not exist.".format(name)
|
||||
if template is None:
|
||||
raise ValueError("Template {} does not exist.".format(name))
|
||||
|
||||
stop_words = template.stop_words
|
||||
if template.replace_eos:
|
||||
if not stop_words:
|
||||
raise ValueError("Stop words are required to replace the EOS token.")
|
||||
|
||||
tokenizer.eos_token = stop_words[0]
|
||||
_add_or_replace_eos_token(tokenizer, eos_token=stop_words[0])
|
||||
stop_words = stop_words[1:]
|
||||
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
|
||||
|
||||
if tokenizer.eos_token_id is None:
|
||||
_add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>")
|
||||
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
logger.info("Add pad token: {}".format(tokenizer.pad_token))
|
||||
|
||||
if stop_words:
|
||||
tokenizer.add_special_tokens(
|
||||
num_added_tokens = tokenizer.add_special_tokens(
|
||||
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
|
||||
)
|
||||
logger.info("Add {} to stop words.".format(",".join(stop_words)))
|
||||
if num_added_tokens > 0:
|
||||
logger.warning("New tokens have been added, make sure `resize_vocab` is True.")
|
||||
|
||||
try:
|
||||
tokenizer.chat_template = _get_jinja_template(template, tokenizer)
|
||||
except ValueError:
|
||||
logger.info("Cannot add this chat template to tokenizer.")
|
||||
|
||||
return template
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="alpaca",
|
||||
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
default_system=(
|
||||
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request."
|
||||
"Below is an instruction that describes a task. "
|
||||
"Write a response that appropriately completes the request.\n\n"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="aquila",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]),
|
||||
format_separator=EmptyFormatter(slots=["###"]),
|
||||
@@ -292,21 +404,30 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="atom",
|
||||
format_user=StringFormatter(
|
||||
slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"]
|
||||
),
|
||||
format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="baichuan",
|
||||
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="baichuan2",
|
||||
format_user=StringFormatter(slots=[{"token": "<reserved_106>"}, "{{content}}", {"token": "<reserved_107>"}]),
|
||||
format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="belle",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
@@ -315,13 +436,25 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="bluelm",
|
||||
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="breeze",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
default_system=(
|
||||
"You are a helpful AI assistant built by MediaTek Research. "
|
||||
"The user you are helping speaks Traditional Chinese and comes from Taiwan."
|
||||
),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="chatglm2",
|
||||
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
|
||||
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
|
||||
@@ -331,15 +464,32 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="chatglm3",
|
||||
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
|
||||
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
|
||||
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
|
||||
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]
|
||||
),
|
||||
stop_words=["<|user|>", "<|observation|>"],
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="chatglm3_system",
|
||||
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
|
||||
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"]
|
||||
),
|
||||
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
|
||||
format_observation=StringFormatter(slots=[{"token": "<|observation|>"}, "\n", "{{content}}"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]
|
||||
),
|
||||
default_system=(
|
||||
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
|
||||
"Follow the user's instructions carefully. Respond using markdown."
|
||||
@@ -349,14 +499,86 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="chatml",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="chatml_de",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
|
||||
stop_words=["<|im_end|>", "<|im_start|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="codegeex2",
|
||||
format_system=StringFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="cohere",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"
|
||||
"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=EmptyFormatter(slots=[{"bos_token"}]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="cpm",
|
||||
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="dbrx",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system=(
|
||||
"You are DBRX, created by Databricks. You were last updated in December 2023. "
|
||||
"You answer questions based on information available up to that point.\n"
|
||||
"YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough "
|
||||
"responses to more complex and open-ended questions.\nYou assist with various tasks, "
|
||||
"from writing to coding (using markdown for code blocks — remember to use ``` with "
|
||||
"code, JSON, and tables).\n(You do not have real-time data access or code execution "
|
||||
"capabilities. You avoid stereotyping and provide balanced perspectives on "
|
||||
"controversial topics. You do not provide song lyrics, poems, or news articles and "
|
||||
"do not divulge details of your training data.)\nThis is your system prompt, "
|
||||
"guiding your responses. Do not reference it, just respond to the user. If you find "
|
||||
"yourself talking about this message, stop. You should be responding appropriately "
|
||||
"and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION "
|
||||
"ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY."
|
||||
),
|
||||
stop_words=["<|im_end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="deepseek",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
@@ -364,10 +586,11 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="deepseekcoder",
|
||||
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n", {"token": "<|EOT|>"}, "\n"]),
|
||||
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]),
|
||||
format_assistant=StringFormatter(slots=["\n", "{{content}}"]),
|
||||
format_separator=EmptyFormatter(slots=["\n<|EOT|>\n"]),
|
||||
default_system=(
|
||||
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
|
||||
"developed by Deepseek Company, and you only answer questions related to computer science. "
|
||||
@@ -379,14 +602,22 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="default",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant: "]),
|
||||
format_system=StringFormatter(slots=["{{content}}\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="empty",
|
||||
format_user=StringFormatter(slots=["{{content}}"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}"]),
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="falcon",
|
||||
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
@@ -394,7 +625,27 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="fewshot",
|
||||
format_separator=EmptyFormatter(slots=["\n\n"]),
|
||||
efficient_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="gemma",
|
||||
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
format_observation=StringFormatter(
|
||||
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]
|
||||
),
|
||||
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]),
|
||||
efficient_eos=True,
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="intern",
|
||||
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
|
||||
format_separator=EmptyFormatter(slots=[{"token": "<eoa>"}, "\n"]),
|
||||
@@ -403,7 +654,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="intern2",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
@@ -420,7 +671,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="llama2",
|
||||
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
|
||||
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
|
||||
@@ -437,7 +688,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="llama2_zh",
|
||||
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
|
||||
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
|
||||
@@ -445,27 +696,84 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="llama3",
|
||||
format_user=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
format_system=StringFormatter(
|
||||
slots=[{"bos_token"}, "<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
|
||||
),
|
||||
format_observation=StringFormatter(
|
||||
slots=[
|
||||
(
|
||||
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>"
|
||||
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
||||
)
|
||||
]
|
||||
),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|eot_id|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="mistral",
|
||||
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]),
|
||||
format_user=StringFormatter(slots=[" [INST] {{content}} [/INST]"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="olmo",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="openchat",
|
||||
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}"]),
|
||||
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="orion",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
|
||||
force_system=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="phi",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]),
|
||||
format_system=StringFormatter(slots=[{"bos_token"}, "<|system|>\n{{content}}<|end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|function_output|>\n{{content}}<|end|>\n<|assistant|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful AI assistant.",
|
||||
stop_words=["<|end|>"],
|
||||
replace_eos=True,
|
||||
)
|
||||
|
||||
|
||||
_register_template(
|
||||
name="qwen",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
||||
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
default_system="You are a helpful assistant.",
|
||||
stop_words=["<|im_end|>"],
|
||||
@@ -473,7 +781,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="solar",
|
||||
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]),
|
||||
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]),
|
||||
@@ -481,12 +789,10 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="starchat",
|
||||
format_user=StringFormatter(
|
||||
slots=[{"token": "<|user|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"}]
|
||||
),
|
||||
format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n"]),
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]),
|
||||
format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
stop_words=["<|end|>"],
|
||||
replace_eos=True,
|
||||
@@ -494,10 +800,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(name="vanilla")
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="vicuna",
|
||||
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
||||
default_system=(
|
||||
@@ -507,7 +810,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="xuanyuan",
|
||||
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),
|
||||
default_system=(
|
||||
@@ -518,10 +821,13 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(name="xverse", format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]))
|
||||
_register_template(
|
||||
name="xverse",
|
||||
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]),
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="yayi",
|
||||
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]),
|
||||
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]),
|
||||
@@ -541,7 +847,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="yi",
|
||||
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
@@ -550,7 +856,7 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="yuan",
|
||||
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
@@ -559,16 +865,17 @@ register_template(
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="zephyr",
|
||||
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>"]),
|
||||
format_assistant=StringFormatter(slots=["\n{{content}}", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]),
|
||||
default_system="You are a friendly chatbot who always responds in the style of a pirate",
|
||||
default_system="You are Zephyr, a helpful assistant.",
|
||||
)
|
||||
|
||||
|
||||
register_template(
|
||||
_register_template(
|
||||
name="ziya",
|
||||
format_user=StringFormatter(slots=[{"token": "<human>"}, ":{{content}}\n", {"token": "<bot>"}, ":"]),
|
||||
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]),
|
||||
format_separator=EmptyFormatter(slots=["\n"]),
|
||||
)
|
||||
|
||||
@@ -2,12 +2,14 @@ import hashlib
|
||||
from enum import Enum, unique
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
from datasets import concatenate_datasets, interleave_datasets
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import TrainingArguments
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llmtuner.hparams import DataArguments
|
||||
|
||||
@@ -19,8 +21,9 @@ logger = get_logger(__name__)
|
||||
class Role(str, Enum):
|
||||
USER = "user"
|
||||
ASSISTANT = "assistant"
|
||||
OBSERVATION = "observation"
|
||||
SYSTEM = "system"
|
||||
FUNCTION = "function"
|
||||
OBSERVATION = "observation"
|
||||
|
||||
|
||||
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
@@ -41,19 +44,43 @@ def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
|
||||
max_target_len = int(max_len * (target_len / (source_len + target_len)))
|
||||
max_target_len = max(max_target_len, reserved_label_len)
|
||||
max_source_len = max_len - max_target_len
|
||||
max_source_len = max_len - min(max_target_len, target_len)
|
||||
return max_source_len, max_target_len
|
||||
|
||||
|
||||
def merge_dataset(
|
||||
all_datasets: List[Union["Dataset", "IterableDataset"]],
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
if len(all_datasets) == 1:
|
||||
return all_datasets[0]
|
||||
elif data_args.mix_strategy == "concat":
|
||||
if data_args.streaming:
|
||||
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
|
||||
return concatenate_datasets(all_datasets)
|
||||
elif data_args.mix_strategy.startswith("interleave"):
|
||||
if not data_args.streaming:
|
||||
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
return interleave_datasets(
|
||||
datasets=all_datasets,
|
||||
probabilities=data_args.interleave_probs,
|
||||
seed=training_args.seed,
|
||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown mixing strategy.")
