167 Commits

Author SHA1 Message Date
hiyouga
ab67528e89 release v0.5.0 (real)
Former-commit-id: 2146e1d9195c179fa8f92144ec2b7034e1a9f942
2024-01-21 01:54:49 +08:00
hiyouga
27f281480a finish agent
Former-commit-id: d8d9d3afe32725fe79120fcd1a0970fdcdc45625
2024-01-21 01:47:33 +08:00
hiyouga
50459a39f4 fix api
Former-commit-id: a4149fbcd600d4f3815f9353e5e92c569719bed6
2024-01-21 00:03:09 +08:00
hiyouga
5c9815ef6f fix internlm2 template
Former-commit-id: ae05b23eb86555dbfafc174aa6ceff736e7fc9fa
2024-01-20 23:33:50 +08:00
hiyouga
aed00a97b6 fix cli_demo
Former-commit-id: e8336b3653f43618cf7cd70f8da004208de970c0
2024-01-20 23:27:10 +08:00
hiyouga
7543dc4a9d fix #2260
Former-commit-id: ba97550671811a27177306dd231bb427130b26fb
2024-01-20 23:22:09 +08:00
hiyouga
841fa0030f release v0.5.0
Former-commit-id: 602bb9b685009b9af234499be278404721542ac7
2024-01-20 20:21:39 +08:00
hiyouga
66e0e651b9 format style
Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
2024-01-20 20:15:56 +08:00
hiyouga
1750218057 fix tests
Former-commit-id: 23f97bd437424ef43b2b84743d56acc5d1ca70d5
2024-01-20 19:58:04 +08:00
hiyouga
80637fc06d support longlora for main branch
Former-commit-id: f869501ad4c368df26534c41f62c6d63c6be17dd
2024-01-20 19:25:22 +08:00
hoshi-hiyouga
8efc055511 Merge pull request #2201 from liu-zichen/token_embed_resize
support resize embed for zero3

Former-commit-id: c0d1b5e3aef70da6b115614bd1ed539a76d6547a
2024-01-20 17:45:38 +08:00
hiyouga
be61bfda93 add upcast_lmhead option
Former-commit-id: 7ef69a1697c11ff13e7503360e40ef36cfb1c345
2024-01-19 23:54:25 +08:00
hiyouga
1a39f529c0 set use_reentrant=False
Former-commit-id: efa2e27d5ef6eaeb7baa7551c651ef10ab31400c
2024-01-19 23:29:54 +08:00
hiyouga
0868d5c550 fix #2249
Former-commit-id: 7ec64588c541422875adfdaf5692a27d05b96cb9
2024-01-19 21:44:32 +08:00
hiyouga
384f0e7678 add bf16 lora option
Former-commit-id: 58e7d7ff0cf9bf30e53b3eb12576f38d31976413
2024-01-19 16:29:03 +08:00
hiyouga
9b390c4bea fix function formatter
Former-commit-id: 363a87376ad8fe4149b387f7ccd60f31f2a5fdf7
2024-01-18 16:01:07 +08:00
hiyouga
42a13fec46 Update tuner.py
Former-commit-id: db30107385f100f88c9370abea6692ce6030a0c9
2024-01-18 15:06:02 +08:00
hiyouga
790acc4c17 fix templates
Former-commit-id: 382cc48b2a823b9a7d4ccf2c2a163f0e5b6e3169
2024-01-18 14:49:52 +08:00
hiyouga
b74cf27538 fix rm dataset
Former-commit-id: fa6f810026a59cecce813a696b2fdf15ba502fc4
2024-01-18 14:45:37 +08:00
hiyouga
ffc874ec6f fix pretrain data loader
Former-commit-id: 2a812b706ecc527013e79edc504ec18a4193123d
2024-01-18 14:42:52 +08:00
hoshi-hiyouga
546d6bd0b2 Merge pull request #2226 from hiyouga/dev
support function calling

Former-commit-id: 69391464f0d3fb0e2ef76e6b6fac51c119d66b53
2024-01-18 14:31:28 +08:00
hiyouga
8b68ca029e update readme
Former-commit-id: 11e0c732c4968b083f60a0bb6f7bb5dd5ca2ba56
2024-01-18 14:30:48 +08:00
hiyouga
502f84b30c add tool hint
Former-commit-id: 64734ffe2f45f80a1e33c2a72330b2ab1e58feb3
2024-01-18 13:19:09 +08:00
hiyouga
b7df920860 fix dataset
Former-commit-id: a7ce244a6d83d62f5bbecc588f1978e3791fd3b3
2024-01-18 12:59:30 +08:00
hiyouga
e4a424cb6a enable cutoff len
Former-commit-id: e9513d300c338dfcae98eee7d057bfd00da2da0e
2024-01-18 12:25:42 +08:00
hiyouga
d8affd3967 add tool test
Former-commit-id: 639a355a9ceb2e4585b81aea71fc810f4b510776
2024-01-18 10:26:26 +08:00
hiyouga
a423274fd9 support function calling
Former-commit-id: 66533b3f65babf2429c92c0f8fafe4eff5e0ff63
2024-01-18 09:54:23 +08:00
hiyouga
f7329b1a0e Update llamafy_internlm2.py
Former-commit-id: 3ca5915a4fcd3d28d10a47bf9f2188b5cf8393a8
2024-01-18 01:12:31 +08:00
hiyouga
48eb07c956 Update llamafy_internlm2.py
Former-commit-id: 69b3cb768eda57b63f47cd35e5da3a59b57b7853
2024-01-18 01:00:16 +08:00
hiyouga
636d8a886c Update llamafy_internlm2.py
Former-commit-id: 1f1a7bcee5a5bb0fa17b13aa6393bfba89451dd7
2024-01-18 00:49:31 +08:00
hiyouga
97b52c7fdf fix llamafy scripts
Former-commit-id: 99ff69c36767d4397a4a61e89317ec8c0c295c1e
2024-01-18 00:37:37 +08:00
hiyouga
344412e66e fix llamafy_internlm2
Former-commit-id: a309375d020dedc313f3b6921fb53d932f156e8b
2024-01-18 00:26:14 +08:00
hiyouga
5cdea14cdf add llamafy_internlm2
Former-commit-id: 7b71767ef67cd5f246f52fb7e74b36bd26774a6c
2024-01-18 00:17:41 +08:00
hiyouga
7b1a56b96f support export push_to_hub #2183
Former-commit-id: fac09da7123a500d255de74810a8d057fb5c5f07
2024-01-16 23:59:42 +08:00
hiyouga
d1ec884e75 fix #2195
Former-commit-id: 801f7279693a0c785480ea67d663d99f4ca653da
2024-01-16 23:53:50 +08:00
liuzc
aa72a4349e support resize embed for zero3
Former-commit-id: b5464f5699b13bb118ac57ebc40b3cf9eb030396
2024-01-16 15:16:20 +08:00
hiyouga
5ab7fd0842 tiny fix
Former-commit-id: 6b1e9207e988c253a808e6bb26e3af9d071b77bc
2024-01-15 23:34:23 +08:00
hoshi-hiyouga
86d5e9802a Merge pull request #2194 from junuMoon/patch-1
fix: typo on README.md
Former-commit-id: a066a633a1a4b50cd6dc6b50701e35532fe788c1
2024-01-15 20:21:28 +08:00
Junu Moon(Fran)
18df39e3a1 fix: typo on README.md
Former-commit-id: 372066b559305a1428c88fbd6b01e332bfd5e3e1
2024-01-15 19:50:35 +09:00
hiyouga
cfe1e24471 support solar 10.7B #1907
Former-commit-id: ecf9b35c612e5514dd25b0d15835d28447a7437e
2024-01-14 00:30:30 +08:00
hiyouga
2edbe87a8c Update README_zh.md
Former-commit-id: e6d704c383e36abe8e27b3834f41d95890858425
2024-01-14 00:17:28 +08:00
hiyouga
880055bc90 support deepseek moe
Former-commit-id: 07fbb32496b9b81c4cfe67cb9a15a6b2c43852c3
2024-01-14 00:14:49 +08:00
hiyouga
ad99bd0a14 fix phi modules
Former-commit-id: 68d7e925ec51b6ee277513de8f61ac18a8378b98
2024-01-13 23:12:47 +08:00
hiyouga
c5f099138d fix #2147
Former-commit-id: 49445a03cd46af4e7036cf444cd041dfab2d8941
2024-01-12 03:30:56 +08:00
hiyouga
6e64e02f71 fix #2164
Former-commit-id: abe23bb4aca4fa571ebafc329ec9a9d457e37d41
2024-01-12 00:27:57 +08:00
hoshi-hiyouga
f95f6ec009 Merge pull request #2163 from JessyTsu1/main
请求添加"Projects using LLaMA Factory"

Former-commit-id: fa9abb430b204fabe4c1b3a569225695ae0cbc29
2024-01-11 23:33:29 +08:00
JessyTsu1
8aeecc20e1 Update README.md
Former-commit-id: 547d4df5c7a1d6dd95cfed37229701ce507b421c
2024-01-11 23:18:29 +08:00
JessyTsu1
38d0f6c63f Update README_zh.md
Former-commit-id: 8677309a38140ec1e1be3f81d0b2024df3f16c21
2024-01-11 23:17:48 +08:00
JessyTsu1
ac8534a9e7 Update README.md
Former-commit-id: dcd4858fd2c2ac4d3cce8a369dc9991108c03821
2024-01-11 23:17:00 +08:00
hiyouga
73cab9d9d4 fix #2161
Former-commit-id: 9acd5a2b678cd07f8e3b48eca76c4cbacb559e37
2024-01-11 17:04:13 +08:00
hiyouga
64246d42d2 improve web ui
Former-commit-id: 5c0148c018b12b52bc5748acfd6ad43836f2edb5
2024-01-10 12:37:45 +08:00
hiyouga
6fa6d4532e improve model export
Former-commit-id: d1b795aac1fccbcb8a9ec2057065c33b46ce1a5a
2024-01-09 22:26:24 +08:00
hiyouga
92b9956c06 modify weight name
Former-commit-id: 3f3c528fa8056dc1952ea5293bad7e55187983ff
2024-01-09 20:22:47 +08:00
hiyouga
4d6669c268 fix #1789
Former-commit-id: d86455f685fa531e651333e00b4fe54d895cf2e4
2024-01-09 18:31:27 +08:00
hiyouga
89f4ae51f9 fix #2127
Former-commit-id: 5a1aa33fa9b546ab520f0ba4cb9d996b87eb71ca
2024-01-09 14:49:13 +08:00
hiyouga
af0659f573 fix #2125
Former-commit-id: 46a22f4daeafac5b0a695212d060960ff53af613
2024-01-08 21:42:25 +08:00
hoshi-hiyouga
45a10d501e Merge pull request #2117 from dasdristanta13/main
Update requirements.txt With einops dependency

Former-commit-id: af0c05f1cffc7fc0fc74d514783333501f83f59e
2024-01-07 23:56:53 +08:00
Dristanta Das
e529ff1245 Update requirements.txt With einops dependency
Former-commit-id: 0b47b13cb34cace6fa0b6d0c58ca16fb01b3a5e9
2024-01-07 21:03:30 +05:30
hiyouga
b29371dc87 tiny fix
Former-commit-id: 06b854fe15eb4cf4ff8d6f5570068d9e74a2f1b3
2024-01-07 17:17:18 +08:00
hiyouga
0bef890000 fix api server
Former-commit-id: cedd80ba56c0090487f65f4b1227e5615943997f
2024-01-07 17:14:42 +08:00
hiyouga
75fe1404b1 improve model export
Former-commit-id: 31255147a566a23ce1a48402662d14af8ac267ab
2024-01-05 18:51:49 +08:00
hiyouga
b460c9372f fix #2098
Former-commit-id: e62d9158cffbf1044396597ddaf15b1c0bc5f954
2024-01-05 17:11:26 +08:00
hiyouga
c3e574ceaa fix qwen template
Former-commit-id: c1923e0daa02b49ac07e96ce29877729acc78d31
2024-01-05 16:14:56 +08:00
hiyouga
04ae80a52e fix #2081
Former-commit-id: ec4b539b6c0be11e15d273025c414b694bbd6c9a
2024-01-04 23:19:08 +08:00
hiyouga
a7ff095399 fix #2090
Former-commit-id: 13ec720990a88b01f7f5e2a99a87f95128dc3537
2024-01-04 23:05:08 +08:00
hiyouga
a655dcebaf fix #2067
Former-commit-id: 6cfdeea5261fd5bf6f91ba2bb3efb921a2f3e866
2024-01-04 22:53:03 +08:00
hiyouga
8c74851b70 fix dispatch
Former-commit-id: deda82638716506dc690902c51276bb1eb0ddd5e
2024-01-03 16:33:16 +08:00
hiyouga
7168392a51 fix valuehead patch
Former-commit-id: d9cb98362b58b28ae0ee207e7c07e75e5d810876
2024-01-03 16:19:23 +08:00
hiyouga
ccc5b324fe fix rm server
Former-commit-id: 81bc1638682a9fd01518f9f25250a6b584d2a9e6
2024-01-03 15:30:46 +08:00
hiyouga
e85c205a81 fix #2014
Former-commit-id: 077f6bf64e50f01f62aa4a957438bedc4e7925b3
2023-12-29 15:17:22 +08:00
hiyouga
7e225be16e add yuan model
Former-commit-id: 6a0377e2e51633bd5fb10fa8628e554565c5ee3e
2023-12-29 13:50:24 +08:00
hiyouga
ebb32e85f8 fix version
Former-commit-id: dd7500b65d0d548441eece101b60d51fa619cc0f
2023-12-29 04:53:36 +08:00
hiyouga
90d279f39f fix args
Former-commit-id: ff18f327a3dc96d9677ef32841e8f29ab2eeb7ef
2023-12-28 18:47:19 +08:00
hiyouga
af3f5b6e16 fix export format
Former-commit-id: 7c82bd396b9e6ff395850ad544d95cbf1b7557cd
2023-12-28 18:40:46 +08:00
hiyouga
53d7c5109f fix ppo trainer
Former-commit-id: ca5b5823b03822ef899405d233a82396be997f44
2023-12-28 18:09:28 +08:00
hiyouga
bf381563ff add model link
Former-commit-id: 159729929516f68aa1f43a852ed50ca0fac81523
2023-12-25 19:44:38 +08:00
hiyouga
de4b9334e1 tiny update
Former-commit-id: 4417b8ee20b381c964f452f52081667dfa33cd7b
2023-12-25 18:29:34 +08:00
hiyouga
c33fbea469 fix bug
Former-commit-id: b06faa1be3f5aa5e0fa31aa31314c213c36c3442
2023-12-24 19:20:12 +08:00
hiyouga
921f593632 update loader
Former-commit-id: 080d8eab858217ca58bffe719d5ffde7579c5bda
2023-12-24 19:10:23 +08:00
hiyouga
940403720a update patcher
Former-commit-id: d6d7b6670847ce4ea10353c5b126214542b45c2b
2023-12-23 15:24:27 +08:00
hiyouga
f869e44fe5 fix #1909
Former-commit-id: 3e93c33af9f80e28c9f30af9b7ba20757358afb4
2023-12-23 14:42:20 +08:00
hiyouga
bcc92919a0 update readme
Former-commit-id: d3dea7a926e9d356a39ca2033b03be7f559cc143
2023-12-23 02:17:41 +08:00
hiyouga
306a70c7ba fix unsloth dtype
Former-commit-id: fd22e6546ce5f38a6a075cf894aafc3d206b2fcd
2023-12-23 01:59:49 +08:00
hiyouga
d358d955e5 fix dpo trainer
Former-commit-id: c160dd7cd86e296e32775ace2e4258a473449c41
2023-12-23 01:51:55 +08:00
hiyouga
0fdd6074c3 llama board: add unsloth
Former-commit-id: 9477e6f28808ae9deadada1f6cf679a29542c271
2023-12-23 00:35:53 +08:00
hiyouga
6faf9c35a9 support unsloth
Former-commit-id: b857f00234b90b785d82ca7cdb29af3d948b1a7b
2023-12-23 00:14:33 +08:00
hoshi-hiyouga
1066898e32 Merge pull request #1953 from ShaneTian/model-load-bf16
Fix slow model initialization in bfloat16 dtype.

Former-commit-id: 69daf107c4561f807ceae066f04d432323699cef
2023-12-22 17:29:54 +08:00
ShaneTian
d05febe5de Fix slow model initialization in bfloat16 dtype.
Former-commit-id: cf2e2f6f9b7f09b1e2faf6fbc413e3f62e3846c7
2023-12-22 16:27:28 +08:00
hiyouga
67f7034a21 fix param type
Former-commit-id: 11b99f344416ade1cdac52e11ba7f36fcf689221
2023-12-21 17:33:01 +08:00
hiyouga
79f301a2c6 fix ds zero3 check
Former-commit-id: 7f50705b1d821d287bd854211319f697f57b25db
2023-12-21 01:19:22 +08:00
hiyouga
31cbc67986 match version
Former-commit-id: 16db52522584a8e084d4db2a7c253c8b88f27371
2023-12-20 22:17:35 +08:00
hoshi-hiyouga
fe66bf3663 Merge pull request #1932 from ShaneTian/main
Update transformers to 4.36.2 to resolve multi-node saving bug.

Former-commit-id: 5c55907a57e8327134e2c982c838a53c9fa42f51
2023-12-20 22:13:28 +08:00
ShaneTian
4691d4b35d Update transformers to 4.36.2 to resolve bug when saving a checkpoint in the multi-node setting.