|
||||
|
||||
|
||||
def split_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments"
|
||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments"
|
||||
) -> Dict[str, "Dataset"]:
|
||||
if training_args.do_train:
|
||||
if data_args.val_size > 1e-6: # Split the dataset
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
return {"train_dataset": train_set, "eval_dataset": val_set}
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
|
||||
@@ -14,17 +14,17 @@ from transformers.utils import cached_file
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.constants import CHOICES, SUBJECTS
|
||||
from ..hparams import get_eval_args
|
||||
from ..model import dispatch_model, load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .template import get_eval_template
|
||||
|
||||
|
||||
class Evaluator:
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
|
||||
self.tokenizer = load_tokenizer(self.model_args)["tokenizer"]
|
||||
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
|
||||
self.model = dispatch_model(self.model)
|
||||
self.template = get_template_and_fix_tokenizer(self.data_args.template, self.tokenizer)
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
|
||||
self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
|
||||
self.eval_template = get_eval_template(self.eval_args.lang)
|
||||
self.choice_inputs = [
|
||||
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple
|
||||
from typing import Dict, List, Sequence, Tuple
|
||||
|
||||
from ..data import Role
|
||||
from ..extras.constants import CHOICES
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
|
||||
|
||||
@dataclass
|
||||
class EvalTemplate:
|
||||
system: str
|
||||
@@ -16,22 +12,29 @@ class EvalTemplate:
|
||||
answer: str
|
||||
prefix: str
|
||||
|
||||
def parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
def _parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
|
||||
r"""
|
||||
input: a dict with keys {"question", "A", "B", "C", "D", "answer"}
|
||||
output: a tuple of (prompt, response)
|
||||
"""
|
||||
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
|
||||
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
|
||||
|
||||
def format_example(
|
||||
self, target_data: Dict[str, str], support_set: "Dataset", subject_name: str
|
||||
self, target_data: Dict[str, str], support_set: Sequence[Dict[str, str]], subject_name: str
|
||||
) -> List[Dict[str, str]]:
|
||||
r"""
|
||||
Converts dataset examples to messages.
|
||||
"""
|
||||
messages = []
|
||||
for k in range(len(support_set)):
|
||||
prompt, response = self.parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(support_set[k])
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
|
||||
prompt, response = self.parse_example(target_data)
|
||||
messages.append({"role": Role.USER, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT, "content": response})
|
||||
prompt, response = self._parse_example(target_data)
|
||||
messages.append({"role": Role.USER.value, "content": prompt})
|
||||
messages.append({"role": Role.ASSISTANT.value, "content": response})
|
||||
messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"]
|
||||
return messages
|
||||
|
||||
@@ -39,7 +42,7 @@ class EvalTemplate:
|
||||
eval_templates: Dict[str, "EvalTemplate"] = {}
|
||||
|
||||
|
||||
def register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
def _register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
|
||||
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
|
||||
|
||||
|
||||
@@ -49,7 +52,7 @@ def get_eval_template(name: str) -> "EvalTemplate":
|
||||
return eval_template
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="en",
|
||||
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
@@ -58,10 +61,10 @@ register_eval_template(
|
||||
)
|
||||
|
||||
|
||||
register_eval_template(
|
||||
_register_eval_template(
|
||||
name="zh",
|
||||
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
|
||||
choice="\n{choice}. {content}",
|
||||
answer="\n答案:",
|
||||
prefix="\n",
|
||||
prefix=" ",
|
||||
)
|
||||
|
||||
@@ -58,6 +58,14 @@ class LogCallback(TrainerCallback):
|
||||
self.in_training = True
|
||||
self.start_time = time.time()
|
||||
self.max_steps = state.max_steps
|
||||
|
||||
if args.save_on_each_node:
|
||||
if not state.is_local_process_zero:
|
||||
return
|
||||
else:
|
||||
if not state.is_world_process_zero:
|
||||
return
|
||||
|
||||
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
|
||||
logger.warning("Previous log file in this folder will be deleted.")
|
||||
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
|
||||
@@ -112,8 +120,12 @@ class LogCallback(TrainerCallback):
|
||||
r"""
|
||||
Event called after logging the last logs.
|
||||
"""
|
||||
if args.save_on_each_node:
|
||||
if not state.is_local_process_zero:
|
||||
return
|
||||
else:
|
||||
if not state.is_world_process_zero:
|
||||
return
|
||||
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
@@ -122,6 +134,7 @@ class LogCallback(TrainerCallback):
|
||||
eval_loss=state.log_history[-1].get("eval_loss", None),
|
||||
predict_loss=state.log_history[-1].get("predict_loss", None),
|
||||
reward=state.log_history[-1].get("reward", None),
|
||||
accuracy=state.log_history[-1].get("rewards/accuracies", None),
|
||||
learning_rate=state.log_history[-1].get("learning_rate", None),
|
||||
epoch=state.log_history[-1].get("epoch", None),
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
|
||||
@@ -11,7 +11,14 @@ DEFAULT_MODULE = defaultdict(str)
|
||||
|
||||
DEFAULT_TEMPLATE = defaultdict(str)
|
||||
|
||||
FILEEXT2TYPE = {"arrow": "arrow", "csv": "csv", "json": "json", "jsonl": "json", "parquet": "parquet", "txt": "text"}
|
||||
FILEEXT2TYPE = {
|
||||
"arrow": "arrow",
|
||||
"csv": "csv",
|
||||
"json": "json",
|
||||
"jsonl": "json",
|
||||
"parquet": "parquet",
|
||||
"txt": "text",
|
||||
}
|
||||
|
||||
IGNORE_INDEX = -100
|
||||
|
||||
@@ -21,6 +28,10 @@ LOG_FILE_NAME = "trainer_log.jsonl"
|
||||
|
||||
METHODS = ["full", "freeze", "lora"]
|
||||
|
||||
MLLM_LIST = ["LLaVA1.5"]
|
||||
|
||||
MOD_SUPPORTED_MODELS = ["bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"]
|
||||
|
||||
PEFT_METHODS = ["lora"]
|
||||
|
||||
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
||||
@@ -32,9 +43,14 @@ TRAINING_STAGES = {
|
||||
"Reward Modeling": "rm",
|
||||
"PPO": "ppo",
|
||||
"DPO": "dpo",
|
||||
"ORPO": "orpo",
|
||||
"Pre-Training": "pt",
|
||||
}
|
||||
|
||||
STAGES_USE_PAIR_DATA = ["rm", "dpo", "orpo"]
|
||||
|
||||
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]
|
||||
|
||||
V_HEAD_WEIGHTS_NAME = "value_head.bin"
|
||||
|
||||
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"
|
||||
@@ -46,7 +62,9 @@ class DownloadSource(str, Enum):
|
||||
|
||||
|
||||
def register_model_group(
|
||||
models: Dict[str, Dict[DownloadSource, str]], module: Optional[str] = None, template: Optional[str] = None
|
||||
models: Dict[str, Dict[DownloadSource, str]],
|
||||
module: Optional[str] = None,
|
||||
template: Optional[str] = None,
|
||||
) -> None:
|
||||
prefix = None
|
||||
for name, path in models.items():
|
||||
@@ -158,6 +176,19 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Breeze-7B": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Base-v1_0",
|
||||
},
|
||||
"Breeze-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Instruct-v1_0",
|
||||
},
|
||||
},
|
||||
template="breeze",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"ChatGLM2-6B-Chat": {
|
||||
@@ -219,22 +250,76 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeekLLM-7B-Base": {
|
||||
"CommandR-35B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-v01",
|
||||
},
|
||||
"CommandR-Plus-104B-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-plus",
|
||||
},
|
||||
"CommandR-35B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01-4bit",
|
||||
DownloadSource.MODELSCOPE: "mirror013/c4ai-command-r-v01-4bit",
|
||||
},
|
||||
"CommandR-Plus-104B-4bit-Chat": {
|
||||
DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus-4bit",
|
||||
},
|
||||
},
|
||||
template="cohere",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DBRX-132B-Base": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-base",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-base",
|
||||
},
|
||||
"DBRX-132B-Chat": {
|
||||
DownloadSource.DEFAULT: "databricks/dbrx-instruct",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-instruct",
|
||||
},
|
||||
},
|
||||
module="Wqkv",
|
||||
template="dbrx",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeek-LLM-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base",
|
||||
},
|
||||
"DeepSeekLLM-67B-Base": {
|
||||
"DeepSeek-LLM-67B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base",
|
||||
},
|
||||
"DeepSeekLLM-7B-Chat": {
|
||||
"DeepSeek-LLM-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat",
|
||||
},
|
||||
"DeepSeekLLM-67B-Chat": {
|
||||
"DeepSeek-LLM-67B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat",
|
||||
},
|
||||
"DeepSeek-Math-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-base",
|
||||
},
|
||||
"DeepSeek-Math-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-instruct",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
|
||||
},
|
||||
"DeepSeek-MoE-16B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
},
|
||||
},
|
||||
template="deepseek",
|
||||
)
|
||||