Former-commit-id: 3173f8e51eec5e8f488e3dfc54ad371b640d6b87
2023-12-20 22:00:41 +08:00
hiyouga
acf5241845 fix stop words
Former-commit-id: 6ce6cac9fa8f0af33697e824cf93a9a80cdbd064
2023-12-20 19:06:43 +08:00
hiyouga
2bce99b82f fix yi template #1895
Former-commit-id: 05b4fa1e2b13a15ee261a151ac8cd0a2ebdf5edc
2023-12-20 18:58:16 +08:00
hiyouga
3c330869ef improve quantization
Former-commit-id: 4dde60017ad8208dfea0b2bb61df6a14a35d03e0
2023-12-20 18:27:16 +08:00
hiyouga
dba1af4841 add max_memory for gptq #1923
Former-commit-id: 9afc42c8b999fbbc206d9a467ca5795b27a10096
2023-12-20 18:15:17 +08:00
hiyouga
2b1e52dcc9 fix #1073 #1462 #1735 #1908
Former-commit-id: cd8e2535aa66931b24b96e76c2b56ce703a579b1
2023-12-20 17:15:40 +08:00
hiyouga
b5238e945a optimize data loading logic
Former-commit-id: 58f669b384582ac90e85de835f1f44f7003f9ec0
2023-12-20 16:15:41 +08:00
hiyouga
afc0f29704 fix #1909
Former-commit-id: f563e8d28dfa48a60cbe3d295b20f9cf58de296d
2023-12-20 16:11:07 +08:00
hiyouga
de0bb1d2da fix mixtral inference #1821
Former-commit-id: 612f9fd19cbd29e8b1785a1576a9668e7dcd264c
2023-12-20 15:11:15 +08:00
hiyouga
cc16ece283 fix #1900
Former-commit-id: 4c35214396f873588562606b084740b6581188d9
2023-12-19 17:21:46 +08:00
hiyouga
31ba802fc9 update readme
Former-commit-id: 36cd747e6a1a568e1a03e6c6611fec48e6ab9df7
2023-12-18 22:29:45 +08:00
hiyouga
4b27cf5460 add codegeex template
Former-commit-id: a8222722b8097158f1c92e3729f41d411eff3926
2023-12-18 19:52:35 +08:00
hiyouga
a53b2a643f add xverse-65B-2 model
Former-commit-id: 3e563a0d9666934dfdab54d61654ec00079a93f1
2023-12-18 19:24:09 +08:00
hiyouga
d925ecae1b add models
Former-commit-id: 3a4728557304996bcbe58d7d6380beead7c63c70
2023-12-18 19:09:31 +08:00
hiyouga
13fd751a78 fix tokenizer for Yi chat models #1617 #1875
Former-commit-id: 9485692c8d367a0b25d3e653db413aa01cb9ad7d
2023-12-18 17:18:11 +08:00
hiyouga
74575f8922 update readme
Former-commit-id: 01267eee0da0bffb3f0c0378e2e60d14e05585c4
2023-12-18 15:46:45 +08:00
hiyouga
5e7bb5fe73 fix llama board
Former-commit-id: f43f61b2898dda56aba0066fcb3409b152260bdb
2023-12-16 22:17:37 +08:00
hiyouga
790a31404a fix #1742
Former-commit-id: efbb32afdcf0d6aa4ca26f54c95f76dbb84f77dc
2023-12-16 20:50:45 +08:00
hiyouga
f927601702 add xverse-65b-chat model
Former-commit-id: fff6288db6b61ca27010ea47c918298f76922106
2023-12-16 20:21:29 +08:00
hiyouga
c4654d54d7 set version
Former-commit-id: 45a05e3a415eeaf875e2cf15bdba0235fbd7d527
2023-12-16 20:17:51 +08:00
hiyouga
df777c30d1 add noisy mean initialization #1815
Former-commit-id: 3253b1fca0123071913079277186c160046edf21
2023-12-16 19:47:51 +08:00
hiyouga
d81ad2d4bc support dpo-ftx
Former-commit-id: 86dfa04f9821556019fa777106787f73eb70b452
2023-12-16 19:21:41 +08:00
hiyouga
9f77e8b025 support autogptq in llama board #246
Former-commit-id: fea01226703d1534b5cf511bcb6a49e73bc86ce1
2023-12-16 16:31:30 +08:00
hoshi-hiyouga
04dc3f4614 Merge pull request #1868 from yhyu13/improve_hfargparser
Improve logging for unknown args

Former-commit-id: 6455013a99ca5c63f5b99c1100e93f794a03c497
2023-12-16 16:06:09 +08:00
yhyu13
7d1fe50977 Use llmtuner logger
Former-commit-id: ef5a560b4246e04e0ef2612e3520e05288e93707
2023-12-16 07:15:27 +00:00
yhyu13
c0e5e3c5d5 Improve logging for unknown args
Former-commit-id: 03e49d76ca91f7fcaf1c013740d5f6bfc11a2028
2023-12-16 05:16:29 +00:00
hiyouga
3a45cfb604 update tips
Former-commit-id: 4432cbda6b7535bcbb40ba77df069fca631b4be8
2023-12-15 23:52:50 +08:00
hiyouga
393e4b0f5a fix #1770
Former-commit-id: 8266187cec70bb4bd1b4837d51b09409ec11f93e
2023-12-15 23:50:15 +08:00
hiyouga
296711d502 support quantization in export model
Former-commit-id: f32500ae6edccab7d14df4c92467e15986866def
2023-12-15 23:44:50 +08:00
hiyouga
9121722999 update dc link
Former-commit-id: f6789e50e17a377b6d9b434d8e12ad99d8eecfeb
2023-12-15 22:11:31 +08:00
hoshi-hiyouga
d8d74091f6 Merge pull request #1864 from hiyouga/dev
Refactor hyper-parameters of adapters and model loader

Former-commit-id: d5ce2fb6858b9f2963f355e9f4d6f046eb6efdcd
2023-12-15 22:06:56 +08:00
hiyouga
33521fb45e fix bug
Former-commit-id: 95ac272907a04a64785f928536de1fd099150f92
2023-12-15 21:54:02 +08:00
hiyouga
e5204e60ed fix bug
Former-commit-id: 8b80baf02cfece53527c27712f0899fa3532c414
2023-12-15 21:49:26 +08:00
hiyouga
0409428d87 add configurer
Former-commit-id: c40c9889615ffb49c7ce24c69c0d3d20d841c800
2023-12-15 21:46:40 +08:00
hiyouga
f902b0d420 refactor adapter hparam
Former-commit-id: f82aece9ebd6df83a7a005cc7cbbcec07fa6e14d
2023-12-15 20:53:11 +08:00
hiyouga
27ef5b1aa7 add loftq
Former-commit-id: 0b900882ef19ac49604a24fbae8b3254f1bff7ad
2023-12-14 21:53:56 +08:00
hiyouga
c32303fc7e fix valuehead model
Former-commit-id: 9f628debb6510f2d1c91b00f121a721ab5d648e9
2023-12-14 20:15:20 +08:00
hoshi-hiyouga
45abe361ba tiny fix
Former-commit-id: 987df4c62f34026adfe2089910f4ff9ac6ebd9a6
2023-12-13 17:32:36 +08:00
hoshi-hiyouga
3ae479faae revert peft version
Former-commit-id: 6440fa1a8c28fd2db58d0905a67d071837e0edd1
2023-12-13 10:49:45 +08:00
hoshi-hiyouga
5698038f49 update peft version
Former-commit-id: 31c01e1272bd2cd9588e5ee68c1924a3dd55c67e
2023-12-13 10:23:51 +08:00
hoshi-hiyouga
020233f725 tiny fix
Former-commit-id: 1478bc052417e0939188f55a0adcbf00956960f2
2023-12-13 10:21:29 +08:00
hoshi-hiyouga
6f9d55b8eb fix #1819
Former-commit-id: f2e2b0354cbe9a7190ccab807f690cc8ab433a6e
2023-12-13 10:14:01 +08:00
hiyouga
2542b62d77 remove loftq
Former-commit-id: e175c0a1c631296117abda2403a4b87bbdd35a66
2023-12-13 01:53:46 +08:00
hiyouga
95678bb6b1 fix sharegpt loading
Former-commit-id: ad35c35f9328bff69e8b9ea7dba6a61a2dc9e28b
2023-12-13 00:56:16 +08:00
hiyouga
a78759e7ee add model urls
Former-commit-id: 3139a9fafab246f5461697efd5ed7a6599d85481
2023-12-13 00:09:17 +08:00
hiyouga
cc5c523f58 update readme
Former-commit-id: e81037d766f89f7e2b6539596397983eba52b492
2023-12-12 23:30:29 +08:00
hiyouga
e39bbdd287 support loftq
Former-commit-id: e7ac2eb7f7daae17525a278ffbe2f82c0fbd8093
2023-12-12 22:47:06 +08:00
hiyouga
d9a50bf93f fix #1795
Former-commit-id: 949ab45487155525789c08027d4f8e7da1b8bc0c
2023-12-12 19:58:34 +08:00
hiyouga
934d00ea1e support system column #1765
Former-commit-id: f425584a511c5e42bae8b3ba090eaa898b28adad
2023-12-12 19:45:59 +08:00
hiyouga
c27675f70d fix modelscope data hub
Former-commit-id: 5b63e8c22538a4788e4b6c8df50e6e6be93ceeac
2023-12-12 18:33:06 +08:00
hoshi-hiyouga
7c9f37c83d Merge pull request #1802 from tastelikefeet/feat/support_ms
Support ModelScope Datahub

Former-commit-id: f73f321e765aab9325673218779ff4ee7f281514
2023-12-12 17:58:37 +08:00
hoshi-hiyouga
b9736c13e0 Merge branch 'main' into feat/support_ms
Former-commit-id: 698756dffb7d4e602b3e0cab66ef0a4befe7215c
2023-12-12 17:55:32 +08:00
hiyouga
c47725ff34 fix webui
Former-commit-id: 15ad266206b12181788db5bb112c2299050d6139
2023-12-12 15:27:40 +08:00
xingjun.wang
3ee3fe0bbb add use_streaming
Former-commit-id: 80388abdb7ee88eb4afad92d8c706370c0574039
2023-12-12 14:23:05 +08:00
xingjun.wang
e54dad75da fix cache dir
Former-commit-id: 6231272b9c51d44196f1fbec026973231e489b67
2023-12-12 14:21:33 +08:00
xingjun.wang
39c2f03eab add print info for test
Former-commit-id: e4ae2fccf0cbec57fb5fb01fd7cc352da69b23bf
2023-12-12 14:14:40 +08:00
xingjun.wang
fb9e1c4087 update cache dir
Former-commit-id: c8a1ce847fd7a75a06659133d92a0ac42e52a839
2023-12-12 13:08:18 +08:00
xingjun.wang
ed26bb3d82 update args for MsDataset.load
Former-commit-id: c5f69357a167cbf99a93607177526e787419ea05
2023-12-12 13:02:54 +08:00
xingjun.wang
0baf32e219 update
Former-commit-id: e15fc417d897c3063a25d6eb7eb89d1916db3cc5
2023-12-12 12:03:23 +08:00
xingjun.wang
79a376d1db for test
Former-commit-id: 33d9082320098f994bfa0c6353459afcb93165b7
2023-12-12 11:52:59 +08:00
xingjun.wang
b634e91c43 for test
Former-commit-id: 95ea942bd32402018e7c5dc61d50153c602ab67a
2023-12-12 11:47:59 +08:00
hiyouga
9e2cc21d04 update readme
Former-commit-id: 42e042a4206aeb5177ddde56386e9655b0c06460
2023-12-12 11:44:30 +08:00
hiyouga
6975124a57 support mixtral
Former-commit-id: 75b5b8e36ab1933b2625f11b645f56cbc805fd85
2023-12-12 11:39:04 +08:00
hiyouga
9f69307db1 fix baichuan resize
Former-commit-id: 66956d13074a9bc74d7a737b9476f38361a7764a
2023-12-11 20:55:50 +08:00
hiyouga
c3448a045c tiny fix
Former-commit-id: 1f839fc4f278c2a258df22899241fc66a2cca682
2023-12-11 18:09:40 +08:00
hiyouga
95c561983c support resize embeddings #1786
Former-commit-id: 368a41bd3c6a04f869083058d9165954fbdad105
2023-12-11 17:50:02 +08:00
hiyouga
7a03c8dab5 use peft 0.7.0, fix #1561 #1764
Former-commit-id: 423947bd58aa50da8785b8ceca1e7e288447a9da
2023-12-11 17:13:40 +08:00
hiyouga
f3ffa8310f fix #1784
Former-commit-id: 4e1af5a5d39d9e2f374c1372e2d67120c63fea09
2023-12-09 20:53:18 +08:00
yuze.zyz
596f496f19 support ms dataset
Former-commit-id: 98638b35dc24045ac17b9b01d08d3a02372acef3
2023-12-08 18:00:57 +08:00
hiyouga
2e6ed731cf fix #1771 and temporarily fix #1764
Former-commit-id: d0e5a5d604e16c2fe0035b0ac1d54dc3625d4da3
2023-12-08 16:26:20 +08:00
hiyouga
24ce319b6f add models
Former-commit-id: 758ae7937a41a95016e70180fb343011763c1b67
2023-12-06 13:33:18 +08:00
hiyouga
7b7bfea37d fix ppo trainer save logic
Former-commit-id: 5e70c41e4e12a1109570b0ff56346fe212c028ed
2023-12-04 19:00:19 +08:00
hiyouga
3be461260a update readme
Former-commit-id: a15f8cf19cac42acfb9917a2d7c9fa36a838b360
2023-12-04 11:22:01 +08:00
hiyouga
8dab8d9831 update readme
Former-commit-id: d3c46cb126a9182be765341fe31c860d71430712
2023-12-04 11:02:29 +08:00
hiyouga
fb4c5f3c91 fix #1715
Former-commit-id: 3f9192dbbbafdc2171d2eb80282d5cae47565b7b
2023-12-03 22:35:47 +08:00
95 changed files with 4240 additions and 3797 deletions

11
Makefile Normal file
View File

@@ -0,0 +1,11 @@
.PHONY: quality style
check_dirs := src tests
quality:
black --check $(check_dirs)
ruff $(check_dirs)
style:
black $(check_dirs)
ruff $(check_dirs) --fix

116
README.md
View File

@@ -6,7 +6,7 @@
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/) [![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/) [![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU) [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
@@ -55,17 +55,23 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog ## Changelog
[23/12/01] We supported downloading pre-trained models from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-models-optional) for usage. [24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `--dataset glaive_toolcall`.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`. [23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves 1.7x speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
<details><summary>Full Changelog</summary> <details><summary>Full Changelog</summary>
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention. [23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models. [23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs. [23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings. [23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
@@ -91,19 +97,22 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| Model | Model size | Default module | Template | | Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- | | -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan | | [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | | [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | | [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 | | [ChatGLM3](https://huggingface.co/THUDM/chatglm3-6b) | 6B | query_key_value | chatglm3 |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon | | [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern | | [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
> [!NOTE] > [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules. > **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
@@ -123,7 +132,7 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!NOTE] > [!NOTE]
> Use `--quantization_bit 4/8` argument to enable QLoRA. > Use `--quantization_bit 4` argument to enable QLoRA.
## Provided Datasets ## Provided Datasets
@@ -167,6 +176,7 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa) - [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn) - [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar) - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen) - [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k) - [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4) - [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
@@ -174,6 +184,7 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct) - [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) - [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k) - [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
</details> </details>
@@ -206,13 +217,13 @@ huggingface-cli login
### Hardware Requirement ### Hardware Requirement
| Method | Bits | 7B | 13B | 30B | 65B | | Method | Bits | 7B | 13B | 30B | 65B | 8x7B |
| ------ | ---- | ----- | ----- | ----- | ------ | | ------ | ---- | ----- | ----- | ----- | ------ | ------ |
| Full | 16 | 140GB | 240GB | 520GB | 1200GB | | Full | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB |
| Freeze | 16 | 20GB | 40GB | 120GB | 240GB | | Freeze | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## Getting Started ## Getting Started
@@ -239,9 +250,9 @@ If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you wi
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
``` ```
### Use ModelScope Models (optional) ### Use ModelScope Hub (optional)
If you have trouble with downloading models from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner. If you have trouble with downloading models and datasets from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner.
```bash ```bash
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
@@ -255,7 +266,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
... # arguments (same as above) ... # arguments (same as above)
``` ```
LLaMA Board also supports using the models on the ModelScope Hub. LLaMA Board also supports using the models and datasets on the ModelScope Hub.
```bash ```bash
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
@@ -271,8 +282,8 @@ CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \ --stage pt \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset wiki_demo \ --dataset wiki_demo \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
@@ -294,8 +305,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
@@ -318,14 +329,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \ --stage rm \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_en \ --dataset comparison_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \ --output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -343,14 +354,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \ --stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \ --reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \ --output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
@@ -374,14 +385,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \ --stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_en \ --dataset comparison_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \ --output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -449,7 +460,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
"loss_scale_window": 1000, "loss_scale_window": 1000,
"hysteresis": 2, "hysteresis": 2,
"min_loss_scale": 1 "min_loss_scale": 1
}, },
"zero_optimization": { "zero_optimization": {
"stage": 2, "stage": 2,
"allgather_partitions": true, "allgather_partitions": true,
@@ -469,20 +480,28 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
```bash ```bash
python src/export_model.py \ python src/export_model.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \ --export_dir path_to_export \
--export_dir path_to_export --export_size 2 \
--export_legacy_format False
``` ```
> [!WARNING]
> Merging LoRA weights into a quantized model is not supported.
> [!TIP]
> Use `--export_quantization_bit 4` and `--export_quantization_dataset data/c4_demo.json` to quantize the model after merging the LoRA weights.
### API Demo ### API Demo
```bash ```bash
python src/api_demo.py \ python src/api_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
> [!TIP] > [!TIP]
@@ -493,9 +512,9 @@ python src/api_demo.py \
```bash ```bash
python src/cli_demo.py \ python src/cli_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### Web Demo ### Web Demo
@@ -503,9 +522,9 @@ python src/cli_demo.py \
```bash ```bash
python src/web_demo.py \ python src/web_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### Evaluation ### Evaluation
@@ -513,9 +532,9 @@ python src/web_demo.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--finetuning_type lora \ --adapter_name_or_path path_to_checkpoint \
--checkpoint_dir path_to_checkpoint \
--template vanilla \ --template vanilla \
--finetuning_type lora \
--task mmlu \ --task mmlu \
--split test \ --split test \
--lang en \ --lang en \
@@ -528,12 +547,12 @@ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \ --do_predict \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \ --output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \ --per_device_eval_batch_size 8 \
--max_samples 100 \ --max_samples 100 \
@@ -553,6 +572,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge. - **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B. - **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B. - **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
- **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
> [!TIP] > [!TIP]
> If you have a project that should be incorporated, please contact via email or create a pull request. > If you have a project that should be incorporated, please contact via email or create a pull request.
@@ -561,7 +581,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
This repository is licensed under the [Apache-2.0 License](LICENSE). This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation ## Citation

View File

@@ -6,7 +6,7 @@
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/) [![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/) [![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU) [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
@@ -55,23 +55,29 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
## 更新日志 ## 更新日志
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型。详细用法请参照 [此教程](#使用魔搭社区可跳过) [24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `--dataset glaive_toolcall` 即可使模型获得工具调用能力
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5` [23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 1.7 倍的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
<details><summary>展开日志</summary> <details><summary>展开日志</summary>
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune例如 `--neftune_noise_alpha 5`
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。 [23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。 [23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。 [23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。 [23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。 [23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。 [23/07/31] 我们支持了**数据流式加载**。请使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。 [23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
@@ -91,19 +97,22 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
| 模型名 | 模型大小 | 默认模块 | Template | | 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- | | -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan | | [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | | [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - | | [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 | | [ChatGLM3](https://huggingface.co/THUDM/chatglm3-6b) | 6B | query_key_value | chatglm3 |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon | | [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B | q_proj,v_proj | deepseek |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern | | [Falcon](https://huggingface.co/tiiuae) | 7B/40B/180B | query_key_value | falcon |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
> [!NOTE] > [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。 > **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
@@ -123,7 +132,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | | DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!NOTE] > [!NOTE]
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。 > 请使用 `--quantization_bit 4` 参数来启用 QLoRA 训练。
## 数据集 ## 数据集
@@ -167,6 +176,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa) - [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn) - [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar) - [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen) - [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k) - [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4) - [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
@@ -174,6 +184,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct) - [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) - [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k) - [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Glaive Function Calling V2 (en)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
</details> </details>
@@ -206,13 +217,13 @@ huggingface-cli login
### 硬件依赖 ### 硬件依赖
| 训练方法 | 精度 | 7B | 13B | 30B | 65B | | 训练方法 | 精度 | 7B | 13B | 30B | 65B | 8x7B |
| ------- | ---- | ----- | ----- | ----- | ------ | | ------- | ---- | ----- | ----- | ----- | ------ | ------ |
| 全参数 | 16 | 140GB | 240GB | 520GB | 1200GB | | 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB |
| 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | | 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## 如何使用 ## 如何使用
@@ -241,7 +252,7 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
### 使用魔搭社区(可跳过) ### 使用魔搭社区(可跳过)
如果您在 Hugging Face 模型的下载中遇到了问题,可以通过下述方法使用魔搭社区。 如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
```bash ```bash
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1` export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
@@ -255,7 +266,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
... # 参数同上 ... # 参数同上
``` ```
LLaMA Board 同样支持魔搭社区的模型下载。 LLaMA Board 同样支持魔搭社区的模型和数据集下载。
```bash ```bash
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
@@ -271,8 +282,8 @@ CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \ --stage pt \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset wiki_demo \ --dataset wiki_demo \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
@@ -294,8 +305,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
@@ -318,14 +329,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \ --stage rm \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \ --dataset comparison_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \ --output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -343,14 +354,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \ --stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \ --reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \ --output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
@@ -374,14 +385,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \ --stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \ --dataset comparison_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \ --output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -449,7 +460,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
"loss_scale_window": 1000, "loss_scale_window": 1000,
"hysteresis": 2, "hysteresis": 2,
"min_loss_scale": 1 "min_loss_scale": 1
}, },
"zero_optimization": { "zero_optimization": {
"stage": 2, "stage": 2,
"allgather_partitions": true, "allgather_partitions": true,
@@ -464,25 +475,33 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
</details> </details>
### 合并 LoRA 权重并导出完整模型 ### 合并 LoRA 权重并导出模型
```bash ```bash
python src/export_model.py \ python src/export_model.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \ --export_dir path_to_export \
--export_dir path_to_export --export_size 2 \
--export_legacy_format False
``` ```
> [!WARNING]
> 尚不支持量化模型的 LoRA 权重合并及导出。
> [!TIP]
> 合并 LoRA 权重之后可再次使用 `--export_quantization_bit 4` 和 `--export_quantization_dataset data/c4_demo.json` 量化模型。
### API 服务 ### API 服务
```bash ```bash
python src/api_demo.py \ python src/api_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
> [!TIP] > [!TIP]
@@ -493,9 +512,9 @@ python src/api_demo.py \
```bash ```bash
python src/cli_demo.py \ python src/cli_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### 浏览器测试 ### 浏览器测试
@@ -503,9 +522,9 @@ python src/cli_demo.py \
```bash ```bash
python src/web_demo.py \ python src/web_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### 模型评估 ### 模型评估
@@ -513,9 +532,9 @@ python src/web_demo.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--finetuning_type lora \ --adapter_name_or_path path_to_checkpoint \
--checkpoint_dir path_to_checkpoint \
--template vanilla \ --template vanilla \
--finetuning_type lora \
--task ceval \ --task ceval \
--split validation \ --split validation \
--lang zh \ --lang zh \
@@ -528,12 +547,12 @@ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \ --do_predict \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \ --output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \ --per_device_eval_batch_size 8 \
--max_samples 100 \ --max_samples 100 \
@@ -553,6 +572,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。 - **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。 - **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。 - **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
- **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**MBTI性格大模型项目根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
> [!TIP] > [!TIP]
> 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。 > 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
@@ -561,7 +581,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。 本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) 使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用 ## 引用

View File

@@ -2,11 +2,13 @@ If you are using a custom dataset, please provide your dataset definition in the
```json ```json
"dataset_name": { "dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)", "hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)", "ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)", "script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)", "file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)", "subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)", "ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})", "formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"columns": { "columns": {
@@ -16,7 +18,8 @@ If you are using a custom dataset, please provide your dataset definition in the
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)", "history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)", "messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
"role": "the key in the message represents the identity. (default: from, for sharegpt)", "role": "the key in the message represents the identity. (default: from, for sharegpt)",
"content": "the key in the message represents the content. (default: value, for sharegpt)" "content": "the key in the message represents the content. (default: value, for sharegpt)",
"system": "the column name in the dataset containing the system prompts. (default: None, for both)"
} }
} }
``` ```
@@ -31,6 +34,7 @@ Currently we support dataset in **alpaca** or **sharegpt** format, the dataset i
"instruction": "user instruction (required)", "instruction": "user instruction (required)",
"input": "user input (optional)", "input": "user input (optional)",
"output": "model response (required)", "output": "model response (required)",
"system": "system prompt (optional)",
"history": [ "history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"], ["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"] ["user instruction in the second round (optional)", "model response in the second round (optional)"]
@@ -47,6 +51,7 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
"prompt": "instruction", "prompt": "instruction",
"query": "input", "query": "input",
"response": "output", "response": "output",
"system": "system",
"history": "history" "history": "history"
} }
} }
@@ -54,7 +59,7 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model. where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**. The `system` column will be used as the system prompt in the template. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
For the pre-training datasets, only the `prompt` column will be used for training. For the pre-training datasets, only the `prompt` column will be used for training.