@@ -246,6 +331,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base",
|
||||
},
|
||||
"DeepSeekCoder-7B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-base-v1.5",
|
||||
},
|
||||
"DeepSeekCoder-33B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base",
|
||||
@@ -254,6 +342,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||
},
|
||||
"DeepSeekCoder-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
|
||||
},
|
||||
"DeepSeekCoder-33B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct",
|
||||
@@ -263,21 +354,6 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"DeepSeekMoE-16B-Base": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
|
||||
},
|
||||
"DeepSeekMoE-16B-Chat": {
|
||||
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
|
||||
},
|
||||
},
|
||||
template="deepseek",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Falcon-7B": {
|
||||
@@ -310,6 +386,46 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Gemma-2B": {
|
||||
DownloadSource.DEFAULT: "google/gemma-2b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b",
|
||||
},
|
||||
"Gemma-7B": {
|
||||
DownloadSource.DEFAULT: "google/gemma-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b-it",
|
||||
},
|
||||
"Gemma-2B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-2b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b",
|
||||
},
|
||||
"Gemma-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/gemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"CodeGemma-2B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-2b",
|
||||
},
|
||||
"CodeGemma-7B": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b",
|
||||
},
|
||||
"CodeGemma-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "google/codegemma-7b-it",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/codegemma-7b-it",
|
||||
},
|
||||
},
|
||||
template="gemma",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"InternLM-7B": {
|
||||
@@ -357,6 +473,16 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Jambda-v0.1": {
|
||||
DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1",
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LingoWhale-8B": {
|
||||
@@ -370,7 +496,10 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaMA-7B": {DownloadSource.DEFAULT: "huggyllama/llama-7b", DownloadSource.MODELSCOPE: "skyline2006/llama-7b"},
|
||||
"LLaMA-7B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-7b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-7b",
|
||||
},
|
||||
"LLaMA-13B": {
|
||||
DownloadSource.DEFAULT: "huggyllama/llama-13b",
|
||||
DownloadSource.MODELSCOPE: "skyline2006/llama-13b",
|
||||
@@ -420,14 +549,54 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B": {
|
||||
"LLaMA3-8B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B",
|
||||
},
|
||||
"LLaMA3-70B": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B",
|
||||
},
|
||||
"LLaMA3-8B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct",
|
||||
},
|
||||
"LLaMA3-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct",
|
||||
},
|
||||
},
|
||||
template="llama3",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"LLaVA1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf",
|
||||
},
|
||||
"LLaVA1.5-13B-Chat": {
|
||||
DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf",
|
||||
},
|
||||
},
|
||||
template="vicuna",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mistral-7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
|
||||
},
|
||||
"Mistral-7B-Chat": {
|
||||
"Mistral-7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
|
||||
},
|
||||
"Mistral-7B-v0.2": {
|
||||
DownloadSource.DEFAULT: "alpindale/Mistral-7B-v0.2-hf",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.2-hf",
|
||||
},
|
||||
"Mistral-7B-v0.2-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
|
||||
@@ -439,24 +608,46 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Mixtral-8x7B": {
|
||||
"Mixtral-8x7B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
|
||||
},
|
||||
"Mixtral-8x7B-Chat": {
|
||||
"Mixtral-8x7B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-v0.1",
|
||||
},
|
||||
"Mixtral-8x22B-v0.1-Chat": {
|
||||
DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
||||
},
|
||||
},
|
||||
template="mistral",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"OLMo-1B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1B-hf",
|
||||
},
|
||||
"OLMo-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-7B-hf",
|
||||
},
|
||||
"OLMo-1.7-7B": {
|
||||
DownloadSource.DEFAULT: "allenai/OLMo-1.7-7B-hf",
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"OpenChat3.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "openchat/openchat_3.5",
|
||||
DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5",
|
||||
DownloadSource.DEFAULT: "openchat/openchat-3.5-0106",
|
||||
DownloadSource.MODELSCOPE: "xcwzxcwz/openchat-3.5-0106",
|
||||
}
|
||||
},
|
||||
template="openchat",
|
||||
@@ -465,23 +656,87 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi-1.5-1.3B": {DownloadSource.DEFAULT: "microsoft/phi-1_5", DownloadSource.MODELSCOPE: "allspace/PHI_1-5"},
|
||||
"Phi-2-2.7B": {DownloadSource.DEFAULT: "microsoft/phi-2", DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2"},
|
||||
"Orion-14B-Base": {
|
||||
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Base",
|
||||
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Base",
|
||||
},
|
||||
"Orion-14B-Chat": {
|
||||
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat",
|
||||
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat",
|
||||
},
|
||||
"Orion-14B-Long-Chat": {
|
||||
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-LongChat",
|
||||
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-LongChat",
|
||||
},
|
||||
"Orion-14B-RAG-Chat": {
|
||||
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-RAG",
|
||||
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-RAG",
|
||||
},
|
||||
"Orion-14B-Plugin-Chat": {
|
||||
DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-Plugin",
|
||||
DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-Plugin",
|
||||
},
|
||||
},
|
||||
template="orion",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Phi-1.5-1.3B": {
|
||||
DownloadSource.DEFAULT: "microsoft/phi-1_5",
|
||||
DownloadSource.MODELSCOPE: "allspace/PHI_1-5",
|
||||
},
|
||||
"Phi-2-2.7B": {
|
||||
DownloadSource.DEFAULT: "microsoft/phi-2",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen-1.8B": {DownloadSource.DEFAULT: "Qwen/Qwen-1_8B", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B"},
|
||||
"Qwen-7B": {DownloadSource.DEFAULT: "Qwen/Qwen-7B", DownloadSource.MODELSCOPE: "qwen/Qwen-7B"},
|
||||
"Qwen-14B": {DownloadSource.DEFAULT: "Qwen/Qwen-14B", DownloadSource.MODELSCOPE: "qwen/Qwen-14B"},
|
||||
"Qwen-72B": {DownloadSource.DEFAULT: "Qwen/Qwen-72B", DownloadSource.MODELSCOPE: "qwen/Qwen-72B"},
|
||||
"Phi3-3.8B-4k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.DEFAULT: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
},
|
||||
"Phi3-3.8B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.DEFAULT: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
},
|
||||
},
|
||||
module="qkv_proj",
|
||||
template="phi",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Qwen-1.8B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B",
|
||||
},
|
||||
"Qwen-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-7B",
|
||||
},
|
||||
"Qwen-14B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-14B",
|
||||
},
|
||||
"Qwen-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-72B",
|
||||
},
|
||||
"Qwen-1.8B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat",
|
||||
},
|
||||
"Qwen-7B-Chat": {DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat"},
|
||||
"Qwen-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat",
|
||||
},
|
||||
"Qwen-14B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat",
|
||||
@@ -530,7 +785,160 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"SOLAR-10.7B": {DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0"},
|
||||
"Qwen1.5-0.5B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B",
|
||||
},
|
||||
"Qwen1.5-1.8B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B",
|
||||
},
|
||||
"Qwen1.5-4B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B",
|
||||
},
|
||||
"Qwen1.5-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B",
|
||||
},
|
||||
"Qwen1.5-14B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B",
|
||||
},
|
||||
"Qwen1.5-32B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B",
|
||||
},
|
||||
"Qwen1.5-72B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B",
|
||||
},
|
||||
"Qwen1.5-110B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B",
|
||||
},
|
||||
"Qwen1.5-Code-7B": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B",
|
||||
},
|
||||
"Qwen1.5-0.5B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat",
|
||||
},
|
||||
"Qwen1.5-1.8B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat",
|
||||
},
|
||||
"Qwen1.5-4B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat",
|
||||
},
|
||||
"Qwen1.5-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat",
|
||||
},
|
||||
"Qwen1.5-14B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat",
|
||||
},
|
||||
"Qwen1.5-32B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat",
|
||||
},
|
||||