@@ -85,7 +90,8 @@ The dataset in sharegpt format should follow the below format:
"from": "gpt", "from": "gpt",
"value": "model response" "value": "model response"
} }
] ],
"system": "system prompt (optional)"
} }
] ]
``` ```
@@ -97,7 +103,8 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
"columns": { "columns": {
"messages": "conversations", "messages": "conversations",
"role": "from", "role": "from",
"content": "value" "content": "value",
"system": "system"
} }
} }
``` ```

View File

@@ -2,11 +2,13 @@
```json ```json
"数据集名称": { "数据集名称": {
"hf_hub_url": "Hugging Face 上的项目地址(若指定,则忽略下列三个参数", "hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数", "ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)", "file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选留空不影响训练", "file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练)",
"subset": "数据集子集的名称可选默认None", "subset": "数据集子集的名称可选默认None",
"folder": "Hugging Face 仓库的文件夹名称可选默认None",
"ranking": "是否为偏好数据集可选默认False", "ranking": "是否为偏好数据集可选默认False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt", "formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"columns": { "columns": {
@@ -16,7 +18,8 @@
"history": "数据集代表历史对话的表头名称默认None用于 alpaca 格式)", "history": "数据集代表历史对话的表头名称默认None用于 alpaca 格式)",
"messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)", "messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)",
"role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)", "role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)",
"content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)" "content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)",
"system": "数据集代表系统提示的表头名称默认None用于两种格式"
} }
} }
``` ```
@@ -31,6 +34,7 @@
"instruction": "用户指令(必填)", "instruction": "用户指令(必填)",
"input": "用户输入(选填)", "input": "用户输入(选填)",
"output": "模型回答(必填)", "output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [ "history": [
["第一轮指令(选填)", "第一轮回答(选填)"], ["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"] ["第二轮指令(选填)", "第二轮回答(选填)"]
@@ -47,6 +51,7 @@
"prompt": "instruction", "prompt": "instruction",
"query": "input", "query": "input",
"response": "output", "response": "output",
"system": "system",
"history": "history" "history": "history"
} }
} }
@@ -54,7 +59,7 @@
其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。 其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。 `system` 为模板中的系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。 对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
@@ -85,7 +90,8 @@
"from": "gpt", "from": "gpt",
"value": "模型回答" "value": "模型回答"
} }
] ],
"system": "系统提示词(选填)"
} }
] ]
``` ```
@@ -97,7 +103,8 @@
"columns": { "columns": {
"messages": "conversations", "messages": "conversations",
"role": "from", "role": "from",
"content": "value" "content": "value",
"system": "system"
} }
} }
``` ```

View File

@@ -0,0 +1 @@
4748dff00d1dc42768a5b6cc772143c313017812

View File

@@ -1 +0,0 @@
38c89869c6aeca2a3af9ea1e09afe460f9b46810

View File

@@ -1,3 +1,37 @@
[build-system] [build-system]
requires = ["setuptools>=61.0"] requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"
[tool.black]
line-length = 119
target-version = ["py38"]
[tool.ruff]
ignore = ["C408", "C901", "E501", "E731", "E741", "W605"]
select = ["C", "E", "F", "I", "W"]
line-length = 119
[tool.ruff.isort]
lines-after-imports = 2
known-first-party = ["llmtuner"]
[isort]
default_section = "FIRSTPARTY"
known_first_party = "llmtuner"
known_third_party = [
"accelerate",
"datasets",
"gradio",
"numpy",
"peft",
"torch",
"transformers",
"trl"
]
line_length = 119
lines_after_imports = 2
multi_line_output = 3
include_trailing_comma = true
force_grid_wrap = 0
use_parentheses = true
ensure_newline_before_comments = true

View File

@@ -1,14 +1,14 @@
torch>=1.13.1 torch>=1.13.1
transformers>=4.31.0,<4.35.0 transformers>=4.36.2
datasets>=2.14.0 datasets>=2.14.3
accelerate>=0.21.0 accelerate>=0.21.0
peft>=0.6.0 peft>=0.7.0
trl>=0.7.4 trl>=0.7.6
gradio>=3.38.0,<4.0.0 gradio>=3.38.0,<4.0.0
scipy scipy
einops
sentencepiece sentencepiece
protobuf protobuf
tiktoken
jieba jieba
rouge-chinese rouge-chinese
nltk nltk

View File

@@ -1,3 +1,5 @@
import os
import uvicorn import uvicorn
from llmtuner import ChatModel, create_app from llmtuner import ChatModel, create_app
@@ -6,8 +8,8 @@ from llmtuner import ChatModel, create_app
def main(): def main():
chat_model = ChatModel() chat_model = ChatModel()
app = create_app(chat_model) app = create_app(chat_model)
print("Visit http://localhost:8000/docs for API document.") print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1) uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -1,17 +1,19 @@
from llmtuner import ChatModel from llmtuner import ChatModel
from llmtuner.extras.misc import torch_gc from llmtuner.extras.misc import torch_gc
try: try:
import platform import platform
if platform.system() != "Windows": if platform.system() != "Windows":
import readline import readline # noqa: F401
except ImportError: except ImportError:
print("Install `readline` for a better experience.") print("Install `readline` for a better experience.")
def main(): def main():
chat_model = ChatModel() chat_model = ChatModel()
history = [] messages = []
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.") print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
while True: while True:
@@ -27,20 +29,20 @@ def main():
break break
if query.strip() == "clear": if query.strip() == "clear":
history = [] messages = []
torch_gc() torch_gc()
print("History has been removed.") print("History has been removed.")
continue continue
messages.append({"role": "user", "content": query})
print("Assistant: ", end="", flush=True) print("Assistant: ", end="", flush=True)
response = "" response = ""
for new_text in chat_model.stream_chat(query, history): for new_text in chat_model.stream_chat(messages):
print(new_text, end="", flush=True) print(new_text, end="", flush=True)
response += new_text response += new_text
print() print()
messages.append({"role": "assistant", "content": response})
history = history + [(query, response)]
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -1,10 +1,11 @@
# Level: api, webui > chat, eval, train > data, model > extras, hparams # Level: api, webui > chat, eval, train > data, model > extras, hparams
from llmtuner.api import create_app from .api import create_app
from llmtuner.chat import ChatModel from .chat import ChatModel
from llmtuner.eval import Evaluator from .eval import Evaluator
from llmtuner.train import export_model, run_exp from .train import export_model, run_exp
from llmtuner.webui import create_ui, create_web_demo from .webui import create_ui, create_web_demo
__version__ = "0.3.3" __version__ = "0.5.0"
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]

View File

@@ -1 +1,4 @@
from llmtuner.api.app import create_app from .app import create_app
__all__ = ["create_app"]

View File

@@ -1,28 +1,31 @@
import asyncio
import json import json
from typing import List, Tuple import os
from pydantic import BaseModel
from contextlib import asynccontextmanager from contextlib import asynccontextmanager
from typing import Any, Dict, Sequence
from llmtuner.api.protocol import ( from pydantic import BaseModel
Role,
Finish, from ..chat import ChatModel
ModelCard, from ..data import Role as DataRole
ModelList, from ..extras.misc import torch_gc
ChatMessage, from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available
DeltaMessage, from .protocol import (
ChatCompletionMessage,
ChatCompletionRequest, ChatCompletionRequest,
ChatCompletionResponse, ChatCompletionResponse,
ChatCompletionStreamResponse,
ChatCompletionResponseChoice, ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice, ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage, ChatCompletionResponseUsage,
ChatCompletionStreamResponse,
Finish,
Function,
FunctionCall,
ModelCard,
ModelList,
Role,
ScoreEvaluationRequest, ScoreEvaluationRequest,
ScoreEvaluationResponse ScoreEvaluationResponse,
)
from llmtuner.chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.extras.packages import (
is_fastapi_availble, is_starlette_available, is_uvicorn_available
) )
@@ -40,15 +43,22 @@ if is_uvicorn_available():
@asynccontextmanager @asynccontextmanager
async def lifespan(app: "FastAPI"): # collects GPU memory async def lifespan(app: "FastAPI"): # collects GPU memory
yield yield
torch_gc() torch_gc()
def to_json(data: BaseModel) -> str: def dictify(data: "BaseModel") -> Dict[str, Any]:
try: # pydantic v2 try: # pydantic v2
return data.model_dump(exclude_unset=True)
except AttributeError: # pydantic v1
return data.dict(exclude_unset=True)
def jsonify(data: "BaseModel") -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False) return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except: # pydantic v1 except AttributeError: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False) return data.json(exclude_unset=True, ensure_ascii=False)
@@ -63,6 +73,8 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
allow_headers=["*"], allow_headers=["*"],
) )
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1)))
@app.get("/v1/models", response_model=ModelList) @app.get("/v1/models", response_model=ModelList)
async def list_models(): async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo") model_card = ModelCard(id="gpt-3.5-turbo")
@@ -74,91 +86,119 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
if len(request.messages) == 0 or request.messages[-1].role != Role.USER: if len(request.messages) == 0 or request.messages[-1].role != Role.USER:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
query = request.messages[-1].content messages = [dictify(message) for message in request.messages]
prev_messages = request.messages[:-1] if len(messages) and messages[0]["role"] == Role.SYSTEM:
if len(prev_messages) and prev_messages[0].role == Role.SYSTEM: system = messages.pop(0)["content"]
system = prev_messages.pop(0).content
else: else:
system = None system = None
history = [] if len(messages) % 2 == 0:
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT:
history.append([prev_messages[i].content, prev_messages[i+1].content])
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
for i in range(len(messages)):
if i % 2 == 0 and messages[i]["role"] not in [Role.USER, Role.TOOL]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
elif i % 2 == 1 and messages[i]["role"] not in [Role.ASSISTANT, Role.FUNCTION]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
elif messages[i]["role"] == Role.TOOL:
messages[i]["role"] = DataRole.OBSERVATION
tool_list = request.tools
if len(tool_list):
try:
tools = json.dumps([tool_list[0]["function"]], ensure_ascii=False)
except Exception:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
else:
tools = ""
async with semaphore:
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, chat_completion, messages, system, tools, request)
def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest):
if request.stream: if request.stream:
generate = predict(query, history, system, request) generate = stream_chat_completion(messages, system, tools, request)
return EventSourceResponse(generate, media_type="text/event-stream") return EventSourceResponse(generate, media_type="text/event-stream")
responses = chat_model.chat( responses = chat_model.chat(
query, history, system, messages,
system,
tools,
do_sample=request.do_sample, do_sample=request.do_sample,
temperature=request.temperature, temperature=request.temperature,
top_p=request.top_p, top_p=request.top_p,
max_new_tokens=request.max_tokens, max_new_tokens=request.max_tokens,
num_return_sequences=request.n num_return_sequences=request.n,
) )
prompt_length, response_length = 0, 0 prompt_length, response_length = 0, 0
choices = [] choices = []
for i, response in enumerate(responses): for i, response in enumerate(responses):
choices.append(ChatCompletionResponseChoice( if tools:
index=i, result = chat_model.template.format_tools.extract(response.response_text)
message=ChatMessage(role=Role.ASSISTANT, content=response.response_text), else:
finish_reason=Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH result = response.response_text
))
if isinstance(result, tuple):
name, arguments = result
function = Function(name=name, arguments=arguments)
response_message = ChatCompletionMessage(
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)]
)
finish_reason = Finish.TOOL
else:
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
choices.append(
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason)
)
prompt_length = response.prompt_length prompt_length = response.prompt_length
response_length += response.response_length response_length += response.response_length
usage = ChatCompletionResponseUsage( usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length, prompt_tokens=prompt_length,
completion_tokens=response_length, completion_tokens=response_length,
total_tokens=prompt_length+response_length total_tokens=prompt_length + response_length,
) )
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest): def stream_chat_completion(
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest
):
choice_data = ChatCompletionResponseStreamChoice( choice_data = ChatCompletionResponseStreamChoice(
index=0, index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None
delta=DeltaMessage(role=Role.ASSISTANT),
finish_reason=None
) )
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk) yield jsonify(chunk)
for new_text in chat_model.stream_chat( for new_text in chat_model.stream_chat(
query, history, system, messages,
system,
tools,
do_sample=request.do_sample, do_sample=request.do_sample,
temperature=request.temperature, temperature=request.temperature,
top_p=request.top_p, top_p=request.top_p,
max_new_tokens=request.max_tokens max_new_tokens=request.max_tokens,
): ):
if len(new_text) == 0: if len(new_text) == 0:
continue continue
choice_data = ChatCompletionResponseStreamChoice( choice_data = ChatCompletionResponseStreamChoice(
index=0, index=0, delta=ChatCompletionMessage(content=new_text), finish_reason=None
delta=DeltaMessage(content=new_text),
finish_reason=None
) )
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk) yield jsonify(chunk)
choice_data = ChatCompletionResponseStreamChoice( choice_data = ChatCompletionResponseStreamChoice(
index=0, index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
delta=DeltaMessage(),
finish_reason=Finish.STOP
) )
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield to_json(chunk) yield jsonify(chunk)
yield "[DONE]" yield "[DONE]"
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK) @app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK)
@@ -168,7 +208,12 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
if len(request.messages) == 0: if len(request.messages) == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
async with semaphore:
loop = asyncio.get_running_loop()
return await loop.run_in_executor(None, get_score, request)
def get_score(request: ScoreEvaluationRequest):
scores = chat_model.get_scores(request.messages, max_length=request.max_length) scores = chat_model.get_scores(request.messages, max_length=request.max_length)
return ScoreEvaluationResponse(model=request.model, scores=scores) return ScoreEvaluationResponse(model=request.model, scores=scores)
@@ -178,4 +223,4 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
if __name__ == "__main__": if __name__ == "__main__":
chat_model = ChatModel() chat_model = ChatModel()
app = create_app(chat_model) app = create_app(chat_model)
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1) uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)

View File

@@ -1,30 +1,48 @@
import time import time
from enum import Enum from enum import Enum, unique
from pydantic import BaseModel, Field
from typing import List, Optional from typing import List, Optional
from pydantic import BaseModel, Field
from typing_extensions import Literal
@unique
class Role(str, Enum): class Role(str, Enum):
USER = "user" USER = "user"
ASSISTANT = "assistant" ASSISTANT = "assistant"
SYSTEM = "system" SYSTEM = "system"
FUNCTION = "function"
TOOL = "tool"
@unique
class Finish(str, Enum): class Finish(str, Enum):
STOP = "stop" STOP = "stop"
LENGTH = "length" LENGTH = "length"
TOOL = "tool_calls"
class ModelCard(BaseModel): class ModelCard(BaseModel):
id: str id: str
object: Optional[str] = "model" object: Literal["model"] = "model"
created: Optional[int] = Field(default_factory=lambda: int(time.time())) created: int = Field(default_factory=lambda: int(time.time()))
owned_by: Optional[str] = "owner" owned_by: Literal["owner"] = "owner"
class ModelList(BaseModel): class ModelList(BaseModel):
object: Optional[str] = "list" object: Literal["list"] = "list"
data: Optional[List[ModelCard]] = [] data: List[ModelCard] = []
class Function(BaseModel):
name: str
arguments: str
class FunctionCall(BaseModel):
id: Literal["call_default"] = "call_default"
type: Literal["function"] = "function"
function: Function
class ChatMessage(BaseModel): class ChatMessage(BaseModel):
@@ -32,31 +50,33 @@ class ChatMessage(BaseModel):
content: str content: str
class DeltaMessage(BaseModel): class ChatCompletionMessage(BaseModel):
role: Optional[Role] = None role: Optional[Role] = None
content: Optional[str] = None content: Optional[str] = None
tool_calls: Optional[List[FunctionCall]] = None
class ChatCompletionRequest(BaseModel): class ChatCompletionRequest(BaseModel):
model: str model: str
messages: List[ChatMessage] messages: List[ChatMessage]
do_sample: Optional[bool] = True tools: Optional[list] = []
do_sample: bool = True
temperature: Optional[float] = None temperature: Optional[float] = None
top_p: Optional[float] = None top_p: Optional[float] = None
n: Optional[int] = 1 n: int = 1
max_tokens: Optional[int] = None max_tokens: Optional[int] = None
stream: Optional[bool] = False stream: bool = False
class ChatCompletionResponseChoice(BaseModel): class ChatCompletionResponseChoice(BaseModel):
index: int index: int
message: ChatMessage message: ChatCompletionMessage
finish_reason: Finish finish_reason: Finish
class ChatCompletionResponseStreamChoice(BaseModel): class ChatCompletionResponseStreamChoice(BaseModel):
index: int index: int
delta: DeltaMessage delta: ChatCompletionMessage
finish_reason: Optional[Finish] = None finish_reason: Optional[Finish] = None
@@ -67,18 +87,18 @@ class ChatCompletionResponseUsage(BaseModel):
class ChatCompletionResponse(BaseModel): class ChatCompletionResponse(BaseModel):
id: Optional[str] = "chatcmpl-default" id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Optional[str] = "chat.completion" object: Literal["chat.completion"] = "chat.completion"
created: Optional[int] = Field(default_factory=lambda: int(time.time())) created: int = Field(default_factory=lambda: int(time.time()))
model: str model: str
choices: List[ChatCompletionResponseChoice] choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel): class ChatCompletionStreamResponse(BaseModel):
id: Optional[str] = "chatcmpl-default" id: Literal["chatcmpl-default"] = "chatcmpl-default"
object: Optional[str] = "chat.completion.chunk" object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: Optional[int] = Field(default_factory=lambda: int(time.time())) created: int = Field(default_factory=lambda: int(time.time()))
model: str model: str
choices: List[ChatCompletionResponseStreamChoice] choices: List[ChatCompletionResponseStreamChoice]
@@ -90,7 +110,7 @@ class ScoreEvaluationRequest(BaseModel):
class ScoreEvaluationResponse(BaseModel): class ScoreEvaluationResponse(BaseModel):
id: Optional[str] = "scoreeval-default" id: Literal["scoreeval-default"] = "scoreeval-default"
object: Optional[str] = "score.evaluation" object: Literal["score.evaluation"] = "score.evaluation"
model: str model: str
scores: List[float] scores: List[float]

View File

@@ -1 +1,4 @@
from llmtuner.chat.chat_model import ChatModel from .chat_model import ChatModel
__all__ = ["ChatModel"]

View File

@@ -1,18 +1,18 @@
import torch
import tiktoken
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Dict, Generator, List, Literal, Optional, Tuple
from threading import Thread from threading import Thread
from typing import Any, Dict, Generator, List, Literal, Optional, Sequence, Tuple
import torch
from transformers import GenerationConfig, TextIteratorStreamer from transformers import GenerationConfig, TextIteratorStreamer
from llmtuner.data.template import get_template_and_fix_tokenizer from ..data import get_template_and_fix_tokenizer
from llmtuner.extras.misc import get_logits_processor from ..extras.misc import get_logits_processor
from llmtuner.model import dispatch_model, get_infer_args, load_model_and_tokenizer from ..hparams import get_infer_args
from ..model import dispatch_model, load_model_and_tokenizer
@dataclass @dataclass
class Response: class Response:
response_text: str response_text: str
response_length: int response_length: int
prompt_length: int prompt_length: int
@@ -20,28 +20,26 @@ class Response:
class ChatModel: class ChatModel:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args) model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
self.can_generate = (finetuning_args.stage == "sft") self.can_generate = finetuning_args.stage == "sft"
self.model, self.tokenizer = load_model_and_tokenizer( self.model, self.tokenizer = load_model_and_tokenizer(
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate) model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
) )
self.tokenizer.padding_side = "left" if self.can_generate else "right" self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.model = dispatch_model(self.model) self.model = dispatch_model(self.model)
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer) self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
self.system_prompt = data_args.system_prompt
def _process_args( def _process_args(
self, self,
query: str, messages: Sequence[Dict[str, str]],
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None, system: Optional[str] = None,
**input_kwargs tools: Optional[str] = None,
**input_kwargs,
) -> Tuple[Dict[str, Any], int]: ) -> Tuple[Dict[str, Any], int]:
system = system or self.system_prompt paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt, _ = self.template.encode_oneturn( prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp="", history=history, system=system tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
) )
prompt_length = len(prompt) prompt_length = len(prompt)
input_ids = torch.tensor([prompt], device=self.model.device) input_ids = torch.tensor([prompt], device=self.model.device)
@@ -56,16 +54,18 @@ class ChatModel:
max_new_tokens = input_kwargs.pop("max_new_tokens", None) max_new_tokens = input_kwargs.pop("max_new_tokens", None)
generating_args = self.generating_args.to_dict() generating_args = self.generating_args.to_dict()
generating_args.update(dict( generating_args.update(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"], dict(
temperature=temperature or generating_args["temperature"], do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
top_p=top_p or generating_args["top_p"], temperature=temperature or generating_args["temperature"],
top_k=top_k or generating_args["top_k"], top_p=top_p or generating_args["top_p"],
num_return_sequences=num_return_sequences or 1, top_k=top_k or generating_args["top_k"],
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"], num_return_sequences=num_return_sequences or 1,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids, repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
pad_token_id=self.tokenizer.pad_token_id eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
)) pad_token_id=self.tokenizer.pad_token_id,
)
)
if isinstance(num_return_sequences, int) and num_return_sequences > 1: if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True generating_args["do_sample"] = True
@@ -81,7 +81,7 @@ class ChatModel:
gen_kwargs = dict( gen_kwargs = dict(
inputs=input_ids, inputs=input_ids,
generation_config=GenerationConfig(**generating_args), generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor() logits_processor=get_logits_processor(),
) )
return gen_kwargs, prompt_length return gen_kwargs, prompt_length
@@ -89,17 +89,12 @@ class ChatModel:
@torch.inference_mode() @torch.inference_mode()
def chat( def chat(
self, self,
query: str, messages: Sequence[Dict[str, str]],
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None, system: Optional[str] = None,
**input_kwargs tools: Optional[str] = None,
**input_kwargs,
) -> List[Response]: ) -> List[Response]:
r""" gen_kwargs, prompt_length = self._process_args(messages, system, tools, **input_kwargs)
Args: query, history, system, **input_kwargs
Returns: [(response_text, prompt_length, response_length)] * n (default n=1)
"""
gen_kwargs, prompt_length = self._process_args(query, history, system, **input_kwargs)
generate_output = self.model.generate(**gen_kwargs) generate_output = self.model.generate(**gen_kwargs)
response_ids = generate_output[:, prompt_length:] response_ids = generate_output[:, prompt_length:]
response = self.tokenizer.batch_decode( response = self.tokenizer.batch_decode(
@@ -109,24 +104,26 @@ class ChatModel:
for i in range(len(response)): for i in range(len(response)):
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero() eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero()
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i]) response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i])
results.append(Response( results.append(
response_text=response[i], Response(
response_length=response_length, response_text=response[i],
prompt_length=prompt_length, response_length=response_length,
finish_reason="stop" if len(eos_index) else "length" prompt_length=prompt_length,
)) finish_reason="stop" if len(eos_index) else "length",
)
)
return results return results
@torch.inference_mode() @torch.inference_mode()
def stream_chat( def stream_chat(
self, self,
query: str, messages: Sequence[Dict[str, str]],
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None, system: Optional[str] = None,
**input_kwargs tools: Optional[str] = None,
**input_kwargs,
) -> Generator[str, None, None]: ) -> Generator[str, None, None]:
gen_kwargs, _ = self._process_args(query, history, system, **input_kwargs) gen_kwargs, _ = self._process_args(messages, system, tools, **input_kwargs)
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer gen_kwargs["streamer"] = streamer
@@ -136,16 +133,7 @@ class ChatModel:
yield from streamer yield from streamer
@torch.inference_mode() @torch.inference_mode()
def get_scores( def get_scores(self, batch_input: List[str], **input_kwargs) -> List[float]:
self,
batch_input: List[str],
**input_kwargs
) -> List[float]:
if isinstance(getattr(self.tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=True)
max_length = input_kwargs.pop("max_length", None) max_length = input_kwargs.pop("max_length", None)
device = getattr(self.model.pretrained_model, "device", "cuda") device = getattr(self.model.pretrained_model, "device", "cuda")
@@ -154,9 +142,8 @@ class ChatModel:
padding=True, padding=True,
truncation=True, truncation=True,
max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024), max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024),
pad_to_multiple_of=8,
return_tensors="pt", return_tensors="pt",
**kwargs add_special_tokens=True,
).to(device) ).to(device)
input_ids: torch.Tensor = inputs["input_ids"] input_ids: torch.Tensor = inputs["input_ids"]

View File

@@ -1,4 +1,6 @@
from llmtuner.data.loader import get_dataset from .loader import get_dataset
from llmtuner.data.preprocess import preprocess_dataset from .template import get_template_and_fix_tokenizer, templates
from llmtuner.data.template import get_template_and_fix_tokenizer from .utils import Role, split_dataset
from llmtuner.data.utils import split_dataset
__all__ = ["get_dataset", "get_template_and_fix_tokenizer", "templates", "Role", "split_dataset"]

View File

@@ -0,0 +1,108 @@
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Union
from .utils import Role
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from ..hparams import DataArguments
from .parser import DatasetAttr
def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
for i in range(len(examples[dataset_attr.prompt])):
prompt = []
if dataset_attr.history:
for old_prompt, old_response in examples[dataset_attr.history][i]:
prompt.append({"role": Role.USER, "content": old_prompt})
prompt.append({"role": Role.ASSISTANT, "content": old_response})
instruction = examples[dataset_attr.prompt][i]
if dataset_attr.query and examples[dataset_attr.query][i]:
instruction += "\n" + examples[dataset_attr.query][i]
prompt.append({"role": Role.USER, "content": instruction})
if dataset_attr.response:
if isinstance(examples[dataset_attr.response][i], list):
response = [
{"role": Role.ASSISTANT, "content": content} for content in examples[dataset_attr.response][i]
]
else:
response = [{"role": Role.ASSISTANT, "content": examples[dataset_attr.response][i]}]
else:
response = []
outputs["prompt"].append(prompt)
outputs["response"].append(response)
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
outputs["tools"].append("")
return outputs
def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
tag_mapping = {
dataset_attr.user_tag: Role.USER,
dataset_attr.assistant_tag: Role.ASSISTANT,
dataset_attr.observation_tag: Role.OBSERVATION,
dataset_attr.function_tag: Role.FUNCTION,
}
for i, messages in enumerate(examples[dataset_attr.messages]):
messages = messages[: len(messages) // 2 * 2] # should be multiples of 2
if len(messages) == 0:
continue
prompt = []
response = []
for turn_idx, message in enumerate(messages):
if turn_idx % 2 == 0:
accept_tags = [dataset_attr.user_tag, dataset_attr.observation_tag]
else:
accept_tags = [dataset_attr.assistant_tag, dataset_attr.function_tag]
if message[dataset_attr.role_tag] not in accept_tags:
raise ValueError("Invalid role tag in {}.".format(messages))
prompt.append(
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
)
last_message = prompt.pop(-1)
response.append(last_message)
outputs["prompt"].append(prompt)
outputs["response"].append(response)
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
return outputs
def align_dataset(
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
) -> Union["Dataset", "IterableDataset"]:
r"""
Aligned dataset:
prompt: [{"role": "user", "content": "..."}]
response: [{"role": "assistant", "content": "..."}]
system: "..."
tools: "..."
"""
if dataset_attr.formatting == "alpaca":
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr)
else:
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr)
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Converting format of dataset",
)
return dataset.map(convert_func, batched=True, remove_columns=column_names, **kwargs)

View File

@@ -0,0 +1,148 @@
import json
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, Dict, List, Literal, Sequence, Set, Tuple, Union
SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]]
JSON_FORMAT_PROMPT = (
""", in a JSON format representing the kwargs (e.g. ```{"input": "hello world", "num_beams": 5}```)"""
)
TOOL_SYSTEM_PROMPT = (
"You have access to the following tools:\n{tool_text}"
"Use the following format to answer the question:\n"
"```\n"
"Action: the action to take, should be one of [{tool_names}] if using a tool.\n"
"Action Input: the input to the action{format_prompt}.\n"
"```"
)
def default_tool_formatter(tools: List[Dict[str, Any]]) -> str:
tool_text = ""
tool_names = []
for tool in tools:
param_text = ""
for name, param in tool["parameters"]["properties"].items():
required = ", required" if name in tool["parameters"].get("required", []) else ""
enum = ", should be one of [{}]".format(", ".join(param["enum"])) if param.get("enum", None) else ""
param_text += " - {name} ({type}{required}): {desc}{enum}\n".format(
name=name,
type=param.get("type", ""),
required=required,
desc=param.get("description", ""),
enum=enum,
)
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
name=tool["name"], desc=tool.get("description", ""), args=param_text
)
tool_names.append(tool["name"])
return TOOL_SYSTEM_PROMPT.format(
tool_text=tool_text, tool_names=", ".join(tool_names), format_prompt=JSON_FORMAT_PROMPT
)
def default_tool_extractor(content: str) -> Union[str, Tuple[str, str]]:
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+).*?Action Input:\s*(.*)", re.DOTALL)
action_match = re.search(regex, content)
if not action_match:
return content
tool_name = action_match.group(1).strip()
tool_input = action_match.group(2).strip().strip('"').strip("```")
try:
arguments = json.loads(tool_input)
except json.JSONDecodeError:
return content
return tool_name, json.dumps(arguments, ensure_ascii=False)
@dataclass
class Formatter(ABC):
slots: SLOTS = field(default_factory=list)
tool_format: Literal["default"] = "default"
@abstractmethod
def apply(self, **kwargs) -> SLOTS:
...
def extract(self, content: str) -> Union[str, Tuple[str, str]]:
raise NotImplementedError
@dataclass
class EmptyFormatter(Formatter):
def apply(self, **kwargs) -> SLOTS:
return self.slots
@dataclass
class StringFormatter(Formatter):
def apply(self, **kwargs) -> SLOTS:
elements = []
for slot in self.slots:
if isinstance(slot, str):
for name, value in kwargs.items():
slot = slot.replace("{{" + name + "}}", value, 1)
elements.append(slot)
elif isinstance(slot, (dict, set)):
elements.append(slot)
else:
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
return elements
@dataclass
class FunctionFormatter(Formatter):
def apply(self, **kwargs) -> SLOTS:
content = kwargs.pop("content")
try:
function = json.loads(content)
name = function["name"]
arguments = json.dumps(function["arguments"], ensure_ascii=False)
except Exception:
name, arguments = "", ""
elements = []
for slot in self.slots:
if isinstance(slot, str):
slot = slot.replace("{{name}}", name).replace("{{arguments}}", arguments)
elements.append(slot)
elif isinstance(slot, (dict, set)):
elements.append(slot)
else:
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(slot)))
return elements
@dataclass
class ToolFormatter(Formatter):
def apply(self, **kwargs) -> SLOTS:
content = kwargs.pop("content")
try:
tools = json.loads(content)
if not len(tools):
return [""]
if self.tool_format == "default":
return [default_tool_formatter(tools)]
else:
raise NotImplementedError
except Exception:
return [""]
def extract(self, content: str) -> Union[str, Tuple[str, str]]:
if self.tool_format == "default":
return default_tool_extractor(content)
else:
raise NotImplementedError

View File

@@ -1,135 +1,121 @@
import inspect
import os import os
from typing import TYPE_CHECKING, Any, Dict, List, Union from typing import TYPE_CHECKING, List, Literal, Union
from datasets import concatenate_datasets, interleave_datasets, load_dataset from datasets import concatenate_datasets, interleave_datasets, load_dataset, load_from_disk
from ..extras.constants import FILEEXT2TYPE
from ..extras.logging import get_logger
from .aligner import align_dataset
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func
from .template import get_template_and_fix_tokenizer
from .utils import checksum
from llmtuner.data.utils import checksum, EXT2TYPE
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from datasets import Dataset, IterableDataset from datasets import Dataset, IterableDataset
from llmtuner.hparams import ModelArguments, DataArguments from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from ..hparams import DataArguments, ModelArguments
from .parser import DatasetAttr
logger = get_logger(__name__) logger = get_logger(__name__)
def get_dataset( def load_single_dataset(
dataset_attr: "DatasetAttr",
model_args: "ModelArguments", model_args: "ModelArguments",
data_args: "DataArguments" data_args: "DataArguments",
) -> Union["Dataset", "IterableDataset"]: ):
max_samples = data_args.max_samples data_path, data_name, data_dir, data_files = None, None, None, None
all_datasets: List[Union["Dataset", "IterableDataset"]] = [] # support multiple datasets if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
for dataset_attr in data_args.dataset_list: elif dataset_attr.load_from == "script":
logger.info("Loading dataset {}...".format(dataset_attr)) data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_name = dataset_attr.subset
data_dir = dataset_attr.folder
if dataset_attr.load_from == "hf_hub": elif dataset_attr.load_from == "file":
data_path = dataset_attr.dataset_name data_files = []
data_name = dataset_attr.subset local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_files = None if os.path.isdir(local_path): # is directory
elif dataset_attr.load_from == "script": for file_name in os.listdir(local_path):
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) data_files.append(os.path.join(local_path, file_name))
data_name = dataset_attr.subset if data_path is None:
data_files = None data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None)
elif dataset_attr.load_from == "file": elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None):
data_path, data_name = None, None raise ValueError("File types should be identical.")
data_files: List[str] = [] elif os.path.isfile(local_path): # is file
if os.path.isdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is directory data_files.append(local_path)
for file_name in os.listdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name, file_name))
if data_path is None:
data_path = EXT2TYPE.get(file_name.split(".")[-1], None)
else:
assert data_path == EXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical."
elif os.path.isfile(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is file
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name))
data_path = EXT2TYPE.get(dataset_attr.dataset_name.split(".")[-1], None)
else:
raise ValueError("File not found.")
assert data_path, "File extension must be txt, csv, json or jsonl."
checksum(data_files, dataset_attr.dataset_sha1)
else: else:
raise NotImplementedError raise ValueError("File not found.")
if data_path is None:
raise ValueError("File extension must be txt, csv, json or jsonl.")
checksum(data_files, dataset_attr.dataset_sha1)
else:
raise NotImplementedError
if dataset_attr.load_from == "ms_hub":
try:
from modelscope import MsDataset
from modelscope.utils.config_ds import MS_DATASETS_CACHE
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
dataset = MsDataset.load(
dataset_name=data_path,
subset_name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
).to_hf_dataset()
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
else:
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
dataset = load_dataset( dataset = load_dataset(
path=data_path, path=data_path,
name=data_name, name=data_name,
data_dir=data_dir,
data_files=data_files, data_files=data_files,
split=data_args.split, split=data_args.split,
cache_dir=model_args.cache_dir, cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token, token=model_args.hf_hub_token,
streaming=(data_args.streaming and (dataset_attr.load_from != "file")) streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
**kwargs,
) )
if data_args.streaming and (dataset_attr.load_from == "file"): if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if max_samples is not None: # truncate dataset if data_args.max_samples is not None: # truncate dataset
dataset = dataset.select(range(min(len(dataset), max_samples))) num_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(num_samples))
def convert_format(examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]: return align_dataset(dataset, dataset_attr, data_args)
# convert dataset from sharegpt format to alpaca format
outputs = {"prompt": [], "query": [], "response": [], "history": []}
for msg_list in examples[dataset_attr.messages]:
msg_list = msg_list[:len(msg_list) // 2 * 2] # should be multiples of 2
if len(msg_list) == 0:
continue
msg_pairs = []
user_role, assistant_role = None, None
for idx in range(0, len(msg_list), 2):
if user_role is None and assistant_role is None:
user_role = msg_list[idx][dataset_attr.role]
assistant_role = msg_list[idx + 1][dataset_attr.role]
else:
if (
msg_list[idx][dataset_attr.role] != user_role
or msg_list[idx+1][dataset_attr.role] != assistant_role
):
raise ValueError("Only accepts conversation in u/a/u/a/u/a order.")
msg_pairs.append((msg_list[idx][dataset_attr.content], msg_list[idx + 1][dataset_attr.content]))
if len(msg_pairs) != 0: def merge_dataset(
outputs["prompt"].append(msg_pairs[-1][0]) all_datasets: List[Union["Dataset", "IterableDataset"]],
outputs["query"].append("") data_args: "DataArguments",
outputs["response"].append(msg_pairs[-1][1]) training_args: "Seq2SeqTrainingArguments",
outputs["history"].append(msg_pairs[:-1]) ) -> Union["Dataset", "IterableDataset"]:
if len(all_datasets) == 1:
return outputs
if dataset_attr.formatting == "sharegpt": # convert format
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Converting format of dataset"
)
dataset = dataset.map(
convert_format,
batched=True,
remove_columns=column_names,
**kwargs
)
else:
for column_name in ["prompt", "query", "response", "history"]: # align dataset
if getattr(dataset_attr, column_name) and getattr(dataset_attr, column_name) != column_name:
dataset = dataset.rename_column(getattr(dataset_attr, column_name), column_name)
if dataset_attr.system_prompt: # add system prompt
system_prompt = dataset_attr.system_prompt
if data_args.streaming:
dataset = dataset.map(lambda _: {"system": system_prompt})
else:
dataset = dataset.add_column("system", [system_prompt] * len(dataset))
all_datasets.append(dataset)
if len(data_args.dataset_list) == 1:
return all_datasets[0] return all_datasets[0]
elif data_args.mix_strategy == "concat": elif data_args.mix_strategy == "concat":
if data_args.streaming: if data_args.streaming:
@@ -141,8 +127,67 @@ def get_dataset(
return interleave_datasets( return interleave_datasets(
datasets=all_datasets, datasets=all_datasets,
probabilities=data_args.interleave_probs, probabilities=data_args.interleave_probs,
seed=data_args.seed, seed=training_args.seed,
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted" stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
) )
else: else:
raise ValueError("Unknown mixing strategy.") raise ValueError("Unknown mixing strategy.")
def get_dataset(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
# split: Optional[str] = "train", # TODO: add split
) -> Union["Dataset", "IterableDataset"]:
template = get_template_and_fix_tokenizer(data_args.template, tokenizer)
if data_args.train_on_prompt and template.efficient_eos:
raise ValueError("Current template does not support `train_on_prompt`.")
# Load from cache
if data_args.cache_path is not None:
if os.path.exists(data_args.cache_path):
logger.warning("Loading dataset from disk will ignore other data arguments.")
dataset = load_from_disk(data_args.cache_path)
if data_args.streaming:
dataset = dataset.to_iterable_dataset()
return dataset
if data_args.streaming:
raise ValueError("Turn off dataset streaming to save cache files.")