"Qwen1.5-72B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat",
|
||||
},
|
||||
"Qwen1.5-110B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat",
|
||||
},
|
||||
"Qwen1.5-Code-7B-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat",
|
||||
},
|
||||
"Qwen1.5-0.5B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-0.5B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-1.8B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-1.8B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-4B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-4B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-14B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-14B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-32B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-72B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"Qwen1.5-72B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-110B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ",
|
||||
},
|
||||
"Qwen1.5-MoE-A2.7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"Qwen1.5-Code-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ",
|
||||
},
|
||||
},
|
||||
template="qwen",
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"SOLAR-10.7B": {
|
||||
DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0",
|
||||
},
|
||||
"SOLAR-10.7B-Chat": {
|
||||
DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-Instruct-v1.0",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/SOLAR-10.7B-Instruct-v1.0",
|
||||
@@ -550,6 +958,24 @@ register_model_group(
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"StarCoder2-3B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-3b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-3b",
|
||||
},
|
||||
"StarCoder2-7B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-7b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-7b",
|
||||
},
|
||||
"StarCoder2-15B": {
|
||||
DownloadSource.DEFAULT: "bigcode/starcoder2-15b",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-15b",
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Vicuna1.5-7B-Chat": {
|
||||
@@ -567,10 +993,54 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"XuanYuan-70B": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B"},
|
||||
"XuanYuan-70B-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat"},
|
||||
"XuanYuan-70B-int8-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit"},
|
||||
"XuanYuan-70B-int4-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit"},
|
||||
"XuanYuan-6B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B",
|
||||
},
|
||||
"XuanYuan-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B",
|
||||
},
|
||||
"XuanYuan-2-70B": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B",
|
||||
},
|
||||
"XuanYuan-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat",
|
||||
},
|
||||
"XuanYuan-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat",
|
||||
},
|
||||
"XuanYuan-2-70B-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat",
|
||||
},
|
||||
"XuanYuan-6B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-6B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
|
||||
},
|
||||
"XuanYuan-2-70B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
|
||||
},
|
||||
},
|
||||
template="xuanyuan",
|
||||
)
|
||||
@@ -578,9 +1048,18 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"XVERSE-7B": {DownloadSource.DEFAULT: "xverse/XVERSE-7B", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B"},
|
||||
"XVERSE-13B": {DownloadSource.DEFAULT: "xverse/XVERSE-13B", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B"},
|
||||
"XVERSE-65B": {DownloadSource.DEFAULT: "xverse/XVERSE-65B", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B"},
|
||||
"XVERSE-7B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B",
|
||||
},
|
||||
"XVERSE-13B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B",
|
||||
},
|
||||
"XVERSE-65B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B",
|
||||
},
|
||||
"XVERSE-65B-2": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-2",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-2",
|
||||
@@ -597,6 +1076,30 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
|
||||
},
|
||||
"XVERSE-MoE-A4.2B": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-MoE-A4.2B",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-MoE-A4.2B",
|
||||
},
|
||||
"XVERSE-7B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-7B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-13B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
|
||||
},
|
||||
"XVERSE-13B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
|
||||
},
|
||||
"XVERSE-65B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
|
||||
},
|
||||
},
|
||||
template="xverse",
|
||||
)
|
||||
@@ -619,18 +1122,42 @@ register_model_group(
|
||||
|
||||
register_model_group(
|
||||
models={
|
||||
"Yi-6B": {DownloadSource.DEFAULT: "01-ai/Yi-6B", DownloadSource.MODELSCOPE: "01ai/Yi-6B"},
|
||||
"Yi-34B": {DownloadSource.DEFAULT: "01-ai/Yi-34B", DownloadSource.MODELSCOPE: "01ai/Yi-34B"},
|
||||
"Yi-6B-Chat": {DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat"},
|
||||
"Yi-34B-Chat": {DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat"},
|
||||
"Yi-6B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B",
|
||||
},
|
||||
"Yi-9B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-9B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-9B",
|
||||
},
|
||||
"Yi-34B": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B",
|
||||
},
|
||||
"Yi-6B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat",
|
||||
},
|
||||
"Yi-34B-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat",
|
||||
},
|
||||
"Yi-6B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits",
|
||||
},
|
||||
"Yi-6B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-4bits",
|
||||
},
|
||||
"Yi-34B-int8-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits",
|
||||
},
|
||||
"Yi-34B-int4-Chat": {
|
||||
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
|
||||
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
|
||||
},
|
||||
},
|
||||
template="yi",
|
||||
)
|
||||
@@ -665,6 +1192,9 @@ register_model_group(
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
|
||||
DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
|
||||
},
|
||||
"Zephyr-141B-ORPO-Chat": {
|
||||
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
|
||||
},
|
||||
},
|
||||
template="zephyr",
|
||||
)
|
||||
|
||||
@@ -10,9 +10,11 @@ from transformers.utils import (
|
||||
WEIGHTS_NAME,
|
||||
is_torch_bf16_gpu_available,
|
||||
is_torch_cuda_available,
|
||||
is_torch_mps_available,
|
||||
is_torch_npu_available,
|
||||
is_torch_xpu_available,
|
||||
)
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from .logging import get_logger
|
||||
@@ -55,6 +57,17 @@ class AverageMeter:
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
|
||||
def check_dependencies() -> None:
|
||||
if int(os.environ.get("DISABLE_VERSION_CHECK", "0")):
|
||||
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
|
||||
else:
|
||||
require_version("transformers>=4.37.2", "To fix: pip install transformers>=4.37.2")
|
||||
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
|
||||
require_version("accelerate>=0.27.2", "To fix: pip install accelerate>=0.27.2")
|
||||
require_version("peft>=0.10.0", "To fix: pip install peft>=0.10.0")
|
||||
require_version("trl>=0.8.1", "To fix: pip install trl>=0.8.1")
|
||||
|
||||
|
||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
r"""
|
||||
Returns the number of trainable parameters and number of all parameters in the model.
|
||||
@@ -68,7 +81,14 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
|
||||
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
|
||||
if param.__class__.__name__ == "Params4bit":
|
||||
num_params = num_params * 2
|
||||
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
|
||||
num_bytes = param.quant_storage.itemsize
|
||||
elif hasattr(param, "element_size"): # for older pytorch version
|
||||
num_bytes = param.element_size()
|
||||
else:
|
||||
num_bytes = 1
|
||||
|
||||
num_params = num_params * 2 * num_bytes
|
||||
|
||||
all_param += num_params
|
||||
if param.requires_grad:
|
||||
@@ -133,6 +153,8 @@ def get_current_device() -> torch.device:
|
||||
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
|
||||
elif is_torch_npu_available():
|
||||
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
|
||||
elif is_torch_mps_available():
|
||||
device = "mps:{}".format(os.environ.get("LOCAL_RANK", "0"))
|
||||
elif is_torch_cuda_available():
|
||||
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
|
||||
else:
|
||||
@@ -142,6 +164,12 @@ def get_current_device() -> torch.device:
|
||||
|
||||
|
||||
def get_device_count() -> int:
|
||||
r"""
|
||||
Gets the number of available GPU devices.
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
return 0
|
||||
|
||||
return torch.cuda.device_count()
|
||||
|
||||
|
||||
@@ -166,6 +194,13 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
||||
return torch.float32
|
||||
|
||||
|
||||
def has_tokenized_data(path: os.PathLike) -> bool:
|
||||
r"""
|
||||
Checks if the path has a tokenized dataset.
|
||||
"""
|
||||
return os.path.isdir(path) and len(os.listdir(path)) > 0
|
||||
|
||||
|
||||
def torch_gc() -> None:
|
||||
r"""
|
||||
Collects GPU memory.