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args): # TODO: add split
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
dataset = merge_dataset(all_datasets, data_args, training_args)
with training_args.main_process_first(desc="pre-process dataset"):
preprocess_func, print_function = get_preprocess_and_print_func(
tokenizer, template, data_args, training_args, stage
)
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Running tokenizer on dataset",
)
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
if training_args.should_save:
dataset.save_to_disk(data_args.cache_path)
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
if training_args.should_log:
try:
print_function(next(iter(dataset)))
except StopIteration:
raise RuntimeError("Empty dataset!")
return dataset

103
src/llmtuner/data/parser.py Normal file
View File

@@ -0,0 +1,103 @@
import json
import os
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Literal, Optional
from ..extras.constants import DATA_CONFIG
from ..extras.misc import use_modelscope
if TYPE_CHECKING:
from ..hparams import DataArguments
@dataclass
class DatasetAttr:
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
subset: Optional[str] = None
folder: Optional[str] = None
ranking: Optional[bool] = False
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca"
system: Optional[str] = None
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
messages: Optional[str] = "conversations"
tools: Optional[str] = None
role_tag: Optional[str] = "from"
content_tag: Optional[str] = "value"
user_tag: Optional[str] = "human"
assistant_tag: Optional[str] = "gpt"
observation_tag: Optional[str] = "observation"
function_tag: Optional[str] = "function_call"
def __repr__(self) -> str:
return self.dataset_name
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
try:
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
dataset_info = json.load(f)
except Exception as err:
if data_args.dataset is not None:
raise ValueError(
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
)
dataset_info = None
if data_args.interleave_probs is not None:
data_args.interleave_probs = [float(prob.strip()) for prob in data_args.interleave_probs.split(",")]
dataset_list: List[DatasetAttr] = []
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
has_hf_url = "hf_hub_url" in dataset_info[name]
has_ms_url = "ms_hub_url" in dataset_info[name]
if has_hf_url or has_ms_url:
if (use_modelscope() and has_ms_url) or (not has_hf_url):
dataset_attr = DatasetAttr("ms_hub", dataset_name=dataset_info[name]["ms_hub_url"])
else:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr(
"file",
dataset_name=dataset_info[name]["file_name"],
dataset_sha1=dataset_info[name].get("file_sha1", None),
)
dataset_attr.subset = dataset_info[name].get("subset", None)
dataset_attr.folder = dataset_info[name].get("folder", None)
dataset_attr.ranking = dataset_info[name].get("ranking", False)
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca")
if "columns" in dataset_info[name]:
if dataset_attr.formatting == "alpaca":
column_names = ["prompt", "query", "response", "history"]
else:
column_names = ["messages", "tools"]
column_names += ["system"]
for column_name in column_names:
setattr(dataset_attr, column_name, dataset_info[name]["columns"].get(column_name, None))
if dataset_attr.formatting == "sharegpt" and "tags" in dataset_info[name]:
for tag in ["role_tag", "content_tag", "user_tag", "assistant_tag", "observation_tag", "function_tag"]:
setattr(dataset_attr, tag, dataset_info[name]["tags"].get(tag, None))
dataset_list.append(dataset_attr)
return dataset_list

View File

@@ -1,275 +1,248 @@
import os from functools import partial
import tiktoken
from itertools import chain from itertools import chain
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal, Tuple, Union from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple
from datasets import load_from_disk from ..extras.constants import IGNORE_INDEX
from ..extras.logging import get_logger
from llmtuner.data.template import get_template_and_fix_tokenizer
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils import PreTrainedTokenizer
from llmtuner.hparams import DataArguments
from ..hparams import DataArguments
from .template import Template
logger = get_logger(__name__) logger = get_logger(__name__)
def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]: def preprocess_pretrain_dataset(
for i in range(len(examples["prompt"])): examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
query, response = examples["prompt"][i], examples["response"][i] ) -> Dict[str, List[List[int]]]:
query = query + "\n" + examples["query"][i] if "query" in examples and examples["query"][i] else query # build grouped texts with format `X1 X2 X3 ...`
history = examples["history"][i] if "history" in examples else None text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))]
system = examples["system"][i] if "system" in examples else None tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
yield query, response, history, system for i in range(len(tokenized_examples["input_ids"])):
tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id]
tokenized_examples["attention_mask"][i] += [1]
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
def infer_max_len(source_len: int, target_len: int, data_args: "DataArguments") -> Tuple[int, int]: def preprocess_supervised_dataset(
max_target_len = int(data_args.cutoff_len * (target_len / (source_len + target_len))) examples: Dict[str, List[Any]],
max_target_len = max(max_target_len, data_args.reserved_label_len)
max_source_len = data_args.cutoff_len - max_target_len
return max_source_len, max_target_len
def preprocess_dataset(
dataset: Union["Dataset", "IterableDataset"],
tokenizer: "PreTrainedTokenizer", tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments", data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments", ) -> Dict[str, List[List[int]]]:
stage: Literal["pt", "sft", "rm", "ppo"] # build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
) -> Union["Dataset", "IterableDataset"]: # for multiturn examples, we only mask the prompt part in each prompt-response pair.
template = get_template_and_fix_tokenizer(data_args.template, tokenizer) model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
if data_args.train_on_prompt and template.efficient_eos: for i in range(len(examples["prompt"])):
raise ValueError("Current template does not support `train_on_prompt`.") if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
continue
def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]: messages = examples["prompt"][i] + examples["response"][i]
# build grouped texts with format `X1 X2 X3 ...`
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=True)
if hasattr(tokenizer, "add_eos_token"): # for LLaMA tokenizer
add_eos_token_flag = getattr(tokenizer, "add_eos_token")
setattr(tokenizer, "add_eos_token", True)
tokenized_examples = tokenizer(examples["prompt"], **kwargs)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
# make sure the saved tokenizer is the same as the original one
if hasattr(tokenizer, "add_eos_token"):
setattr(tokenizer, "add_eos_token", add_eos_token_flag)
return result
def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for query, response, history, system in construct_example(examples):
if not (isinstance(query, str) and isinstance(response, str) and query != "" and response != ""):
continue
input_ids, labels = [], []
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, query, response, history, system
)):
source_len, target_len = len(source_ids), len(target_ids)
max_source_len, max_target_len = infer_max_len(source_len, target_len, data_args)
if source_len > max_source_len:
source_ids = source_ids[:max_source_len]
if target_len > max_target_len:
target_ids = target_ids[:max_target_len]
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
if len(input_ids) > data_args.cutoff_len:
input_ids = input_ids[:data_args.cutoff_len]
labels = labels[:data_args.cutoff_len]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_packed_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
input_ids, labels = [], [] input_ids, labels = [], []
for query, response, history, system in construct_example(examples): for turn_idx, (source_ids, target_ids) in enumerate(
if not (isinstance(query, str) and isinstance(response, str) and query != "" and response != ""): template.encode_multiturn(
continue tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
)
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn( input_ids += source_ids + target_ids
tokenizer, query, response, history, system labels += source_mask + target_ids
)):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos: if template.efficient_eos:
input_ids += [tokenizer.eos_token_id] input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id]
total_length = len(input_ids) model_inputs["input_ids"].append(input_ids)
block_size = data_args.cutoff_len model_inputs["attention_mask"].append([1] * len(input_ids))
# we drop the small remainder, and if the total_length < block_size, we exclude this batch model_inputs["labels"].append(labels)
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
model_inputs["input_ids"].append(input_ids[i: i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i: i + block_size])
return model_inputs return model_inputs
def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for query, response, history, system in construct_example(examples): def preprocess_packed_supervised_dataset(
if not (isinstance(query, str) and query != ""): examples: Dict[str, List[Any]],
continue tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
input_ids, labels = [], []
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
continue
input_ids, labels = template.encode_oneturn(tokenizer, query, response, history, system) messages = examples["prompt"][i] + examples["response"][i]
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i])
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
if template.efficient_eos: input_ids += source_ids + target_ids
labels += [tokenizer.eos_token_id] labels += source_mask + target_ids
if len(input_ids) > data_args.cutoff_len: if template.efficient_eos:
input_ids = input_ids[:data_args.cutoff_len] input_ids += [tokenizer.eos_token_id]
if len(labels) > data_args.cutoff_len: labels += [tokenizer.eos_token_id]
labels = labels[:data_args.cutoff_len]
model_inputs["input_ids"].append(input_ids) total_length = len(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids)) block_size = data_args.cutoff_len
model_inputs["labels"].append(labels) # we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
model_inputs["input_ids"].append(input_ids[i : i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i : i + block_size])
return model_inputs return model_inputs
def preprocess_pairwise_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
for query, response, history, system in construct_example(examples):
if not (isinstance(query, str) and isinstance(response, list) and query != "" and len(response) > 1):
continue
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, system) def preprocess_unsupervised_dataset(
_, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, system) examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
if template.efficient_eos: for i in range(len(examples["prompt"])):
chosen_ids += [tokenizer.eos_token_id] if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) != 1:
rejected_ids += [tokenizer.eos_token_id] continue
source_len, target_len = len(prompt_ids), max(len(chosen_ids), len(rejected_ids)) messages = examples["prompt"][i] + examples["response"][i]
max_source_len, max_target_len = infer_max_len(source_len, target_len, data_args) input_ids, labels = template.encode_oneturn(
if source_len > max_source_len: tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
prompt_ids = prompt_ids[:max_source_len]
if target_len > max_target_len:
chosen_ids = chosen_ids[:max_target_len]
rejected_ids = rejected_ids[:max_target_len]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)
return model_inputs
def print_supervised_dataset_example(example: Dict[str, List[int]]) -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
))
def print_pairwise_dataset_example(example: Dict[str, List[int]]) -> None:
print("prompt_ids:\n{}".format(example["prompt_ids"]))
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
print("chosen_ids:\n{}".format(example["chosen_ids"]))
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)))
print("rejected_ids:\n{}".format(example["rejected_ids"]))
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))
def print_unsupervised_dataset_example(example: Dict[str, List[int]]) -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
if stage == "pt":
preprocess_func = preprocess_pretrain_dataset
print_function = print_unsupervised_dataset_example
elif stage == "sft" and not training_args.predict_with_generate:
preprocess_func = preprocess_packed_supervised_dataset if data_args.sft_packing else preprocess_supervised_dataset
print_function = print_supervised_dataset_example
elif stage == "rm":
preprocess_func = preprocess_pairwise_dataset
print_function = print_pairwise_dataset_example
else:
preprocess_func = preprocess_unsupervised_dataset
print_function = print_unsupervised_dataset_example
if data_args.cache_path is not None and os.path.exists(data_args.cache_path):
logger.warning("Loading dataset from disk will ignore other data arguments.")
return load_from_disk(data_args.cache_path)
with training_args.main_process_first(desc="dataset map pre-processing"):
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Running tokenizer on dataset"
)
dataset = dataset.map(
preprocess_func,
batched=True,
remove_columns=column_names,
**kwargs
) )
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path): if template.efficient_eos:
if training_args.should_save: labels += [tokenizer.eos_token_id]
dataset.save_to_disk(data_args.cache_path)
raise SystemExit("Dataset saved, rerun this script with the same `--cache_path`.")
if training_args.should_log: model_inputs["input_ids"].append(input_ids)
try: model_inputs["attention_mask"].append([1] * len(input_ids))
print_function(next(iter(dataset))) model_inputs["labels"].append(labels)
except StopIteration:
raise RuntimeError("Empty dataset!")
return dataset return model_inputs
def preprocess_pairwise_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) == 0 or len(examples["response"][i]) < 2:
continue
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
prompt_ids, chosen_ids = template.encode_oneturn(
tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
)
_, rejected_ids = template.encode_oneturn(
tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
)
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)
return model_inputs
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print(
"labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
)
)
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("prompt_ids:\n{}".format(example["prompt_ids"]))
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
print("chosen_ids:\n{}".format(example["chosen_ids"]))
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)))
print("rejected_ids:\n{}".format(example["rejected_ids"]))
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
def get_preprocess_and_print_func(
tokenizer: "PreTrainedTokenizer",
template: "Template",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
) -> Tuple[Callable, Callable]:
if stage == "pt":
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
elif stage == "sft" and not training_args.predict_with_generate:
if data_args.sft_packing:
preprocess_func = partial(
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
else:
preprocess_func = partial(
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
elif stage == "rm":
preprocess_func = partial(
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
else:
preprocess_func = partial(
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
return preprocess_func, print_function

File diff suppressed because it is too large Load Diff

View File

@@ -1,25 +1,26 @@
import hashlib import hashlib
from typing import TYPE_CHECKING, Dict, List, Optional, Union from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from ..extras.logging import get_logger
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from datasets import Dataset, IterableDataset from datasets import Dataset, IterableDataset
from transformers import TrainingArguments from transformers import TrainingArguments
from llmtuner.hparams import DataArguments from llmtuner.hparams import DataArguments
logger = get_logger(__name__) logger = get_logger(__name__)
EXT2TYPE = { @unique
"arrow": "arrow", class Role(str, Enum):
"csv": "csv", USER = "user"
"json": "json", ASSISTANT = "assistant"
"jsonl": "json", OBSERVATION = "observation"
"parquet": "parquet", FUNCTION = "function"
"txt": "text"
}
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
@@ -37,13 +38,18 @@ def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0])) logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
max_target_len = int(max_len * (target_len / (source_len + target_len)))
max_target_len = max(max_target_len, reserved_label_len)
max_source_len = max_len - max_target_len
return max_source_len, max_target_len
def split_dataset( def split_dataset(
dataset: Union["Dataset", "IterableDataset"], dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments"
data_args: "DataArguments",
training_args: "TrainingArguments"
) -> Dict[str, "Dataset"]: ) -> Dict[str, "Dataset"]:
if training_args.do_train: if training_args.do_train:
if data_args.val_size > 1e-6: # Split the dataset if data_args.val_size > 1e-6: # Split the dataset
if data_args.streaming: if data_args.streaming:
val_set = dataset.take(int(data_args.val_size)) val_set = dataset.take(int(data_args.val_size))
train_set = dataset.skip(int(data_args.val_size)) train_set = dataset.skip(int(data_args.val_size))
@@ -57,5 +63,5 @@ def split_dataset(
if data_args.streaming: if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
return {"train_dataset": dataset} return {"train_dataset": dataset}
else: # do_eval or do_predict else: # do_eval or do_predict
return {"eval_dataset": dataset} return {"eval_dataset": dataset}

View File

@@ -1 +1,4 @@
from llmtuner.eval.evaluator import Evaluator from .evaluator import Evaluator
__all__ = ["Evaluator"]

View File

@@ -1,41 +1,34 @@
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py # Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
import os
import json
import torch
import inspect import inspect
import tiktoken import json
import numpy as np import os
from tqdm import tqdm, trange
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
import numpy as np
import torch
from datasets import load_dataset from datasets import load_dataset
from tqdm import tqdm, trange
from transformers.utils import cached_file from transformers.utils import cached_file
from llmtuner.data.template import get_template_and_fix_tokenizer from ..data import get_template_and_fix_tokenizer
from llmtuner.eval.template import get_eval_template from ..extras.constants import CHOICES, SUBJECTS
from llmtuner.extras.constants import CHOICES, SUBJECTS from ..hparams import get_eval_args
from llmtuner.model import dispatch_model, get_eval_args, load_model_and_tokenizer from ..model import dispatch_model, load_model_and_tokenizer
from .template import get_eval_template
class Evaluator: class Evaluator:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args) self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args) self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2 self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
self.model = dispatch_model(self.model) self.model = dispatch_model(self.model)
self.template = get_template_and_fix_tokenizer(self.data_args.template, self.tokenizer) self.template = get_template_and_fix_tokenizer(self.data_args.template, self.tokenizer)
self.eval_template = get_eval_template(self.eval_args.lang) self.eval_template = get_eval_template(self.eval_args.lang)
self.choice_inputs = self._encode_choices() self.choice_inputs = [
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
def _encode_choices(self) -> List[int]: ]
if isinstance(getattr(self.tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
return [self.tokenizer.encode(self.eval_template.prefix + ch, **kwargs)[-1] for ch in CHOICES]
@torch.inference_mode() @torch.inference_mode()
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]: def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:
@@ -46,16 +39,11 @@ class Evaluator:
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)] return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
def eval(self) -> None: def eval(self) -> None:
if "token" in inspect.signature(cached_file).parameters:
kwargs = {"token": self.model_args.hf_hub_token}
elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0
kwargs = {"use_auth_token": self.model_args.hf_hub_token}
mapping = cached_file( mapping = cached_file(
path_or_repo_id = os.path.join(self.eval_args.task_dir, self.eval_args.task), path_or_repo_id=os.path.join(self.eval_args.task_dir, self.eval_args.task),
filename="mapping.json", filename="mapping.json",
cache_dir=self.model_args.cache_dir, cache_dir=self.model_args.cache_dir,
**kwargs token=self.model_args.hf_hub_token,
) )
with open(mapping, "r", encoding="utf-8") as f: with open(mapping, "r", encoding="utf-8") as f:
@@ -65,37 +53,45 @@ class Evaluator:
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0) pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
results = {} results = {}
for subject in pbar: for subject in pbar:
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
dataset = load_dataset( dataset = load_dataset(
path=os.path.join(self.eval_args.task_dir, self.eval_args.task), path=os.path.join(self.eval_args.task_dir, self.eval_args.task),
name=subject, name=subject,
cache_dir=self.model_args.cache_dir, cache_dir=self.model_args.cache_dir,
download_mode=self.eval_args.download_mode, download_mode=self.eval_args.download_mode,
token=self.model_args.hf_hub_token token=self.model_args.hf_hub_token,
**kwargs,
) )
pbar.set_postfix_str(categorys[subject]["name"]) pbar.set_postfix_str(categorys[subject]["name"])
inputs, outputs, labels = [], [], [] inputs, outputs, labels = [], [], []
for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False): for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False):
support_set = dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"])))) support_set = (
query, resp, history = self.eval_template.format_example( dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"]))))
)
messages = self.eval_template.format_example(
target_data=dataset[self.data_args.split][i], target_data=dataset[self.data_args.split][i],
support_set=support_set, support_set=support_set,
subject_name=categorys[subject]["name"], subject_name=categorys[subject]["name"],
use_history=self.template.use_history
) )
input_ids, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp=resp, history=history
)
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
labels.append(resp)
for i in trange(0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False): input_ids, _ = self.template.encode_oneturn(tokenizer=self.tokenizer, messages=messages)
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
labels.append(messages[-1]["content"])
for i in trange(
0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False
):
batch_input = self.tokenizer.pad( batch_input = self.tokenizer.pad(
inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt" inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt"
).to(self.model.device) ).to(self.model.device)
preds = self.batch_inference(batch_input) preds = self.batch_inference(batch_input)
outputs += preds outputs += preds
corrects = (np.array(outputs) == np.array(labels)) corrects = np.array(outputs) == np.array(labels)
category_name = categorys[subject]["category"] category_name = categorys[subject]["category"]
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0) category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0) category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0)
@@ -105,10 +101,13 @@ class Evaluator:
self._save_results(category_corrects, results) self._save_results(category_corrects, results)
def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None: def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None:
score_info = "\n".join([ score_info = "\n".join(
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct)) [
for category_name, category_correct in category_corrects.items() if len(category_correct) "{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
]) for category_name, category_correct in category_corrects.items()
if len(category_correct)
]
)
print(score_info) print(score_info)
if self.eval_args.save_dir is not None: if self.eval_args.save_dir is not None:
os.makedirs(self.eval_args.save_dir, exist_ok=False) os.makedirs(self.eval_args.save_dir, exist_ok=False)

View File

@@ -1,7 +1,9 @@
from dataclasses import dataclass from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Tuple from typing import TYPE_CHECKING, Dict, List, Tuple
from llmtuner.extras.constants import CHOICES from ..data import Role
from ..extras.constants import CHOICES
if TYPE_CHECKING: if TYPE_CHECKING:
from datasets import Dataset from datasets import Dataset
@@ -9,60 +11,39 @@ if TYPE_CHECKING:
@dataclass @dataclass
class EvalTemplate: class EvalTemplate:
system: str system: str
choice: str choice: str
answer: str answer: str
prefix: str prefix: str
def parse_example( def parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
self,
example: Dict[str, str]
) -> Tuple[str, str]:
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example] candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
return "".join([example["question"]] + candidates + [self.answer]), example["answer"] return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
def format_example( def format_example(
self, self, target_data: Dict[str, str], support_set: "Dataset", subject_name: str
target_data: Dict[str, str], ) -> List[Dict[str, str]]:
support_set: "Dataset", messages = []
subject_name: str, for k in range(len(support_set)):
use_history: bool prompt, response = self.parse_example(support_set[k])
) -> Tuple[str, str, List[Tuple[str, str]]]: messages.append({"role": Role.USER, "content": prompt})
query, resp = self.parse_example(target_data) messages.append({"role": Role.ASSISTANT, "content": response})
history = [self.parse_example(support_set[k]) for k in range(len(support_set))]
if len(history): prompt, response = self.parse_example(target_data)
temp = history.pop(0) messages.append({"role": Role.USER, "content": prompt})
history.insert(0, (self.system.format(subject=subject_name) + temp[0], temp[1])) messages.append({"role": Role.ASSISTANT, "content": response})
else: messages[0]["content"] = self.system.format(subject=subject_name) + messages[0]["content"]
query = self.system.format(subject=subject_name) + query return messages
if not use_history:
query = "\n\n".join(["".join(item) for item in history] + [query])
history = []
return query.strip(), resp, history
eval_templates: Dict[str, EvalTemplate] = {} eval_templates: Dict[str, "EvalTemplate"] = {}
def register_eval_template( def register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
name: str, eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
system: str,
choice: str,
answer: str,
prefix: str
) -> None:
eval_templates[name] = EvalTemplate(
system=system,
choice=choice,
answer=answer,
prefix=prefix
)
def get_eval_template(name: str) -> EvalTemplate: def get_eval_template(name: str) -> "EvalTemplate":
eval_template = eval_templates.get(name, None) eval_template = eval_templates.get(name, None)
assert eval_template is not None, "Template {} does not exist.".format(name) assert eval_template is not None, "Template {} does not exist.".format(name)
return eval_template return eval_template
@@ -73,7 +54,7 @@ register_eval_template(
system="The following are multiple choice questions (with answers) about {subject}.\n\n", system="The following are multiple choice questions (with answers) about {subject}.\n\n",
choice="\n{choice}. {content}", choice="\n{choice}. {content}",
answer="\nAnswer: ", answer="\nAnswer: ",
prefix=" " prefix=" ",
) )
@@ -82,5 +63,5 @@ register_eval_template(
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n", system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
choice="\n{choice}. {content}", choice="\n{choice}. {content}",
answer="\n答案:", answer="\n答案:",
prefix="\n" prefix="\n",
) )

View File

@@ -1,56 +1,38 @@
import os
import json import json
import os
import time import time
from typing import TYPE_CHECKING
from datetime import timedelta from datetime import timedelta
from typing import TYPE_CHECKING
from transformers import TrainerCallback from transformers import TrainerCallback
from transformers.modeling_utils import custom_object_save, unwrap_model from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from .constants import LOG_FILE_NAME
from .logging import get_logger
from .misc import fix_valuehead_checkpoint
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainingArguments, TrainerState, TrainerControl from transformers import TrainerControl, TrainerState, TrainingArguments
from trl import AutoModelForCausalLMWithValueHead
logger = get_logger(__name__) logger = get_logger(__name__)
def _save_model_with_valuehead(model: "AutoModelForCausalLMWithValueHead", output_dir: str) -> None: class FixValueHeadModelCallback(TrainerCallback):
model.pretrained_model.config.save_pretrained(output_dir)
if model.pretrained_model.can_generate():
model.pretrained_model.generation_config.save_pretrained(output_dir)
if getattr(model, "is_peft_model", False):
model.pretrained_model.save_pretrained(output_dir)
elif getattr(model.pretrained_model, "_auto_class", None): # must not a peft model
custom_object_save(model.pretrained_model, output_dir, config=model.pretrained_model.config)
class SavePeftModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r""" r"""
Event called after a checkpoint save. Event called after a checkpoint save.
""" """
if args.should_save: if args.should_save:
_save_model_with_valuehead( fix_valuehead_checkpoint(
model=unwrap_model(kwargs.pop("model")), model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)) output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors,
) )
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
_save_model_with_valuehead(model=unwrap_model(kwargs.pop("model")), output_dir=args.output_dir)
class LogCallback(TrainerCallback): class LogCallback(TrainerCallback):
def __init__(self, runner=None): def __init__(self, runner=None):
self.runner = runner self.runner = runner
self.in_training = False self.in_training = False
@@ -116,7 +98,9 @@ class LogCallback(TrainerCallback):
self.cur_steps = 0 self.cur_steps = 0
self.max_steps = 0 self.max_steps = 0
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs): def on_predict(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs
):
r""" r"""
Event called after a successful prediction. Event called after a successful prediction.
""" """
@@ -142,18 +126,22 @@ class LogCallback(TrainerCallback):
epoch=state.log_history[-1].get("epoch", None), epoch=state.log_history[-1].get("epoch", None),
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100, percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time, elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time remaining_time=self.remaining_time,
) )
if self.runner is not None: if self.runner is not None:
logger.info("{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format( logger.info(
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0 "{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
)) logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0
)
)
os.makedirs(args.output_dir, exist_ok=True) os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f: with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n") f.write(json.dumps(logs) + "\n")
def on_prediction_step(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): def on_prediction_step(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
):
r""" r"""
Event called after a prediction step. Event called after a prediction step.
""" """

View File

@@ -1,14 +1,18 @@
from collections import OrderedDict, defaultdict
from enum import Enum from enum import Enum
from collections import defaultdict, OrderedDict
from typing import Dict, Optional from typing import Dict, Optional
CHOICES = ["A", "B", "C", "D"] CHOICES = ["A", "B", "C", "D"]
DATA_CONFIG = "dataset_info.json"
DEFAULT_MODULE = defaultdict(str) DEFAULT_MODULE = defaultdict(str)
DEFAULT_TEMPLATE = defaultdict(str) DEFAULT_TEMPLATE = defaultdict(str)
FILEEXT2TYPE = {"arrow": "arrow", "csv": "csv", "json": "json", "jsonl": "json", "parquet": "parquet", "txt": "text"}
IGNORE_INDEX = -100 IGNORE_INDEX = -100
LAYERNORM_NAMES = {"norm", "ln"} LAYERNORM_NAMES = {"norm", "ln"}
@@ -17,6 +21,8 @@ LOG_FILE_NAME = "trainer_log.jsonl"
METHODS = ["full", "freeze", "lora"] METHODS = ["full", "freeze", "lora"]
PEFT_METHODS = ["lora"]
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"] SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
SUPPORTED_MODELS = OrderedDict() SUPPORTED_MODELS = OrderedDict()
@@ -26,18 +32,21 @@ TRAINING_STAGES = {
"Reward Modeling": "rm", "Reward Modeling": "rm",
"PPO": "ppo", "PPO": "ppo",
"DPO": "dpo", "DPO": "dpo",
"Pre-Training": "pt" "Pre-Training": "pt",
} }
V_HEAD_WEIGHTS_NAME = "value_head.bin"
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"
class DownloadSource(str, Enum): class DownloadSource(str, Enum):
DEFAULT = "hf" DEFAULT = "hf"
MODELSCOPE = "ms" MODELSCOPE = "ms"
def register_model_group( def register_model_group(
models: Dict[str, Dict[DownloadSource, str]], models: Dict[str, Dict[DownloadSource, str]], module: Optional[str] = None, template: Optional[str] = None
module: Optional[str] = None,
template: Optional[str] = None
) -> None: ) -> None:
prefix = None prefix = None
for name, path in models.items(): for name, path in models.items():
@@ -56,19 +65,19 @@ register_model_group(
models={ models={
"Baichuan-7B-Base": { "Baichuan-7B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-7B", DownloadSource.DEFAULT: "baichuan-inc/Baichuan-7B",
DownloadSource.MODELSCOPE: "baichuan-inc/baichuan-7B" DownloadSource.MODELSCOPE: "baichuan-inc/baichuan-7B",
}, },
"Baichuan-13B-Base": { "Baichuan-13B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Base", DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Base" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Base",
}, },
"Baichuan-13B-Chat": { "Baichuan-13B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Chat", DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat",
} },
}, },
module="W_pack", module="W_pack",
template="baichuan" template="baichuan",
) )
@@ -76,23 +85,23 @@ register_model_group(
models={ models={
"Baichuan2-7B-Base": { "Baichuan2-7B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Base", DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Base" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Base",
}, },
"Baichuan2-13B-Base": { "Baichuan2-13B-Base": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Base", DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Base",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Base" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Base",
}, },
"Baichuan2-7B-Chat": { "Baichuan2-7B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Chat", DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Chat" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Chat",
}, },
"Baichuan2-13B-Chat": { "Baichuan2-13B-Chat": {
DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Chat", DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Chat",
DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat" DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat",
} },
}, },
module="W_pack", module="W_pack",
template="baichuan2" template="baichuan2",
) )
@@ -100,18 +109,18 @@ register_model_group(
models={ models={
"BLOOM-560M": { "BLOOM-560M": {
DownloadSource.DEFAULT: "bigscience/bloom-560m", DownloadSource.DEFAULT: "bigscience/bloom-560m",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-560m" DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-560m",
}, },
"BLOOM-3B": { "BLOOM-3B": {
DownloadSource.DEFAULT: "bigscience/bloom-3b", DownloadSource.DEFAULT: "bigscience/bloom-3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-3b" DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-3b",
}, },
"BLOOM-7B1": { "BLOOM-7B1": {
DownloadSource.DEFAULT: "bigscience/bloom-7b1", DownloadSource.DEFAULT: "bigscience/bloom-7b1",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1" DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1",
} },
}, },
module="query_key_value" module="query_key_value",
) )
@@ -119,18 +128,18 @@ register_model_group(
models={ models={
"BLOOMZ-560M": { "BLOOMZ-560M": {
DownloadSource.DEFAULT: "bigscience/bloomz-560m", DownloadSource.DEFAULT: "bigscience/bloomz-560m",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-560m" DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-560m",
}, },
"BLOOMZ-3B": { "BLOOMZ-3B": {
DownloadSource.DEFAULT: "bigscience/bloomz-3b", DownloadSource.DEFAULT: "bigscience/bloomz-3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-3b" DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-3b",
}, },
"BLOOMZ-7B1-mt": { "BLOOMZ-7B1-mt": {
DownloadSource.DEFAULT: "bigscience/bloomz-7b1-mt", DownloadSource.DEFAULT: "bigscience/bloomz-7b1-mt",
DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt" DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt",
} },
}, },
module="query_key_value" module="query_key_value",
) )
@@ -138,14 +147,14 @@ register_model_group(
models={ models={
"BlueLM-7B-Base": { "BlueLM-7B-Base": {
DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Base", DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Base",
DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Base" DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Base",
}, },
"BlueLM-7B-Chat": { "BlueLM-7B-Chat": {
DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Chat", DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Chat",
DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Chat" DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Chat",
} },
}, },
template="bluelm" template="bluelm",
) )
@@ -153,11 +162,11 @@ register_model_group(
models={ models={
"ChatGLM2-6B-Chat": { "ChatGLM2-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm2-6b", DownloadSource.DEFAULT: "THUDM/chatglm2-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b" DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
} }
}, },
module="query_key_value", module="query_key_value",
template="chatglm2" template="chatglm2",
) )
@@ -165,15 +174,15 @@ register_model_group(
models={ models={
"ChatGLM3-6B-Base": { "ChatGLM3-6B-Base": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base", DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base" DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base",
}, },
"ChatGLM3-6B-Chat": { "ChatGLM3-6B-Chat": {
DownloadSource.DEFAULT: "THUDM/chatglm3-6b", DownloadSource.DEFAULT: "THUDM/chatglm3-6b",
DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b" DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
} },
}, },
module="query_key_value", module="query_key_value",
template="chatglm3" template="chatglm3",
) )
@@ -181,76 +190,91 @@ register_model_group(
models={ models={
"ChineseLLaMA2-1.3B": { "ChineseLLaMA2-1.3B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b", DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b",
}, },
"ChineseLLaMA2-7B": { "ChineseLLaMA2-7B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b", DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b",
}, },
"ChineseLLaMA2-13B": { "ChineseLLaMA2-13B": {
DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b", DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b",
}, },
"ChineseLLaMA2-1.3B-Chat": { "ChineseLLaMA2-1.3B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b", DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b",
}, },
"ChineseLLaMA2-7B-Chat": { "ChineseLLaMA2-7B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b", DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b",
}, },
"ChineseLLaMA2-13B-Chat": { "ChineseLLaMA2-13B-Chat": {
DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b", DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b",
DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b" DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b",
} },
}, },
template="llama2_zh" template="llama2_zh",
) )
register_model_group( register_model_group(
models={ models={
"DeepseekLLM-7B-Base": { "DeepSeekLLM-7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base", DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base",
}, },
"DeepseekLLM-67B-Base": { "DeepSeekLLM-67B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base", DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base",
}, },
"DeepseekLLM-7B-Chat": { "DeepSeekLLM-7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat", DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat",
}, },
"DeepseekLLM-67B-Chat": { "DeepSeekLLM-67B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat", DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat",
} },
}, },
template="deepseek" template="deepseek",
) )
register_model_group( register_model_group(
models={ models={
"DeepseekCoder-6.7B-Base": { "DeepSeekCoder-6.7B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base", DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base",
}, },
"DeepseekCoder-33B-Base": { "DeepSeekCoder-33B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base", DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base",
}, },
"DeepseekCoder-6.7B-Chat": { "DeepSeekCoder-6.7B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct", DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct",
}, },
"DeepseekCoder-33B-Chat": { "DeepSeekCoder-33B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct", DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct" DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct",
} },
}, },
template="deepseekcoder" template="deepseekcoder",
)
register_model_group(
models={
"DeepSeekMoE-16B-Base": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
},
"DeepSeekMoE-16B-Chat": {
DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
},
},
template="deepseek",
) )
@@ -258,31 +282,31 @@ register_model_group(
models={ models={
"Falcon-7B": { "Falcon-7B": {
DownloadSource.DEFAULT: "tiiuae/falcon-7b", DownloadSource.DEFAULT: "tiiuae/falcon-7b",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b" DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b",
}, },
"Falcon-40B": { "Falcon-40B": {
DownloadSource.DEFAULT: "tiiuae/falcon-40b", DownloadSource.DEFAULT: "tiiuae/falcon-40b",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b" DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b",
}, },
"Falcon-180B": { "Falcon-180B": {
DownloadSource.DEFAULT: "tiiuae/falcon-180b", DownloadSource.DEFAULT: "tiiuae/falcon-180b",
DownloadSource.MODELSCOPE: "modelscope/falcon-180B" DownloadSource.MODELSCOPE: "modelscope/falcon-180B",
}, },
"Falcon-7B-Chat": { "Falcon-7B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-7b-instruct", DownloadSource.DEFAULT: "tiiuae/falcon-7b-instruct",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b-instruct" DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b-instruct",
}, },
"Falcon-40B-Chat": { "Falcon-40B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-40b-instruct", DownloadSource.DEFAULT: "tiiuae/falcon-40b-instruct",
DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b-instruct" DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b-instruct",
}, },
"Falcon-180B-Chat": { "Falcon-180B-Chat": {
DownloadSource.DEFAULT: "tiiuae/falcon-180b-chat", DownloadSource.DEFAULT: "tiiuae/falcon-180b-chat",
DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat" DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat",
} },
}, },
module="query_key_value", module="query_key_value",
template="falcon" template="falcon",
) )
@@ -290,22 +314,46 @@ register_model_group(
models={ models={
"InternLM-7B": { "InternLM-7B": {
DownloadSource.DEFAULT: "internlm/internlm-7b", DownloadSource.DEFAULT: "internlm/internlm-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-7b" DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-7b",
}, },
"InternLM-20B": { "InternLM-20B": {
DownloadSource.DEFAULT: "internlm/internlm-20b", DownloadSource.DEFAULT: "internlm/internlm-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-20b" DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-20b",
}, },
"InternLM-7B-Chat": { "InternLM-7B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm-chat-7b", DownloadSource.DEFAULT: "internlm/internlm-chat-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-7b" DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-7b",
}, },
"InternLM-20B-Chat": { "InternLM-20B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm-chat-20b", DownloadSource.DEFAULT: "internlm/internlm-chat-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-20b" DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-20b",
} },
}, },
template="intern" template="intern",
)
register_model_group(
models={
"InternLM2-7B": {
DownloadSource.DEFAULT: "internlm/internlm2-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-7b",
},
"InternLM2-20B": {
DownloadSource.DEFAULT: "internlm/internlm2-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-20b",
},
"InternLM2-7B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm2-chat-7b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-7b",
},
"InternLM2-20B-Chat": {
DownloadSource.DEFAULT: "internlm/internlm2-chat-20b",
DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
},
},
module="wqkv",
template="intern2",
) )
@@ -313,31 +361,28 @@ register_model_group(
models={ models={
"LingoWhale-8B": { "LingoWhale-8B": {
DownloadSource.DEFAULT: "deeplang-ai/LingoWhale-8B", DownloadSource.DEFAULT: "deeplang-ai/LingoWhale-8B",
DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B" DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B",
} }
}, },
module="qkv_proj" module="qkv_proj",
) )
register_model_group( register_model_group(
models={ models={
"LLaMA-7B": { "LLaMA-7B": {DownloadSource.DEFAULT: "huggyllama/llama-7b", DownloadSource.MODELSCOPE: "skyline2006/llama-7b"},
DownloadSource.DEFAULT: "huggyllama/llama-7b",
DownloadSource.MODELSCOPE: "skyline2006/llama-7b"
},
"LLaMA-13B": { "LLaMA-13B": {
DownloadSource.DEFAULT: "huggyllama/llama-13b", DownloadSource.DEFAULT: "huggyllama/llama-13b",
DownloadSource.MODELSCOPE: "skyline2006/llama-13b" DownloadSource.MODELSCOPE: "skyline2006/llama-13b",
}, },
"LLaMA-30B": { "LLaMA-30B": {
DownloadSource.DEFAULT: "huggyllama/llama-30b", DownloadSource.DEFAULT: "huggyllama/llama-30b",
DownloadSource.MODELSCOPE: "skyline2006/llama-30b" DownloadSource.MODELSCOPE: "skyline2006/llama-30b",
}, },
"LLaMA-65B": { "LLaMA-65B": {
DownloadSource.DEFAULT: "huggyllama/llama-65b", DownloadSource.DEFAULT: "huggyllama/llama-65b",
DownloadSource.MODELSCOPE: "skyline2006/llama-65b" DownloadSource.MODELSCOPE: "skyline2006/llama-65b",
} },
} }
) )
@@ -346,30 +391,30 @@ register_model_group(
models={ models={
"LLaMA2-7B": { "LLaMA2-7B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms",
}, },
"LLaMA2-13B": { "LLaMA2-13B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms",
}, },
"LLaMA2-70B": { "LLaMA2-70B": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms",
}, },
"LLaMA2-7B-Chat": { "LLaMA2-7B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms",
}, },
"LLaMA2-13B-Chat": { "LLaMA2-13B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms",
}, },
"LLaMA2-70B-Chat": { "LLaMA2-70B-Chat": {
DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf", DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf",
DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms" DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms",
} },
}, },
template="llama2" template="llama2",
) )
@@ -377,14 +422,33 @@ register_model_group(
models={ models={
"Mistral-7B": { "Mistral-7B": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1", DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1" DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
}, },
"Mistral-7B-Chat": { "Mistral-7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1", DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1" DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
} },
"Mistral-7B-v0.2-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
},
}, },
template="mistral" template="mistral",
)
register_model_group(
models={
"Mixtral-8x7B": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
},
"Mixtral-8x7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
},
},
template="mistral",
) )
@@ -392,93 +456,87 @@ register_model_group(
models={ models={
"OpenChat3.5-7B-Chat": { "OpenChat3.5-7B-Chat": {
DownloadSource.DEFAULT: "openchat/openchat_3.5", DownloadSource.DEFAULT: "openchat/openchat_3.5",
DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5" DownloadSource.MODELSCOPE: "myxiongmodel/openchat_3.5",
} }
}, },
template="openchat" template="openchat",
) )
register_model_group( register_model_group(
models={ models={
"Phi1.5-1.3B": { "Phi-1.5-1.3B": {DownloadSource.DEFAULT: "microsoft/phi-1_5", DownloadSource.MODELSCOPE: "allspace/PHI_1-5"},
DownloadSource.DEFAULT: "microsoft/phi-1_5", "Phi-2-2.7B": {DownloadSource.DEFAULT: "microsoft/phi-2", DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2"},
DownloadSource.MODELSCOPE: "allspace/PHI_1-5" }
}
},
module="Wqkv"
) )
register_model_group( register_model_group(
models={ models={
"Qwen-1.8B": { "Qwen-1.8B": {DownloadSource.DEFAULT: "Qwen/Qwen-1_8B", DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B"},
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B", "Qwen-7B": {DownloadSource.DEFAULT: "Qwen/Qwen-7B", DownloadSource.MODELSCOPE: "qwen/Qwen-7B"},
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B" "Qwen-14B": {DownloadSource.DEFAULT: "Qwen/Qwen-14B", DownloadSource.MODELSCOPE: "qwen/Qwen-14B"},
}, "Qwen-72B": {DownloadSource.DEFAULT: "Qwen/Qwen-72B", DownloadSource.MODELSCOPE: "qwen/Qwen-72B"},
"Qwen-7B": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B"
},
"Qwen-14B": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B"
},
"Qwen-72B": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B"
},
"Qwen-1.8B-Chat": { "Qwen-1.8B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat", DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat" DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat",
},
"Qwen-7B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat"
}, },
"Qwen-7B-Chat": {DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat", DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat"},
"Qwen-14B-Chat": { "Qwen-14B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat", DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat" DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat",
}, },
"Qwen-72B-Chat": { "Qwen-72B-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat", DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat" DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat",
}, },
"Qwen-1.8B-int8-Chat": { "Qwen-1.8B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8", DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8" DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8",
}, },
"Qwen-1.8B-int4-Chat": { "Qwen-1.8B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4", DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4" DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4",
}, },
"Qwen-7B-int8-Chat": { "Qwen-7B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8", DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8" DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8",
}, },
"Qwen-7B-int4-Chat": { "Qwen-7B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4", DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4" DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4",
}, },
"Qwen-14B-int8-Chat": { "Qwen-14B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8", DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8" DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8",
}, },
"Qwen-14B-int4-Chat": { "Qwen-14B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4", DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4" DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4",
}, },
"Qwen-72B-int8-Chat": { "Qwen-72B-int8-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8", DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8" DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8",
}, },
"Qwen-72B-int4-Chat": { "Qwen-72B-int4-Chat": {
DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4", DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4",
DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4" DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
} },
}, },
module="c_attn", module="c_attn",
template="qwen" template="qwen",
)
register_model_group(
models={
"SOLAR-10.7B": {DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0"},
"SOLAR-10.7B-Chat": {
DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-Instruct-v1.0",
DownloadSource.MODELSCOPE: "AI-ModelScope/SOLAR-10.7B-Instruct-v1.0",
},
},
template="solar",
) )
@@ -486,7 +544,7 @@ register_model_group(
models={ models={
"Skywork-13B-Base": { "Skywork-13B-Base": {
DownloadSource.DEFAULT: "Skywork/Skywork-13B-base", DownloadSource.DEFAULT: "Skywork/Skywork-13B-base",
DownloadSource.MODELSCOPE: "skywork/Skywork-13B-base" DownloadSource.MODELSCOPE: "skywork/Skywork-13B-base",
} }
} }
) )
@@ -496,60 +554,51 @@ register_model_group(
models={ models={
"Vicuna1.5-7B-Chat": { "Vicuna1.5-7B-Chat": {
DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5", DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5",
DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5" DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5",
}, },
"Vicuna1.5-13B-Chat": { "Vicuna1.5-13B-Chat": {
DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5", DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5",
DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5" DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5",
} },
}, },
template="vicuna" template="vicuna",
) )
register_model_group( register_model_group(
models={ models={
"XuanYuan-70B": { "XuanYuan-70B": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B"},
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B" "XuanYuan-70B-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat"},
}, "XuanYuan-70B-int8-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit"},
"XuanYuan-70B-Chat": { "XuanYuan-70B-int4-Chat": {DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit"},
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat"
},
"XuanYuan-70B-int8-Chat": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit"
},
"XuanYuan-70B-int4-Chat": {
DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit"
}
}, },
template="xuanyuan" template="xuanyuan",
) )
register_model_group( register_model_group(
models={ models={
"XVERSE-7B": { "XVERSE-7B": {DownloadSource.DEFAULT: "xverse/XVERSE-7B", DownloadSource.MODELSCOPE: "xverse/XVERSE-7B"},
DownloadSource.DEFAULT: "xverse/XVERSE-7B", "XVERSE-13B": {DownloadSource.DEFAULT: "xverse/XVERSE-13B", DownloadSource.MODELSCOPE: "xverse/XVERSE-13B"},
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B" "XVERSE-65B": {DownloadSource.DEFAULT: "xverse/XVERSE-65B", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B"},
}, "XVERSE-65B-2": {
"XVERSE-13B": { DownloadSource.DEFAULT: "xverse/XVERSE-65B-2",
DownloadSource.DEFAULT: "xverse/XVERSE-13B", DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-2",
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B"
},
"XVERSE-65B": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B"
}, },
"XVERSE-7B-Chat": { "XVERSE-7B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat", DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat" DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat",
}, },
"XVERSE-13B-Chat": { "XVERSE-13B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat", DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat" DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat",
} },
"XVERSE-65B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
},
}, },
template="xverse" template="xverse",
) )
@@ -557,37 +606,52 @@ register_model_group(
models={ models={
"Yayi-7B": { "Yayi-7B": {
DownloadSource.DEFAULT: "wenge-research/yayi-7b-llama2", DownloadSource.DEFAULT: "wenge-research/yayi-7b-llama2",
DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-7b-llama2" DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-7b-llama2",
}, },
"Yayi-13B": { "Yayi-13B": {
DownloadSource.DEFAULT: "wenge-research/yayi-13b-llama2", DownloadSource.DEFAULT: "wenge-research/yayi-13b-llama2",
DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-13b-llama2" DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-13b-llama2",
} },
}, },
template="yayi" template="yayi",
) )
register_model_group( register_model_group(
models={ models={
"Yi-6B": { "Yi-6B": {DownloadSource.DEFAULT: "01-ai/Yi-6B", DownloadSource.MODELSCOPE: "01ai/Yi-6B"},
DownloadSource.DEFAULT: "01-ai/Yi-6B", "Yi-34B": {DownloadSource.DEFAULT: "01-ai/Yi-34B", DownloadSource.MODELSCOPE: "01ai/Yi-34B"},
DownloadSource.MODELSCOPE: "01ai/Yi-6B" "Yi-6B-Chat": {DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat"},
}, "Yi-34B-Chat": {DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat", DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat"},
"Yi-34B": { "Yi-6B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B", DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-34B" DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits",
},
"Yi-34B-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat"
}, },
"Yi-34B-int8-Chat": { "Yi-34B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits", DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits" DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits",
} },
}, },
template="yi" template="yi",
)
register_model_group(
models={
"Yuan2-2B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-2B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-2B-hf",
},
"Yuan2-51B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-51B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-51B-hf",
},
"Yuan2-102B-Chat": {
DownloadSource.DEFAULT: "IEITYuan/Yuan2-102B-hf",
DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-102B-hf",
},
},
template="yuan",
) )
@@ -595,12 +659,12 @@ register_model_group(
models={ models={
"Zephyr-7B-Alpha-Chat": { "Zephyr-7B-Alpha-Chat": {
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-alpha", DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-alpha",
DownloadSource.MODELSCOPE: "AI-ModelScope/zephyr-7b-alpha" DownloadSource.MODELSCOPE: "AI-ModelScope/zephyr-7b-alpha",
}, },
"Zephyr-7B-Beta-Chat": { "Zephyr-7B-Beta-Chat": {
DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta", DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta" DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
} },
}, },
template="zephyr" template="zephyr",
) )

View File

@@ -1,5 +1,5 @@
import sys
import logging import logging
import sys
class LoggerHandler(logging.Handler): class LoggerHandler(logging.Handler):
@@ -27,8 +27,7 @@ def get_logger(name: str) -> logging.Logger:
Gets a standard logger with a stream hander to stdout. Gets a standard logger with a stream hander to stdout.