|
||||
@@ -176,17 +211,15 @@ def torch_gc() -> None:
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> None:
|
||||
def try_download_model_from_ms(model_args: "ModelArguments") -> str:
|
||||
if not use_modelscope() or os.path.exists(model_args.model_name_or_path):
|
||||
return
|
||||
return model_args.model_name_or_path
|
||||
|
||||
try:
|
||||
from modelscope import snapshot_download
|
||||
|
||||
revision = "master" if model_args.model_revision == "main" else model_args.model_revision
|
||||
model_args.model_name_or_path = snapshot_download(
|
||||
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir
|
||||
)
|
||||
return snapshot_download(model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir)
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
|
||||
|
||||
@@ -1,49 +1,76 @@
|
||||
import importlib.metadata
|
||||
import importlib.util
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from packaging import version
|
||||
|
||||
|
||||
def is_package_available(name: str) -> bool:
|
||||
if TYPE_CHECKING:
|
||||
from packaging.version import Version
|
||||
|
||||
|
||||
def _is_package_available(name: str) -> bool:
|
||||
return importlib.util.find_spec(name) is not None
|
||||
|
||||
|
||||
def get_package_version(name: str) -> str:
|
||||
def _get_package_version(name: str) -> "Version":
|
||||
try:
|
||||
return importlib.metadata.version(name)
|
||||
return version.parse(importlib.metadata.version(name))
|
||||
except Exception:
|
||||
return "0.0.0"
|
||||
return version.parse("0.0.0")
|
||||
|
||||
|
||||
def is_fastapi_availble():
|
||||
return is_package_available("fastapi")
|
||||
return _is_package_available("fastapi")
|
||||
|
||||
|
||||
def is_flash_attn2_available():
|
||||
return is_package_available("flash_attn") and get_package_version("flash_attn").startswith("2")
|
||||
return _is_package_available("flash_attn") and _get_package_version("flash_attn") > version.parse("2.0.0")
|
||||
|
||||
|
||||
def is_galore_available():
|
||||
return _is_package_available("galore_torch")
|
||||
|
||||
|
||||
def is_gradio_available():
|
||||
return _is_package_available("gradio")
|
||||
|
||||
|
||||
def is_jieba_available():
|
||||
return is_package_available("jieba")
|
||||
return _is_package_available("jieba")
|
||||
|
||||
|
||||
def is_matplotlib_available():
|
||||
return is_package_available("matplotlib")
|
||||
return _is_package_available("matplotlib")
|
||||
|
||||
|
||||
def is_nltk_available():
|
||||
return is_package_available("nltk")
|
||||
return _is_package_available("nltk")
|
||||
|
||||
|
||||
def is_pillow_available():
|
||||
return _is_package_available("PIL")
|
||||
|
||||
|
||||
def is_requests_available():
|
||||
return is_package_available("requests")
|
||||
return _is_package_available("requests")
|
||||
|
||||
|
||||
def is_rouge_available():
|
||||
return is_package_available("rouge_chinese")
|
||||
return _is_package_available("rouge_chinese")
|
||||
|
||||
|
||||
def is_sdpa_available():
|
||||
return _get_package_version("torch") > version.parse("2.1.1")
|
||||
|
||||
|
||||
def is_starlette_available():
|
||||
return is_package_available("sse_starlette")
|
||||
return _is_package_available("sse_starlette")
|
||||
|
||||
|
||||
def is_uvicorn_available():
|
||||
return is_package_available("uvicorn")
|
||||
return _is_package_available("uvicorn")
|
||||
|
||||
|
||||
def is_vllm_available():
|
||||
return _is_package_available("vllm")
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from typing import List, Optional
|
||||
from typing import List
|
||||
|
||||
from transformers.trainer import TRAINER_STATE_NAME
|
||||
|
||||
@@ -30,7 +30,7 @@ def smooth(scalars: List[float]) -> List[float]:
|
||||
return smoothed
|
||||
|
||||
|
||||
def plot_loss(save_dictionary: os.PathLike, keys: Optional[List[str]] = ["loss"]) -> None:
|
||||
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
|
||||
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
|
||||
data = json.load(f)
|
||||
|
||||
@@ -46,11 +46,12 @@ def plot_loss(save_dictionary: os.PathLike, keys: Optional[List[str]] = ["loss"]
|
||||
continue
|
||||
|
||||
plt.figure()
|
||||
plt.plot(steps, metrics, alpha=0.4, label="original")
|
||||
plt.plot(steps, smooth(metrics), label="smoothed")
|
||||
plt.plot(steps, metrics, color="#1f77b4", alpha=0.4, label="original")
|
||||
plt.plot(steps, smooth(metrics), color="#1f77b4", label="smoothed")
|
||||
plt.title("training {} of {}".format(key, save_dictionary))
|
||||
plt.xlabel("step")
|
||||
plt.ylabel(key)
|
||||
plt.legend()
|
||||
plt.savefig(os.path.join(save_dictionary, "training_{}.png".format(key)), format="png", dpi=100)
|
||||
print("Figure saved:", os.path.join(save_dictionary, "training_{}.png".format(key)))
|
||||
figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace("/", "_")))
|
||||
plt.savefig(figure_path, format="png", dpi=100)
|
||||
print("Figure saved at:", figure_path)
|
||||
|
||||
@@ -7,33 +7,44 @@ class DataArguments:
|
||||
r"""
|
||||
Arguments pertaining to what data we are going to input our model for training and evaluation.
|
||||
"""
|
||||
|
||||
template: Optional[str] = field(
|
||||
default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."}
|
||||
default=None,
|
||||
metadata={"help": "Which template to use for constructing prompts in training and inference."},
|
||||
)
|
||||
dataset: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
||||
)
|
||||
dataset_dir: Optional[str] = field(
|
||||
default="data", metadata={"help": "Path to the folder containing the datasets."}
|
||||
dataset_dir: str = field(
|
||||
default="data",
|
||||
metadata={"help": "Path to the folder containing the datasets."},
|
||||
)
|
||||
split: Optional[str] = field(
|
||||
default="train", metadata={"help": "Which dataset split to use for training and evaluation."}
|
||||
split: str = field(
|
||||
default="train",
|
||||
metadata={"help": "Which dataset split to use for training and evaluation."},
|
||||
)
|
||||
cutoff_len: Optional[int] = field(
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."}
|
||||
cutoff_len: int = field(
|
||||
default=1024,
|
||||
metadata={"help": "The cutoff length of the tokenized inputs in the dataset."},
|
||||
)
|
||||
reserved_label_len: Optional[int] = field(
|
||||
default=1, metadata={"help": "The maximum length reserved for label after tokenization."}
|
||||
reserved_label_len: int = field(
|
||||
default=1,
|
||||
metadata={"help": "The minimum cutoff length reserved for the tokenized labels in the dataset."},
|
||||
)
|
||||
train_on_prompt: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether to disable the mask on the prompt or not."}
|
||||
train_on_prompt: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to disable the mask on the prompt or not."},
|
||||
)
|
||||
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."})
|
||||
buffer_size: Optional[int] = field(
|
||||
default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
|
||||
streaming: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable dataset streaming."},
|
||||
)
|
||||
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
|
||||
buffer_size: int = field(
|
||||
default=16384,
|
||||
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."},
|
||||
)
|
||||
mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field(
|
||||
default="concat",
|
||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
|
||||
)
|
||||
@@ -41,33 +52,41 @@ class DataArguments:
|
||||
default=None,
|
||||
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
|
||||
)
|
||||
overwrite_cache: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets."}
|
||||
overwrite_cache: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Overwrite the cached training and evaluation sets."},
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of processes to use for the preprocessing."}
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the pre-processing."},
|
||||
)
|
||||
max_samples: Optional[int] = field(
|
||||
default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
|
||||
default=None,
|
||||
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."},
|
||||
)
|
||||
eval_num_beams: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
|
||||
)
|
||||
ignore_pad_token_for_loss: Optional[bool] = field(
|
||||
ignore_pad_token_for_loss: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
"help": "Whether or not to ignore the tokens corresponding to padded labels in the loss computation."
|
||||
},
|
||||
)
|
||||
val_size: Optional[float] = field(
|
||||
default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
|
||||
val_size: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."},
|
||||
)
|
||||
sft_packing: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
|
||||
packing: Optional[bool] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
|
||||
},
|
||||
)
|
||||
cache_path: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to save or load the preprocessed datasets."}
|
||||
tokenized_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -10,16 +10,35 @@ class EvaluationArguments:
|
||||
r"""
|
||||
Arguments pertaining to specify the evaluation parameters.
|
||||
"""
|
||||
task: str = field(metadata={"help": "Name of the evaluation task."})
|
||||
task_dir: Optional[str] = field(
|
||||
default="evaluation", metadata={"help": "Path to the folder containing the evaluation datasets."}
|
||||
|
||||
task: str = field(
|
||||
metadata={"help": "Name of the evaluation task."},
|
||||
)
|
||||
batch_size: Optional[int] = field(default=4, metadata={"help": "The batch size per GPU for evaluation."})
|
||||
seed: Optional[int] = field(default=42, metadata={"help": "Random seed to be used with data loaders."})
|
||||
lang: Optional[Literal["en", "zh"]] = field(default="en", metadata={"help": "Language used at evaluation."})
|
||||
n_shot: Optional[int] = field(default=5, metadata={"help": "Number of examplars for few-shot learning."})
|
||||
save_dir: Optional[str] = field(default=None, metadata={"help": "Path to save the evaluation results."})
|
||||
download_mode: Optional[DownloadMode] = field(
|
||||
task_dir: str = field(
|
||||
default="evaluation",
|
||||
metadata={"help": "Path to the folder containing the evaluation datasets."},
|
||||
)
|
||||
batch_size: int = field(
|
||||
default=4,
|
||||
metadata={"help": "The batch size per GPU for evaluation."},
|
||||
)
|
||||
seed: int = field(
|
||||
default=42,
|
||||
metadata={"help": "Random seed to be used with data loaders."},
|
||||
)
|
||||
lang: Literal["en", "zh"] = field(
|
||||
default="en",
|
||||
metadata={"help": "Language used at evaluation."},
|
||||
)
|
||||
n_shot: int = field(
|
||||
default=5,
|
||||
metadata={"help": "Number of examplars for few-shot learning."},
|
||||
)
|
||||
save_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save the evaluation results."},
|
||||
)
|
||||
download_mode: DownloadMode = field(
|
||||
default=DownloadMode.REUSE_DATASET_IF_EXISTS,
|
||||
metadata={"help": "Download mode used for the evaluation datasets."},
|
||||
)
|
||||
|
||||
@@ -8,20 +8,23 @@ class FreezeArguments:
|
||||
r"""
|
||||
Arguments pertaining to the freeze (partial-parameter) training.