""" """
formatter = logging.Formatter( formatter = logging.Formatter(
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
datefmt="%m/%d/%Y %H:%M:%S"
) )
handler = logging.StreamHandler(sys.stdout) handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(formatter) handler.setFormatter(formatter)

View File

@@ -1,35 +1,44 @@
import gc import gc
import os import os
import sys from typing import TYPE_CHECKING, Dict, Tuple
import torch
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
import torch
from peft import PeftModel
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel
from transformers.utils import (
SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from .logging import get_logger
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
try: try:
from transformers.utils import ( _is_bf16_available = is_torch_bf16_gpu_available()
is_torch_bf16_cpu_available, except Exception:
is_torch_bf16_gpu_available, _is_bf16_available = False
is_torch_cuda_available,
is_torch_npu_available
)
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
_is_bf16_available = is_torch_bf16_gpu_available() or is_torch_bf16_cpu_available()
except ImportError:
_is_fp16_available = torch.cuda.is_available()
try:
_is_bf16_available = torch.cuda.is_bf16_supported()
except:
_is_bf16_available = False
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import HfArgumentParser from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments from llmtuner.hparams import ModelArguments
logger = get_logger(__name__)
class AverageMeter: class AverageMeter:
r""" r"""
Computes and stores the average and current value. Computes and stores the average and current value.
""" """
def __init__(self): def __init__(self):
self.reset() self.reset()
@@ -68,6 +77,74 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param return trainable_params, all_param
def fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
from safetensors import safe_open
from safetensors.torch import save_file
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
def get_current_device() -> torch.device:
r"""
Gets the current available device.
"""
if is_torch_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif is_torch_cuda_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_device_count() -> int:
return torch.cuda.device_count()
def get_logits_processor() -> "LogitsProcessorList": def get_logits_processor() -> "LogitsProcessorList":
r""" r"""
Gets logits processor that removes NaN and Inf logits. Gets logits processor that removes NaN and Inf logits.
@@ -89,17 +166,6 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
return torch.float32 return torch.float32
def parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
else:
return parser.parse_args_into_dataclasses()
def torch_gc() -> None: def torch_gc() -> None:
r""" r"""
Collects GPU memory. Collects GPU memory.
@@ -115,12 +181,11 @@ def try_download_model_from_ms(model_args: "ModelArguments") -> None:
return return
try: try:
from modelscope import snapshot_download # type: ignore from modelscope import snapshot_download
revision = "master" if model_args.model_revision == "main" else model_args.model_revision revision = "master" if model_args.model_revision == "main" else model_args.model_revision
model_args.model_name_or_path = snapshot_download( model_args.model_name_or_path = snapshot_download(
model_args.model_name_or_path, model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir
revision=revision,
cache_dir=model_args.cache_dir
) )
except ImportError: except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`") raise ImportError("Please install modelscope via `pip install modelscope -U`")

View File

@@ -9,52 +9,41 @@ def is_package_available(name: str) -> bool:
def get_package_version(name: str) -> str: def get_package_version(name: str) -> str:
try: try:
return importlib.metadata.version(name) return importlib.metadata.version(name)
except: except Exception:
return "0.0.0" return "0.0.0"
_fastapi_available = is_package_available("fastapi")
_flash_attn2_available = is_package_available("flash_attn") and get_package_version("flash_attn").startswith("2")
_jieba_available = is_package_available("jieba")
_matplotlib_available = is_package_available("matplotlib")
_nltk_available = is_package_available("nltk")
_requests_available = is_package_available("requests")
_rouge_available = is_package_available("rouge_chinese")
_starlette_available = is_package_available("sse_starlette")
_uvicorn_available = is_package_available("uvicorn")
def is_fastapi_availble(): def is_fastapi_availble():
return _fastapi_available return is_package_available("fastapi")
def is_flash_attn2_available(): def is_flash_attn2_available():
return _flash_attn2_available return is_package_available("flash_attn") and get_package_version("flash_attn").startswith("2")
def is_jieba_available(): def is_jieba_available():
return _jieba_available return is_package_available("jieba")
def is_matplotlib_available(): def is_matplotlib_available():
return _matplotlib_available return is_package_available("matplotlib")
def is_nltk_available(): def is_nltk_available():
return _nltk_available return is_package_available("nltk")
def is_requests_available(): def is_requests_available():
return _requests_available return is_package_available("requests")
def is_rouge_available(): def is_rouge_available():
return _rouge_available return is_package_available("rouge_chinese")
def is_starlette_available(): def is_starlette_available():
return _starlette_available return is_package_available("sse_starlette")
def is_uvicorn_available(): def is_uvicorn_available():
return _uvicorn_available return is_package_available("uvicorn")

View File

@@ -1,224 +1,197 @@
import math import math
from typing import Optional, Tuple
import torch import torch
import torch.nn as nn import torch.nn as nn
from typing import Optional, Tuple from transformers.models.llama.modeling_llama import (
Cache,
LlamaAttention,
LlamaFlashAttention2,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging from transformers.utils import logging
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
try:
from transformers.models.llama.modeling_llama import repeat_kv
except ImportError:
print("Please upgrade `transformers`.")
from llmtuner.extras.packages import is_flash_attn2_available
if is_flash_attn2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func # type: ignore
from flash_attn.bert_padding import pad_input, unpad_input # type: ignore
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py # Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
class LlamaShiftShortAttention(LlamaAttention): def llama_torch_attn_forward(
self: "LlamaAttention",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional["Cache"] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
def forward( query_states = self.q_proj(hidden_states)
self, key_states = self.k_proj(hidden_states)
hidden_states: torch.Tensor, value_states = self.v_proj(hidden_states)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2]
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_value is not None:
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
kv_seq_len = key_states.shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
if past_key_value is not None: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) if past_key_value is not None:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if past_key_value is not None: # reuse k, v, self_attention key_states = repeat_kv(key_states, self.num_key_value_groups)
key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
if getattr(self, "num_key_value_groups"): def shift(state: torch.Tensor) -> torch.Tensor:
key_states = repeat_kv(key_states, self.num_key_value_groups) state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
value_states = repeat_kv(value_states, self.num_key_value_groups) state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
if getattr(self.config, "group_size_ratio", None) and self.training: # shift dim=2,
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat((
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LlamaFlashAttention2(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None: # reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# cast to half precision
input_dtype = query_states.dtype
if input_dtype == torch.float32:
logger.warning_once("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(self.config.torch_dtype)
key_states = key_states.to(self.config.torch_dtype)
value_states = value_states.to(self.config.torch_dtype)
if getattr(self, "num_key_value_groups", None):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask.reshape(bsz * num_groups, groupsz)
if attention_mask is not None:
logger.warning_once("Padded sequences are less efficient in FlashAttention.")
# -q_len: assumes left padding when q_len != kv_len
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query_states, attention_mask[:, -q_len:])
unpadded_k, _, cu_seqlens_k, max_seqlen_k = unpad_input(key_states, attention_mask)
unpadded_v, _, _, _ = unpad_input(value_states, attention_mask)
attn_output_unpad = flash_attn_varlen_func(
unpadded_q,
unpadded_k,
unpadded_v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
softmax_scale=None,
causal=True,
) )
attn_output = pad_input(attn_output_unpad, indices_q, bsz, q_len) return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
def llama_flash_attn_forward(
self: "LlamaFlashAttention2",
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
dropout_rate = self.attention_dropout if self.training else 0.0
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else: else:
attn_output = flash_attn_func( target_dtype = self.q_proj.weight.dtype
query_states, key_states, value_states, 0.0, softmax_scale=None, causal=True
logger.warning_once("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat(
(state[:, :, : self.num_heads // 2], state[:, :, self.num_heads // 2 :].roll(-groupsz // 2, dims=1)),
dim=2,
) )
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim) if attention_mask is not None:
attn_output = torch.cat(( attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output: torch.Tensor = self._flash_attention_forward(
attn_output = self.o_proj(attn_output) query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
)
if not output_attentions: if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_weights = None attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat(
(
attn_output[:, :, : self.num_heads // 2],
attn_output[:, :, self.num_heads // 2 :].roll(groupsz // 2, dims=1),
)
)
return attn_output, attn_weights, past_key_value attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Disable the transformation of the attention mask in LlamaModel as flash attention def apply_llama_patch() -> None:
# takes a boolean padding_mask. Fills in the past kv length for use in forward. LlamaAttention.forward = llama_torch_attn_forward
def _prepare_decoder_attention_mask( LlamaFlashAttention2.forward = llama_flash_attn_forward
self,
attention_mask: torch.Tensor,
input_shape: torch.Tensor,
inputs_embeds: torch.Tensor,
past_key_values_length: int
) -> torch.Tensor:
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask

View File

@@ -1,11 +1,13 @@
import os
import math
import json import json
import math
import os
from typing import List, Optional from typing import List, Optional
from transformers.trainer import TRAINER_STATE_NAME from transformers.trainer import TRAINER_STATE_NAME
from llmtuner.extras.logging import get_logger from .logging import get_logger
from llmtuner.extras.packages import is_matplotlib_available from .packages import is_matplotlib_available
if is_matplotlib_available(): if is_matplotlib_available():
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@@ -20,7 +22,7 @@ def smooth(scalars: List[float]) -> List[float]:
""" """
last = scalars[0] last = scalars[0]
smoothed = list() smoothed = list()
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
for next_val in scalars: for next_val in scalars:
smoothed_val = last * weight + (1 - weight) * next_val smoothed_val = last * weight + (1 - weight) * next_val
smoothed.append(smoothed_val) smoothed.append(smoothed_val)
@@ -29,7 +31,6 @@ def smooth(scalars: List[float]) -> List[float]:
def plot_loss(save_dictionary: os.PathLike, keys: Optional[List[str]] = ["loss"]) -> None: def plot_loss(save_dictionary: os.PathLike, keys: Optional[List[str]] = ["loss"]) -> None:
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f: with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
data = json.load(f) data = json.load(f)

View File

@@ -3,3 +3,16 @@ from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments from .generating_args import GeneratingArguments
from .model_args import ModelArguments from .model_args import ModelArguments
from .parser import get_eval_args, get_infer_args, get_train_args
__all__ = [
"DataArguments",
"EvaluationArguments",
"FinetuningArguments",
"GeneratingArguments",
"ModelArguments",
"get_eval_args",
"get_infer_args",
"get_train_args",
]

View File

@@ -1,33 +1,5 @@
import os
import json
from typing import List, Literal, Optional
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Literal, Optional
DATA_CONFIG = "dataset_info.json"
@dataclass
class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
system_prompt: Optional[str] = None
subset: Optional[str] = None
ranking: Optional[bool] = False
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca"
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
messages: Optional[str] = "conversations"
role: Optional[str] = "from"
content: Optional[str] = "value"
def __repr__(self) -> str:
return self.dataset_name
@dataclass @dataclass
@@ -36,84 +8,66 @@ class DataArguments:
Arguments pertaining to what data we are going to input our model for training and evaluation. Arguments pertaining to what data we are going to input our model for training and evaluation.
""" """
template: Optional[str] = field( template: Optional[str] = field(
default=None, default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."}
metadata={"help": "Which template to use for constructing prompts in training and inference."}
) )
dataset: Optional[str] = field( dataset: Optional[str] = field(
default=None, default=None,
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."} metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
) )
dataset_dir: Optional[str] = field( dataset_dir: Optional[str] = field(
default="data", default="data", metadata={"help": "Path to the folder containing the datasets."}
metadata={"help": "Path to the folder containing the datasets."}
) )
split: Optional[str] = field( split: Optional[str] = field(
default="train", default="train", metadata={"help": "Which dataset split to use for training and evaluation."}
metadata={"help": "Which dataset split to use for training and evaluation."}
) )
cutoff_len: Optional[int] = field( cutoff_len: Optional[int] = field(
default=1024, default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."}
metadata={"help": "The maximum length of the model inputs after tokenization."}
) )
reserved_label_len: Optional[int] = field( reserved_label_len: Optional[int] = field(
default=1, default=1, metadata={"help": "The maximum length reserved for label after tokenization."}
metadata={"help": "The maximum length reserved for label after tokenization."}
) )
train_on_prompt: Optional[bool] = field( train_on_prompt: Optional[bool] = field(
default=False, default=False, metadata={"help": "Whether to disable the mask on the prompt or not."}
metadata={"help": "Whether to disable the mask on the prompt or not."}
)
streaming: Optional[bool] = field(
default=False,
metadata={"help": "Enable dataset streaming."}
) )
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."})
buffer_size: Optional[int] = field( buffer_size: Optional[int] = field(
default=16384, default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
) )
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field( mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
default="concat", default="concat",
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."} metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
) )
interleave_probs: Optional[str] = field( interleave_probs: Optional[str] = field(
default=None, default=None,
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."} metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
) )
overwrite_cache: Optional[bool] = field( overwrite_cache: Optional[bool] = field(
default=False, default=False, metadata={"help": "Overwrite the cached training and evaluation sets."}
metadata={"help": "Overwrite the cached training and evaluation sets."}
) )
preprocessing_num_workers: Optional[int] = field( preprocessing_num_workers: Optional[int] = field(
default=None, default=None, metadata={"help": "The number of processes to use for the preprocessing."}
metadata={"help": "The number of processes to use for the preprocessing."}
) )
max_samples: Optional[int] = field( max_samples: Optional[int] = field(
default=None, default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
) )
eval_num_beams: Optional[int] = field( eval_num_beams: Optional[int] = field(
default=None, default=None,
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"} metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
) )
ignore_pad_token_for_loss: Optional[bool] = field( ignore_pad_token_for_loss: Optional[bool] = field(
default=True, default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."} metadata={
) "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
system_prompt: Optional[str] = field( },
default=None,
metadata={"help": "System prompt to add before the user query. Use `|` to separate multiple prompts in training."}
) )
val_size: Optional[float] = field( val_size: Optional[float] = field(
default=0, default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
) )
sft_packing: Optional[bool] = field( sft_packing: Optional[bool] = field(
default=False, default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
) )
cache_path: Optional[str] = field( cache_path: Optional[str] = field(
default=None, default=None, metadata={"help": "Path to save or load the preprocessed datasets."}
metadata={"help": "Path to save or load the preprocessed datasets."}
) )
def __post_init__(self): def __post_init__(self):
@@ -125,55 +79,3 @@ class DataArguments:
if self.streaming and self.max_samples is not None: if self.streaming and self.max_samples is not None:
raise ValueError("`max_samples` is incompatible with `streaming`.") raise ValueError("`max_samples` is incompatible with `streaming`.")
if self.streaming and self.cache_path:
raise ValueError("`cache_path` is incompatible with `streaming`.")
def init_for_training(self, seed: int): # support mixing multiple datasets
self.seed = seed
dataset_names = [ds.strip() for ds in self.dataset.split(",")] if self.dataset is not None else []
try:
with open(os.path.join(self.dataset_dir, DATA_CONFIG), "r") as f:
dataset_info = json.load(f)
except Exception as err:
if self.dataset is not None:
raise ValueError("Cannot open {} due to {}.".format(os.path.join(self.dataset_dir, DATA_CONFIG), str(err)))
dataset_info = None
prompt_list = self.system_prompt.split("|") if self.system_prompt else [None]
prompt_list = prompt_list * (len(dataset_names) // len(prompt_list))
assert len(prompt_list) == len(dataset_names), "Number of system prompts should be equal to datasets or 1."
if self.interleave_probs is not None:
self.interleave_probs = [float(prob.strip()) for prob in self.interleave_probs.split(",")]
self.dataset_list: List[DatasetAttr] = []
for i, name in enumerate(dataset_names):
if name not in dataset_info:
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
if "hf_hub_url" in dataset_info[name]:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
dataset_attr = DatasetAttr(
"file",
dataset_name=dataset_info[name]["file_name"],
dataset_sha1=dataset_info[name].get("file_sha1", None)
)
if "columns" in dataset_info[name]:
dataset_attr.prompt = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query = dataset_info[name]["columns"].get("query", None)
dataset_attr.response = dataset_info[name]["columns"].get("response", None)
dataset_attr.history = dataset_info[name]["columns"].get("history", None)
dataset_attr.messages = dataset_info[name]["columns"].get("messages", None)
dataset_attr.role = dataset_info[name]["columns"].get("role", None)
dataset_attr.content = dataset_info[name]["columns"].get("content", None)
dataset_attr.subset = dataset_info[name].get("subset", None)
dataset_attr.ranking = dataset_info[name].get("ranking", False)
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca")
dataset_attr.system_prompt = prompt_list[i]
self.dataset_list.append(dataset_attr)

View File

@@ -1,6 +1,6 @@
import os import os
from typing import Literal, Optional
from dataclasses import dataclass, field from dataclasses import dataclass, field
from typing import Literal, Optional
from datasets import DownloadMode from datasets import DownloadMode
@@ -10,46 +10,20 @@ class EvaluationArguments:
r""" r"""
Arguments pertaining to specify the evaluation parameters. Arguments pertaining to specify the evaluation parameters.