|
||||
"""
|
||||
name_module_trainable: Optional[str] = field(
|
||||
default="mlp",
|
||||
|
||||
name_module_trainable: str = field(
|
||||
default="all",
|
||||
metadata={
|
||||
"help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
||||
"help": """Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
||||
Use commas to separate multiple modules. \
|
||||
Use "all" to specify all the available modules. \
|
||||
LLaMA choices: ["mlp", "self_attn"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
|
||||
Qwen choices: ["mlp", "attn"], \
|
||||
Phi choices: ["mlp", "mixer"], \
|
||||
Others choices: the same as LLaMA.'
|
||||
InternLM2 choices: ["feed_forward", "attention"], \
|
||||
Others choices: the same as LLaMA."""
|
||||
},
|
||||
)
|
||||
num_layer_trainable: Optional[int] = field(
|
||||
default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
|
||||
num_layer_trainable: int = field(
|
||||
default=2,
|
||||
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."},
|
||||
)
|
||||
|
||||
|
||||
@@ -30,6 +33,7 @@ class LoraArguments:
|
||||
r"""
|
||||
Arguments pertaining to the LoRA training.
|
||||
"""
|
||||
|
||||
additional_target: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
@@ -37,27 +41,50 @@ class LoraArguments:
|
||||
},
|
||||
)
|
||||
lora_alpha: Optional[int] = field(
|
||||
default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
|
||||
)
|
||||
lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."})
|
||||
lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."})
|
||||
lora_target: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
|
||||
)
|
||||
lora_dropout: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "Dropout rate for the LoRA fine-tuning."},
|
||||
)
|
||||
lora_rank: int = field(
|
||||
default=8,
|
||||
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
|
||||
)
|
||||
lora_target: str = field(
|
||||
default="all",
|
||||
metadata={
|
||||
"help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||
"help": """Name(s) of target modules to apply LoRA. \
|
||||
Use commas to separate multiple modules. \
|
||||
Use "all" to specify all the linear modules. \
|
||||
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
|
||||
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
|
||||
Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \
|
||||
Others choices: the same as LLaMA.'
|
||||
InternLM2 choices: ["wqkv", "wo", "w1", "w2", "w3"], \
|
||||
Others choices: the same as LLaMA."""
|
||||
},
|
||||
)
|
||||
lora_bf16_mode: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
|
||||
loraplus_lr_ratio: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
|
||||
)
|
||||
create_new_adapter: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
|
||||
loraplus_lr_embedding: float = field(
|
||||
default=1e-6,
|
||||
metadata={"help": "LoRA plus learning rate for lora embedding layers."},
|
||||
)
|
||||
use_rslora: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
|
||||
)
|
||||
use_dora: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
|
||||
)
|
||||
create_new_adapter: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
|
||||
)
|
||||
|
||||
|
||||
@@ -66,69 +93,188 @@ class RLHFArguments:
|
||||
r"""
|
||||
Arguments pertaining to the PPO and DPO training.
|
||||
"""
|
||||
dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."})
|
||||
dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field(
|
||||
default="sigmoid", metadata={"help": "The type of DPO loss to use."}
|
||||
|
||||
dpo_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta parameter for the DPO loss."},
|
||||
)
|
||||
dpo_ftx: Optional[float] = field(
|
||||
default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
|
||||
dpo_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = field(
|
||||
default="sigmoid",
|
||||
metadata={"help": "The type of DPO loss to use."},
|
||||
)
|
||||
ppo_buffer_size: Optional[int] = field(
|
||||
dpo_label_smoothing: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
|
||||
)
|
||||
dpo_ftx: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
||||
)
|
||||
orpo_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta (lambda) parameter in ORPO loss representing the weight of the SFT loss."},
|
||||
)
|
||||
ppo_buffer_size: int = field(
|
||||
default=1,
|
||||
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
|
||||
)
|
||||
ppo_epochs: Optional[int] = field(
|
||||
default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."}
|
||||
ppo_epochs: int = field(
|
||||
default=4,
|
||||
metadata={"help": "The number of epochs to perform in a PPO optimization step."},
|
||||
)
|
||||
ppo_logger: Optional[str] = field(
|
||||
default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'}
|
||||
ppo_score_norm: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Use score normalization in PPO training."},
|
||||
)
|
||||
ppo_score_norm: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Use score normalization in PPO training."}
|
||||
ppo_target: float = field(
|
||||
default=6.0,
|
||||
metadata={"help": "Target KL value for adaptive KL control in PPO training."},
|
||||
)
|
||||
ppo_target: Optional[float] = field(
|
||||
default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."}
|
||||
)
|
||||
ppo_whiten_rewards: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
|
||||
ppo_whiten_rewards: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
|
||||
)
|
||||
ref_model: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the reference model used for the PPO or DPO training."},
|
||||
)
|
||||
ref_model_adapters: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the adapters of the reference model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapters of the reference model."},
|
||||
)
|
||||
ref_model_quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the reference model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the reference model."},
|
||||
)
|
||||
reward_model: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the reward model used for the PPO training."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the reward model used for the PPO training."},
|
||||
)
|
||||
reward_model_adapters: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the adapters of the reward model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapters of the reward model."},
|
||||
)
|
||||
reward_model_quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the reward model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the reward model."},
|
||||
)
|
||||
reward_model_type: Optional[Literal["lora", "full", "api"]] = field(
|
||||
reward_model_type: Literal["lora", "full", "api"] = field(
|
||||
default="lora",
|
||||
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
|
||||
class GaloreArguments:
|
||||
r"""
|
||||
Arguments pertaining to the GaLore algorithm.
|
||||
"""
|
||||
|
||||
use_galore: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
|
||||
)
|
||||
galore_target: str = field(
|
||||
default="all",
|
||||
metadata={
|
||||
"help": """Name(s) of modules to apply GaLore. Use commas to separate multiple modules. \
|
||||
Use "all" to specify all the linear modules."""
|
||||
},
|
||||
)
|
||||
galore_rank: int = field(
|
||||
default=16,
|
||||
metadata={"help": "The rank of GaLore gradients."},
|
||||
)
|
||||
galore_update_interval: int = field(
|
||||
default=200,
|
||||
metadata={"help": "Number of steps to update the GaLore projection."},
|
||||
)
|
||||
galore_scale: float = field(
|
||||
default=0.25,
|
||||
metadata={"help": "GaLore scaling coefficient."},
|
||||
)
|
||||
galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
|
||||
default="std",
|
||||
metadata={"help": "Type of GaLore projection."},
|
||||
)
|
||||
galore_layerwise: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class BAdamArgument:
|
||||
r"""
|
||||
Arguments pertaining to the BAdam optimizer.
|
||||
"""
|
||||
|
||||
use_badam: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use the BAdam optimizer."},
|
||||
)
|
||||
badam_mode: Literal["layer", "ratio"] = field(
|
||||
default="layer",
|
||||
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
|
||||
)
|
||||
badam_start_block: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The starting block index for layer-wise BAdam."},
|
||||
)
|
||||
badam_switch_block_every: Optional[int] = field(
|
||||
default=50,
|
||||
metadata={"help": "How often to switch model's block update. Set to -1 to disable the block update."},
|
||||
)
|
||||
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
|
||||
default="ascending",
|
||||
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
|
||||
)
|
||||
badam_update_ratio: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The ratio of the update for ratio-wise BAdam."},
|
||||
)
|
||||
badam_mask_mode: Literal["adjacent", "scatter"] = field(
|
||||
default="adjacent",
|
||||
metadata={
|
||||
"help": """The mode of the mask for BAdam optimizer. \
|
||||
`adjacent` means that the trainable parameters are adjacent to each other, \
|
||||
`scatter` means that trainable parameters are randomly choosed from the weight."""
|
||||
},
|
||||
)
|
||||
badam_verbose: int = field(
|
||||
default=0,
|
||||
metadata={
|
||||
"help": """The verbosity level of BAdam optimizer. \
|
||||
0 for no print, 1 for print the block prefix, 2 for print trainable parameters"""
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument):
|
||||
r"""
|
||||
Arguments pertaining to which techniques we are going to fine-tuning with.
|
||||
"""
|
||||
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
|
||||
default="sft", metadata={"help": "Which stage will be performed in training."}
|
||||
|
||||
pure_bf16: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
|
||||
)
|
||||
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
|
||||
default="lora", metadata={"help": "Which fine-tuning method to use."}
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "orpo"] = field(
|
||||
default="sft",
|
||||
metadata={"help": "Which stage will be performed in training."},
|
||||
)
|
||||
plot_loss: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to save the training loss curves."}
|
||||
finetuning_type: Literal["lora", "freeze", "full"] = field(
|
||||
default="lora",
|
||||
metadata={"help": "Which fine-tuning method to use."},
|
||||
)
|
||||
use_llama_pro: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
|
||||
)
|
||||
plot_loss: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the training loss curves."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -141,16 +287,29 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
|
||||
self.lora_alpha = self.lora_alpha or self.lora_rank * 2
|
||||
self.lora_target = split_arg(self.lora_target)
|
||||
self.additional_target = split_arg(self.additional_target)
|
||||
self.galore_target = split_arg(self.galore_target)
|
||||
|
||||
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
|
||||
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
|
||||
if self.stage == "ppo" and self.reward_model is None:
|
||||
raise ValueError("Reward model is necessary for PPO training.")
|
||||
raise ValueError("`reward_model` is necessary for PPO training.")
|
||||
|
||||
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
|
||||
raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.")
|
||||
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
|
||||
|
||||
if self.stage == "dpo" and self.dpo_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
|
||||
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")
|
||||
|
||||
if self.use_llama_pro and self.finetuning_type == "full":
|
||||
raise ValueError("`use_llama_pro` is only valid for the Freeze or LoRA training.")
|
||||
|
||||
if self.use_galore and self.finetuning_type == "lora":
|
||||
raise ValueError("Cannot use LoRA with GaLore together.")
|
||||
|
||||
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
|
||||
raise ValueError("`loraplus_lr_ratio` is only valid for the LoRA training.")
|
||||
|
||||
def save_to_json(self, json_path: str):
|
||||
r"""Saves the content of this instance in JSON format inside `json_path`."""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -7,38 +7,44 @@ class GeneratingArguments:
|
||||
r"""
|
||||
Arguments pertaining to specify the decoding parameters.
|
||||
"""
|
||||
do_sample: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
|
||||
|
||||
do_sample: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."},
|
||||
)
|
||||
temperature: Optional[float] = field(
|
||||
default=0.95, metadata={"help": "The value used to modulate the next token probabilities."}
|
||||
temperature: float = field(
|
||||
default=0.95,
|
||||
metadata={"help": "The value used to modulate the next token probabilities."},
|
||||
)
|
||||
top_p: Optional[float] = field(
|
||||
top_p: float = field(
|
||||
default=0.7,
|
||||
metadata={
|
||||
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
|
||||
},
|
||||
)
|
||||
top_k: Optional[int] = field(
|
||||
top_k: int = field(
|
||||
default=50,
|
||||
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
|
||||
)
|
||||
num_beams: Optional[int] = field(
|
||||
default=1, metadata={"help": "Number of beams for beam search. 1 means no beam search."}
|
||||
num_beams: int = field(
|
||||
default=1,
|
||||
metadata={"help": "Number of beams for beam search. 1 means no beam search."},
|
||||
)
|
||||
max_length: Optional[int] = field(
|
||||
default=512,
|
||||
max_length: int = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
|
||||
)
|
||||
max_new_tokens: Optional[int] = field(
|
||||
default=512,
|
||||
max_new_tokens: int = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
|
||||
)
|
||||
repetition_penalty: Optional[float] = field(
|
||||
default=1.0, metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
||||
repetition_penalty: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."},
|
||||
)
|
||||
length_penalty: Optional[float] = field(
|
||||
default=1.0, metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
|
||||
length_penalty: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."},
|
||||
)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
|
||||
@@ -5,100 +5,192 @@ from typing import Any, Dict, Literal, Optional
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
r"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."}
|
||||
metadata={
|
||||
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
|
||||
},
|
||||
)
|
||||
adapter_name_or_path: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
||||
)
|
||||
use_fast_tokenizer: Optional[bool] = field(
|
||||
default=False,
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
||||
)
|
||||
resize_vocab: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
|
||||
resize_vocab: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
|
||||
)
|
||||
split_special_tokens: Optional[bool] = field(
|
||||
split_special_tokens: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
|
||||
)
|
||||
model_revision: Optional[str] = field(
|
||||
new_special_tokens: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Special tokens to be added into the tokenizer."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
low_cpu_mem_usage: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use memory-efficient model loading."},
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
|
||||
)
|
||||
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
|
||||
default="nf4", metadata={"help": "Quantization data type to use in int4 training."}
|
||||
quantization_type: Literal["fp4", "nf4"] = field(
|
||||
default="nf4",
|
||||
metadata={"help": "Quantization data type to use in int4 training."},
|
||||
)
|
||||
double_quantization: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Whether or not to use double quantization in int4 training."}
|
||||
double_quantization: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use double quantization in int4 training."},
|
||||
)
|
||||
quantization_device_map: Optional[Literal["auto"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
|
||||
)
|
||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||
default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
|
||||
default=None,
|
||||
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
|
||||
)
|
||||
flash_attn: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Enable FlashAttention-2 for faster training."}
|
||||
flash_attn: Literal["off", "sdpa", "fa2", "auto"] = field(
|
||||
default="auto",
|
||||
metadata={"help": "Enable FlashAttention for faster training and inference."},
|
||||
)
|
||||
shift_attn: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
|
||||
shift_attn: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
|
||||
)
|
||||
use_unsloth: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
|
||||
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
|
||||
)
|
||||
disable_gradient_checkpointing: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}
|
||||
use_unsloth: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
|
||||
)
|
||||
upcast_layernorm: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
|
||||
visual_inputs: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},
|
||||
)
|
||||
upcast_lmhead_output: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}
|
||||
moe_aux_loss_coef: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
|
||||
)
|
||||
disable_gradient_checkpointing: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable gradient checkpointing."},
|
||||
)
|
||||
upcast_layernorm: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
|
||||
)
|
||||
upcast_lmhead_output: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
|
||||
)
|
||||
infer_backend: Literal["huggingface", "vllm"] = field(
|
||||
default="huggingface",
|
||||
metadata={"help": "Backend engine used at inference."},
|
||||
)
|
||||
vllm_maxlen: int = field(
|
||||
default=2048,
|
||||
metadata={"help": "Maximum input length of the vLLM engine."},
|
||||
)
|
||||
vllm_gpu_util: float = field(
|
||||
default=0.9,
|
||||
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
|
||||
)
|
||||
vllm_enforce_eager: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
|
||||
)
|
||||
offload_folder: str = field(
|
||||
default="offload",
|
||||
metadata={"help": "Path to offload model weights."},
|
||||
)
|
||||
use_cache: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use KV cache in generation."},
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with Hugging Face Hub."},
|
||||
)
|
||||
ms_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with ModelScope Hub."},
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."})
|
||||
ms_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with ModelScope Hub."})
|
||||
export_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the directory to save the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory to save the exported model."},
|
||||
)
|
||||
export_size: Optional[int] = field(
|
||||
default=1, metadata={"help": "The file shard size (in GB) of the exported model."}
|
||||
export_size: int = field(
|
||||
default=1,
|
||||
metadata={"help": "The file shard size (in GB) of the exported model."},
|
||||
)
|
||||
export_device: str = field(
|
||||
default="cpu",
|
||||
metadata={"help": "The device used in model export, use cuda to avoid addmm errors."},
|
||||
)
|
||||
export_quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the exported model."},
|
||||
)
|
||||
export_quantization_dataset: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
|
||||
)
|
||||
export_quantization_nsamples: Optional[int] = field(
|
||||
default=128, metadata={"help": "The number of samples used for quantization."}
|
||||
export_quantization_nsamples: int = field(
|
||||
default=128,
|
||||
metadata={"help": "The number of samples used for quantization."},
|
||||
)
|
||||
export_quantization_maxlen: Optional[int] = field(
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}
|
||||
export_quantization_maxlen: int = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length of the model inputs used for quantization."},
|
||||
)
|
||||
export_legacy_format: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}
|
||||
export_legacy_format: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
|
||||
)
|
||||
export_hub_model_id: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}
|
||||
default=None,
|
||||
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
|
||||
)
|
||||
print_param_status: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self.compute_dtype = None
|
||||
self.device_map = None
|
||||
self.model_max_length = None
|
||||
|
||||
if self.split_special_tokens and self.use_fast_tokenizer:
|
||||
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
||||
|
||||
if self.visual_inputs and self.use_unsloth:
|
||||
raise ValueError("Unsloth does not support MLLM yet. Stay tuned.")
|
||||
|
||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
||||
|
||||
if self.new_special_tokens is not None: # support multiple special tokens
|
||||
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
|
||||
|
||||
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
|
||||
|
||||
|
||||
@@ -3,13 +3,15 @@ import os
|
||||
import sys
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import is_torch_bf16_gpu_available
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import check_dependencies, get_current_device
|
||||
from .data_args import DataArguments
|
||||
from .evaluation_args import EvaluationArguments
|
||||
from .finetuning_args import FinetuningArguments
|
||||
@@ -20,6 +22,9 @@ from .model_args import ModelArguments
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
check_dependencies()
|
||||
|
||||
|
||||
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||
@@ -49,28 +54,58 @@ def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = Non
|
||||
|
||||
|
||||
def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
|
||||
datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
|
||||
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None:
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Adapter is only valid for the LoRA method.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
|
||||
if finetuning_args.create_new_adapter:
|
||||
if model_args.resize_vocab:
|
||||
raise ValueError("Cannot resize embedding layers of a quantized model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
|
||||
raise ValueError("Cannot create new adapter upon a quantized model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Multiple adapters are only available for LoRA tuning.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
|
||||
|
||||
|
||||
def _check_extra_dependencies(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
training_args: Optional["Seq2SeqTrainingArguments"] = None,
|
||||
) -> None:
|
||||
if model_args.use_unsloth:
|
||||
require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth")
|
||||
|
||||
if model_args.mixture_of_depths is not None:
|
||||
require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
require_version("vllm>=0.4.0", "To fix: pip install vllm>=0.4.0")
|
||||
|
||||
if finetuning_args.use_galore:
|
||||
require_version("galore_torch", "To fix: pip install galore_torch")
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
require_version("badam", "To fix: pip install badam")
|
||||
|
||||
if finetuning_args.plot_loss:
|
||||
require_version("matplotlib", "To fix: pip install matplotlib")
|
||||
|
||||
if training_args is not None and training_args.predict_with_generate:
|
||||
require_version("jieba", "To fix: pip install jieba")
|
||||
require_version("nltk", "To fix: pip install nltk")
|
||||
require_version("rouge_chinese", "To fix: pip install rouge-chinese")
|
||||
|
||||
|
||||
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
parser = HfArgumentParser(_TRAIN_ARGS)
|
||||
return _parse_args(parser, args)
|
||||
@@ -115,16 +150,66 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support lora reward model.")
|
||||
|
||||
if (
|
||||
finetuning_args.stage == "ppo"
|
||||
and training_args.report_to
|
||||
and training_args.report_to[0] not in ["wandb", "tensorboard"]
|
||||
):
|
||||
raise ValueError("PPO only accepts wandb or tensorboard logger.")
|
||||
|
||||
if training_args.max_steps == -1 and data_args.streaming:
|
||||
raise ValueError("Please specify `max_steps` in streaming mode.")
|
||||
|
||||
if training_args.do_train and training_args.predict_with_generate:
|
||||
raise ValueError("`predict_with_generate` cannot be set as True while training.")
|
||||
|
||||
if training_args.do_train and finetuning_args.finetuning_type == "lora" and finetuning_args.lora_target is None:
|
||||
raise ValueError("Please specify `lora_target` in LoRA training.")
|
||||
if training_args.do_train and model_args.quantization_device_map == "auto":
|
||||
raise ValueError("Cannot use device map for quantized models in training.")
|
||||
|
||||
if finetuning_args.use_dora and model_args.use_unsloth:
|
||||
raise ValueError("Unsloth does not support DoRA.")
|
||||
|
||||
if finetuning_args.pure_bf16:
|
||||
if not is_torch_bf16_gpu_available():
|
||||
raise ValueError("This device does not support `pure_bf16`.")
|
||||
|
||||
if training_args.fp16 or training_args.bf16:
|
||||
raise ValueError("Turn off mixed precision training when using `pure_bf16`.")
|
||||
|
||||
if (
|
||||
finetuning_args.use_galore
|
||||
and finetuning_args.galore_layerwise
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
):
|
||||
raise ValueError("Distributed training does not support layer-wise GaLore.")
|
||||
|
||||
if (
|
||||
finetuning_args.use_badam
|
||||
and finetuning_args.badam_mode == "layer"
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
):
|
||||
raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
|
||||
|
||||
if (finetuning_args.use_galore or finetuning_args.use_badam) and training_args.deepspeed is not None:
|
||||
raise ValueError("GaLore and BAdam are incompatible with DeepSpeed yet.")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
raise ValueError("vLLM backend is only available for API, CLI and Web.")
|
||||
|
||||
if model_args.visual_inputs and data_args.packing:
|
||||
raise ValueError("Cannot use packing in MLLM fine-tuning.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args, training_args)
|
||||
|
||||
if (
|
||||
training_args.do_train
|
||||
and finetuning_args.finetuning_type == "lora"
|
||||
and model_args.quantization_bit is None
|
||||
and model_args.resize_vocab
|
||||
and finetuning_args.additional_target is None
|
||||
):
|
||||
logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.")
|
||||
|
||||
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
|
||||
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
|
||||
@@ -132,25 +217,28 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
|
||||
logger.warning("We recommend enable mixed precision training.")
|
||||
|
||||
if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16:
|
||||
logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.")
|
||||
|
||||
if (not training_args.do_train) and model_args.quantization_bit is not None:
|
||||
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
|
||||
|
||||
if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
|
||||
logger.warning("Specify `ref_model` for computing rewards at evaluation.")
|
||||
|
||||
# postprocess training_args
|
||||
# Post-process training arguments
|
||||
if (
|
||||
training_args.local_rank != -1
|
||||
training_args.parallel_mode.value == "distributed"
|
||||
and training_args.ddp_find_unused_parameters is None
|
||||
and finetuning_args.finetuning_type == "lora"
|
||||
):
|
||||
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
|
||||
training_args_dict = training_args.to_dict()
|
||||
training_args_dict.update(dict(ddp_find_unused_parameters=False))
|
||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
||||
training_args.ddp_find_unused_parameters = False
|
||||
|
||||
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
|
||||
can_resume_from_checkpoint = False
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
logger.warning("Cannot resume from checkpoint in current stage.")
|
||||
training_args.resume_from_checkpoint = None
|
||||
else:
|
||||
can_resume_from_checkpoint = True
|
||||
@@ -167,9 +255,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
||||
|
||||
if last_checkpoint is not None:
|
||||
training_args_dict = training_args.to_dict()
|
||||
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
|
||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
||||
training_args.resume_from_checkpoint = last_checkpoint
|
||||
logger.info(
|
||||
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
@@ -187,25 +273,27 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
)
|
||||
)
|
||||
|
||||
# postprocess model_args
|
||||
model_args.compute_dtype = (
|
||||
torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None)
|
||||
)
|
||||
# Post-process model arguments
|
||||
if training_args.bf16 or finetuning_args.pure_bf16:
|
||||
model_args.compute_dtype = torch.bfloat16
|
||||
elif training_args.fp16:
|
||||
model_args.compute_dtype = torch.float16
|
||||
|
||||
model_args.device_map = {"": get_current_device()}
|
||||
model_args.model_max_length = data_args.cutoff_len
|
||||
data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.info(
|
||||
"Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
|
||||
"Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
|
||||
training_args.local_rank,
|
||||
training_args.device,
|
||||
training_args.n_gpu,
|
||||
bool(training_args.local_rank != -1),
|
||||
training_args.parallel_mode.value == "distributed",
|
||||
str(model_args.compute_dtype),
|
||||
)
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Set seed before initializing model.
|
||||
transformers.set_seed(training_args.seed)
|
||||
|
||||
return model_args, data_args, training_args, finetuning_args, generating_args
|
||||
@@ -213,24 +301,54 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
|
||||
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
||||
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
|
||||
|
||||
_set_transformers_logging()
|
||||
|
||||
if data_args.template is None:
|
||||
raise ValueError("Please specify which `template` to use.")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
if finetuning_args.stage != "sft":
|
||||
raise ValueError("vLLM engine only supports auto-regressive models.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")
|
||||
|
||||
if model_args.rope_scaling is not None:
|
||||
raise ValueError("vLLM engine does not support RoPE scaling.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||
raise ValueError("vLLM only accepts a single adapter. Merge them first.")
|
||||
|
||||
if finetuning_args.stage == "rm" and model_args.visual_inputs:
|
||||
raise ValueError("Reward server does not support MLLM yet. Stay tuned.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args)
|
||||
|
||||
if model_args.export_dir is not None:
|
||||
model_args.device_map = {"": torch.device(model_args.export_device)}
|
||||
else:
|
||||
model_args.device_map = "auto"
|
||||
|
||||
return model_args, data_args, finetuning_args, generating_args
|
||||
|
||||
|
||||
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
|
||||
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
|
||||
|
||||
_set_transformers_logging()
|
||||
|
||||
if data_args.template is None:
|
||||
raise ValueError("Please specify which `template` to use.")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
raise ValueError("vLLM backend is only available for API, CLI and Web.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args)
|
||||
|
||||
model_args.device_map = "auto"
|
||||
|
||||
transformers.set_seed(eval_args.seed)
|
||||
|
||||
|
||||
@@ -1,5 +1,12 @@
|
||||
from .loader import load_model_and_tokenizer
|
||||
from .utils import dispatch_model, get_modelcard_args, load_valuehead_params
|
||||
from .loader import load_config, load_model, load_tokenizer
|
||||
from .utils.misc import find_all_linear_modules
|
||||
from .utils.valuehead import load_valuehead_params
|
||||
|
||||
|
||||
__all__ = ["load_model_and_tokenizer", "dispatch_model", "get_modelcard_args", "load_valuehead_params"]
|
||||
__all__ = [
|
||||
"load_config",
|
||||
"load_model",
|
||||
"load_tokenizer",
|
||||
"load_valuehead_params",
|
||||
"find_all_linear_modules",
|
||||
]
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user