""" """
task: str = field( task: str = field(metadata={"help": "Name of the evaluation task."})
metadata={"help": "Name of the evaluation task."}
)
task_dir: Optional[str] = field( task_dir: Optional[str] = field(
default="evaluation", default="evaluation", metadata={"help": "Path to the folder containing the evaluation datasets."}
metadata={"help": "Path to the folder containing the evaluation datasets."}
)
batch_size: Optional[int] = field(
default=4,
metadata={"help": "The batch size per GPU for evaluation."}
)
seed: Optional[int] = field(
default=42,
metadata={"help": "Random seed to be used with data loaders."}
)
lang: Optional[Literal["en", "zh"]] = field(
default="en",
metadata={"help": "Language used at evaluation."}
)
n_shot: Optional[int] = field(
default=5,
metadata={"help": "Number of examplars for few-shot learning."}
)
save_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to save the evaluation results."}
) )
batch_size: Optional[int] = field(default=4, metadata={"help": "The batch size per GPU for evaluation."})
seed: Optional[int] = field(default=42, metadata={"help": "Random seed to be used with data loaders."})
lang: Optional[Literal["en", "zh"]] = field(default="en", metadata={"help": "Language used at evaluation."})
n_shot: Optional[int] = field(default=5, metadata={"help": "Number of examplars for few-shot learning."})
save_dir: Optional[str] = field(default=None, metadata={"help": "Path to save the evaluation results."})
download_mode: Optional[DownloadMode] = field( download_mode: Optional[DownloadMode] = field(
default=DownloadMode.REUSE_DATASET_IF_EXISTS, default=DownloadMode.REUSE_DATASET_IF_EXISTS,
metadata={"help": "Download mode used for the evaluation datasets."} metadata={"help": "Download mode used for the evaluation datasets."},
) )
def __post_init__(self): def __post_init__(self):
task_available = []
for folder in os.listdir(self.task_dir):
if os.path.isdir(os.path.join(self.task_dir, folder)):
task_available.append(folder)
if self.task not in task_available:
raise ValueError("Task {} not found in {}.".format(self.task, self.task_dir))
if self.save_dir is not None and os.path.exists(self.save_dir): if self.save_dir is not None and os.path.exists(self.save_dir):
raise ValueError("`save_dir` already exists, use another one.") raise ValueError("`save_dir` already exists, use another one.")

View File

@@ -1,6 +1,6 @@
import json import json
from typing import Literal, Optional
from dataclasses import asdict, dataclass, field from dataclasses import asdict, dataclass, field
from typing import Literal, Optional
@dataclass @dataclass
@@ -10,17 +10,18 @@ class FreezeArguments:
""" """
name_module_trainable: Optional[str] = field( name_module_trainable: Optional[str] = field(
default="mlp", default="mlp",
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \ metadata={
"help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \
Use commas to separate multiple modules. \ Use commas to separate multiple modules. \
LLaMA choices: [\"mlp\", \"self_attn\"], \ LLaMA choices: ["mlp", "self_attn"], \
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \ BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
Qwen choices: [\"mlp\", \"attn\"], \ Qwen choices: ["mlp", "attn"], \
Phi-1.5 choices: [\"mlp\", \"mixer\"], \ Phi choices: ["mlp", "mixer"], \
Others choices: the same as LLaMA."} Others choices: the same as LLaMA.'
},
) )
num_layer_trainable: Optional[int] = field( num_layer_trainable: Optional[int] = field(
default=3, default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
) )
@@ -31,33 +32,32 @@ class LoraArguments:
""" """
additional_target: Optional[str] = field( additional_target: Optional[str] = field(
default=None, default=None,
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."} metadata={
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."
},
) )
lora_alpha: Optional[float] = field( lora_alpha: Optional[int] = field(
default=None, default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2.0)."}
)
lora_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
) )
lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."})
lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."})
lora_target: Optional[str] = field( lora_target: Optional[str] = field(
default=None, default=None,
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \ metadata={
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \ "help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \ LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \ BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \ Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
Phi-1.5 choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \ Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
Others choices: the same as LLaMA."} Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \
Others choices: the same as LLaMA.'
},
) )
resume_lora_training: Optional[bool] = field( lora_bf16_mode: Optional[bool] = field(
default=True, default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."} )
create_new_adapter: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
) )
@@ -66,61 +66,53 @@ class RLHFArguments:
r""" r"""
Arguments pertaining to the PPO and DPO training. Arguments pertaining to the PPO and DPO training.
""" """
dpo_beta: Optional[float] = field( dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."})
default=0.1, dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field(
metadata={"help": "The beta parameter for the DPO loss."} default="sigmoid", metadata={"help": "The type of DPO loss to use."}
)
dpo_ftx: Optional[float] = field(
default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
) )
ppo_buffer_size: Optional[int] = field( ppo_buffer_size: Optional[int] = field(
default=1, default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."} metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
) )
ppo_epochs: Optional[int] = field( ppo_epochs: Optional[int] = field(
default=4, default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."}
metadata={"help": "The number of epochs to perform in a PPO optimization step."}
) )
ppo_logger: Optional[str] = field( ppo_logger: Optional[str] = field(
default=None, default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'}
metadata={"help": "Log with either \"wandb\" or \"tensorboard\" in PPO training."}
) )
ppo_score_norm: Optional[bool] = field( ppo_score_norm: Optional[bool] = field(
default=False, default=False, metadata={"help": "Use score normalization in PPO training."}
metadata={"help": "Use score normalization in PPO training."}
) )
ppo_target: Optional[float] = field( ppo_target: Optional[float] = field(
default=6.0, default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."}
metadata={"help": "Target KL value for adaptive KL control in PPO training."}
) )
ppo_whiten_rewards: Optional[bool] = field( ppo_whiten_rewards: Optional[bool] = field(
default=False, default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
) )
ref_model: Optional[str] = field( ref_model: Optional[str] = field(
default=None, default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."}
metadata={"help": "Path to the reference model used for the PPO or DPO training."}
) )
ref_model_checkpoint: Optional[str] = field( ref_model_adapters: Optional[str] = field(
default=None, default=None, metadata={"help": "Path to the adapters of the reference model."}
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reference model."}
) )
ref_model_quantization_bit: Optional[int] = field( ref_model_quantization_bit: Optional[int] = field(
default=None, default=None, metadata={"help": "The number of bits to quantize the reference model."}
metadata={"help": "The number of bits to quantize the reference model."}
) )
reward_model: Optional[str] = field( reward_model: Optional[str] = field(
default=None, default=None, metadata={"help": "Path to the reward model used for the PPO training."}
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
) )
reward_model_checkpoint: Optional[str] = field( reward_model_adapters: Optional[str] = field(
default=None, default=None, metadata={"help": "Path to the adapters of the reward model."}
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reward model."}
) )
reward_model_quantization_bit: Optional[int] = field( reward_model_quantization_bit: Optional[int] = field(
default=None, default=None, metadata={"help": "The number of bits to quantize the reward model."}
metadata={"help": "The number of bits to quantize the reward model."}
) )
reward_model_type: Optional[Literal["lora", "full", "api"]] = field( reward_model_type: Optional[Literal["lora", "full", "api"]] = field(
default="lora", default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."} metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
) )
@@ -130,32 +122,13 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
Arguments pertaining to which techniques we are going to fine-tuning with. Arguments pertaining to which techniques we are going to fine-tuning with.
""" """
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field( stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
default="sft", default="sft", metadata={"help": "Which stage will be performed in training."}
metadata={"help": "Which stage will be performed in training."}
) )
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field( finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
default="lora", default="lora", metadata={"help": "Which fine-tuning method to use."}
metadata={"help": "Which fine-tuning method to use."}
)
upcast_layernorm: Optional[bool] = field(
default=False,
metadata={"help": "Whether to upcast the layernorm weights in fp32."}
)
neft_alpha: Optional[float] = field(
default=0,
metadata={"help": "The alpha parameter to control the noise magnitude in NEFTune."}
)
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."}
) )
plot_loss: Optional[bool] = field( plot_loss: Optional[bool] = field(
default=False, default=False, metadata={"help": "Whether or not to save the training loss curves."}
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
) )
def __post_init__(self): def __post_init__(self):
@@ -165,11 +138,9 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
return arg return arg
self.name_module_trainable = split_arg(self.name_module_trainable) self.name_module_trainable = split_arg(self.name_module_trainable)
self.lora_alpha = self.lora_alpha or float(self.lora_rank * 2.0) self.lora_alpha = self.lora_alpha or self.lora_rank * 2
self.lora_target = split_arg(self.lora_target) self.lora_target = split_arg(self.lora_target)
self.additional_target = split_arg(self.additional_target) self.additional_target = split_arg(self.additional_target)
self.ref_model_checkpoint = split_arg(self.ref_model_checkpoint)
self.reward_model_checkpoint = split_arg(self.reward_model_checkpoint)
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."

View File

@@ -1,5 +1,5 @@
from typing import Any, Dict, Optional
from dataclasses import asdict, dataclass, field from dataclasses import asdict, dataclass, field
from typing import Any, Dict, Optional
@dataclass @dataclass
@@ -8,40 +8,37 @@ class GeneratingArguments:
Arguments pertaining to specify the decoding parameters. Arguments pertaining to specify the decoding parameters.
""" """
do_sample: Optional[bool] = field( do_sample: Optional[bool] = field(
default=True, default=True, metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
) )
temperature: Optional[float] = field( temperature: Optional[float] = field(
default=0.95, default=0.95, metadata={"help": "The value used to modulate the next token probabilities."}
metadata={"help": "The value used to modulate the next token probabilities."}
) )
top_p: Optional[float] = field( top_p: Optional[float] = field(
default=0.7, default=0.7,
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."} metadata={
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
},
) )
top_k: Optional[int] = field( top_k: Optional[int] = field(
default=50, default=50,
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."} metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
) )
num_beams: Optional[int] = field( num_beams: Optional[int] = field(
default=1, default=1, metadata={"help": "Number of beams for beam search. 1 means no beam search."}
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
) )
max_length: Optional[int] = field( max_length: Optional[int] = field(
default=512, default=512,
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."} metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
) )
max_new_tokens: Optional[int] = field( max_new_tokens: Optional[int] = field(
default=512, default=512,
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."} metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
) )
repetition_penalty: Optional[float] = field( repetition_penalty: Optional[float] = field(
default=1.0, default=1.0, metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
) )
length_penalty: Optional[float] = field( length_penalty: Optional[float] = field(
default=1.0, default=1.0, metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
) )
def to_dict(self) -> Dict[str, Any]: def to_dict(self) -> Dict[str, Any]:

View File

@@ -1,5 +1,5 @@
from typing import Any, Dict, Literal, Optional
from dataclasses import asdict, dataclass, field from dataclasses import asdict, dataclass, field
from typing import Any, Dict, Literal, Optional
@dataclass @dataclass
@@ -8,56 +8,85 @@ class ModelArguments:
Arguments pertaining to which model/config/tokenizer we are going to fine-tune. Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
""" """
model_name_or_path: str = field( model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from \ metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."}
huggingface.co/models or modelscope.cn/models."} )
adapter_name_or_path: Optional[str] = field(
default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
) )
cache_dir: Optional[str] = field( cache_dir: Optional[str] = field(
default=None, default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
) )
use_fast_tokenizer: Optional[bool] = field( use_fast_tokenizer: Optional[bool] = field(
default=True, default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
)
resize_vocab: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
) )
split_special_tokens: Optional[bool] = field( split_special_tokens: Optional[bool] = field(
default=False, default=False,
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."} metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
) )
model_revision: Optional[str] = field( model_revision: Optional[str] = field(
default="main", default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
) )
quantization_bit: Optional[int] = field( quantization_bit: Optional[int] = field(
default=None, default=None, metadata={"help": "The number of bits to quantize the model."}
metadata={"help": "The number of bits to quantize the model."}
) )
quantization_type: Optional[Literal["fp4", "nf4"]] = field( quantization_type: Optional[Literal["fp4", "nf4"]] = field(
default="nf4", default="nf4", metadata={"help": "Quantization data type to use in int4 training."}
metadata={"help": "Quantization data type to use in int4 training."}
) )
double_quantization: Optional[bool] = field( double_quantization: Optional[bool] = field(
default=True, default=True, metadata={"help": "Whether or not to use double quantization in int4 training."}
metadata={"help": "Whether to use double quantization in int4 training or not."}
) )
rope_scaling: Optional[Literal["linear", "dynamic"]] = field( rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
default=None, default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
metadata={"help": "Adopt scaled rotary positional embeddings."}
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the model checkpoints as well as the configurations."}
) )
flash_attn: Optional[bool] = field( flash_attn: Optional[bool] = field(
default=False, default=False, metadata={"help": "Enable FlashAttention-2 for faster training."}
metadata={"help": "Enable FlashAttention-2 for faster training."}
) )
shift_attn: Optional[bool] = field( shift_attn: Optional[bool] = field(
default=False, default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
) )
hf_hub_token: Optional[str] = field( use_unsloth: Optional[bool] = field(
default=None, default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
metadata={"help": "Auth token to log in with Hugging Face Hub."} )
disable_gradient_checkpointing: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}
)
upcast_layernorm: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
)
upcast_lmhead_output: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}
)
hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."})
ms_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with ModelScope Hub."})
export_dir: Optional[str] = field(
default=None, metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1, metadata={"help": "The file shard size (in GB) of the exported model."}
)
export_quantization_bit: Optional[int] = field(
default=None, metadata={"help": "The number of bits to quantize the exported model."}
)
export_quantization_dataset: Optional[str] = field(
default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
)
export_quantization_nsamples: Optional[int] = field(
default=128, metadata={"help": "The number of samples used for quantization."}
)
export_quantization_maxlen: Optional[int] = field(
default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}
)
export_legacy_format: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}
)
export_hub_model_id: Optional[str] = field(
default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}
) )
def __post_init__(self): def __post_init__(self):
@@ -67,10 +96,14 @@ class ModelArguments:
if self.split_special_tokens and self.use_fast_tokenizer: if self.split_special_tokens and self.use_fast_tokenizer:
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
if self.checkpoint_dir is not None: # support merging multiple lora weights if self.adapter_name_or_path is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
raise ValueError("Quantization dataset is necessary for exporting.")
def to_dict(self) -> Dict[str, Any]: def to_dict(self) -> Dict[str, Any]:
return asdict(self) return asdict(self)

View File

@@ -1,89 +1,99 @@
import logging
import os import os
import torch import sys
import datasets
import transformers
from typing import Any, Dict, Optional, Tuple from typing import Any, Dict, Optional, Tuple
import datasets
import torch
import transformers
from transformers import HfArgumentParser, Seq2SeqTrainingArguments from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.trainer_utils import get_last_checkpoint from transformers.trainer_utils import get_last_checkpoint
from llmtuner.extras.logging import get_logger from ..extras.logging import get_logger
from llmtuner.extras.misc import parse_args from .data_args import DataArguments
from llmtuner.hparams import ( from .evaluation_args import EvaluationArguments
ModelArguments, from .finetuning_args import FinetuningArguments
DataArguments, from .generating_args import GeneratingArguments
EvaluationArguments, from .model_args import ModelArguments
FinetuningArguments,
GeneratingArguments
)
logger = get_logger(__name__) logger = get_logger(__name__)
_TRAIN_ARGS = [ _TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments _TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
] _INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ _INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments _EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
] _EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_INFER_ARGS = [
ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
]
_INFER_CLS = Tuple[
ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
]
_EVAL_ARGS = [
ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments
]
_EVAL_CLS = Tuple[
ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments
]
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None: def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora": if args is not None:
raise ValueError("Quantization is only compatible with the LoRA method.") return parser.parse_dict(args)
if ( if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
model_args.checkpoint_dir is not None return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
and len(model_args.checkpoint_dir) != 1
and finetuning_args.finetuning_type != "lora" if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
): return parser.parse_json_file(os.path.abspath(sys.argv[1]))
raise ValueError("Multiple checkpoints are only available for LoRA tuning.")
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if unknown_args:
print(parser.format_help())
print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args))
raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args))
return (*parsed_args,)
def parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
parser = HfArgumentParser(_TRAIN_ARGS)
return parse_args(parser, args)
def parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
return parse_args(parser, args)
def parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
return parse_args(parser, args)
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = parse_train_args(args)
# Setup logging
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
datasets.utils.logging.set_verbosity(log_level) datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format() transformers.utils.logging.enable_explicit_format()
# Check arguments
data_args.init_for_training(training_args.seed)
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None:
if model_args.quantization_bit is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if finetuning_args.create_new_adapter:
raise ValueError("Cannot create new adapter upon a quantized model.")
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Multiple adapters are only available for LoRA tuning.")
if model_args.quantization_bit is not None:
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
parser = HfArgumentParser(_TRAIN_ARGS)
return _parse_args(parser, args)
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
return _parse_args(parser, args)
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
return _parse_args(parser, args)
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
# Setup logging
if training_args.should_log:
_set_transformers_logging()
# Check arguments
if finetuning_args.stage != "pt" and data_args.template is None: if finetuning_args.stage != "pt" and data_args.template is None:
raise ValueError("Please specify which `template` to use.") raise ValueError("Please specify which `template` to use.")
@@ -99,12 +109,12 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
if finetuning_args.stage == "ppo" and not training_args.do_train: if finetuning_args.stage == "ppo" and not training_args.do_train:
raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.") raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")
if finetuning_args.stage in ["rm", "dpo"] and (not all([data_attr.ranking for data_attr in data_args.dataset_list])):
raise ValueError("Please use ranked datasets for reward modeling or DPO training.")
if finetuning_args.stage == "ppo" and model_args.shift_attn: if finetuning_args.stage == "ppo" and model_args.shift_attn:
raise ValueError("PPO training is incompatible with S^2-Attn.") raise ValueError("PPO training is incompatible with S^2-Attn.")
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
raise ValueError("Unsloth does not support lora reward model.")
if training_args.max_steps == -1 and data_args.streaming: if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.") raise ValueError("Please specify `max_steps` in streaming mode.")
@@ -116,7 +126,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
_verify_model_args(model_args, finetuning_args) _verify_model_args(model_args, finetuning_args)
if training_args.do_train and model_args.quantization_bit is not None and (not finetuning_args.upcast_layernorm): if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
logger.warning("We recommend enable `upcast_layernorm` in quantized training.") logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
@@ -139,11 +149,18 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
training_args_dict.update(dict(ddp_find_unused_parameters=False)) training_args_dict.update(dict(ddp_find_unused_parameters=False))
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
can_resume_from_checkpoint = False
training_args.resume_from_checkpoint = None
else:
can_resume_from_checkpoint = True
if ( if (
training_args.resume_from_checkpoint is None training_args.resume_from_checkpoint is None
and training_args.do_train and training_args.do_train
and os.path.isdir(training_args.output_dir) and os.path.isdir(training_args.output_dir)
and not training_args.overwrite_output_dir and not training_args.overwrite_output_dir
and can_resume_from_checkpoint
): ):
last_checkpoint = get_last_checkpoint(training_args.output_dir) last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
@@ -153,14 +170,22 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
training_args_dict = training_args.to_dict() training_args_dict = training_args.to_dict()
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint)) training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
logger.info("Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format( logger.info(
training_args.resume_from_checkpoint "Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
)) training_args.resume_from_checkpoint
)
)
if finetuning_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None: if (
logger.warning("Add {} to `checkpoint_dir` to resume training from checkpoint.".format( finetuning_args.stage in ["rm", "ppo"]
training_args.resume_from_checkpoint and finetuning_args.finetuning_type == "lora"
)) and training_args.resume_from_checkpoint is not None
):
logger.warning(
"Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
training_args.resume_from_checkpoint
)
)
# postprocess model_args # postprocess model_args
model_args.compute_dtype = ( model_args.compute_dtype = (
@@ -169,10 +194,15 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args.model_max_length = data_args.cutoff_len model_args.model_max_length = data_args.cutoff_len
# Log on each process the small summary: # Log on each process the small summary:
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format( logger.info(
training_args.local_rank, training_args.device, training_args.n_gpu, "Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
bool(training_args.local_rank != -1), str(model_args.compute_dtype) training_args.local_rank,
)) training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
str(model_args.compute_dtype),
)
)
logger.info(f"Training/evaluation parameters {training_args}") logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model. # Set seed before initializing model.
@@ -182,7 +212,8 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args) model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
_set_transformers_logging()
if data_args.template is None: if data_args.template is None:
raise ValueError("Please specify which `template` to use.") raise ValueError("Please specify which `template` to use.")
@@ -193,7 +224,8 @@ def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
model_args, data_args, eval_args, finetuning_args = parse_eval_args(args) model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
_set_transformers_logging()
if data_args.template is None: if data_args.template is None:
raise ValueError("Please specify which `template` to use.") raise ValueError("Please specify which `template` to use.")

View File

@@ -1,5 +1,5 @@
# Level: loader > adapter > parser, utils from .loader import load_model_and_tokenizer
from .utils import dispatch_model, get_modelcard_args, load_valuehead_params
from llmtuner.model.loader import load_model_and_tokenizer
from llmtuner.model.parser import get_train_args, get_infer_args, get_eval_args __all__ = ["load_model_and_tokenizer", "dispatch_model", "get_modelcard_args", "load_valuehead_params"]
from llmtuner.model.utils import dispatch_model, get_modelcard_args, load_valuehead_params

View File

@@ -1,23 +1,25 @@
import torch import inspect
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
from peft import PeftModel, TaskType, LoraConfig, get_peft_model
from llmtuner.extras.logging import get_logger import torch
from llmtuner.model.utils import find_all_linear_modules from peft import LoraConfig, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras.logging import get_logger
from .utils import find_all_linear_modules
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel from transformers.modeling_utils import PreTrainedModel
from llmtuner.hparams import ModelArguments, FinetuningArguments
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__) logger = get_logger(__name__)
def init_adapter( def init_adapter(
model: "PreTrainedModel", model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool
) -> "PreTrainedModel": ) -> "PreTrainedModel":
r""" r"""
Initializes the adapters. Initializes the adapters.
@@ -27,8 +29,8 @@ def init_adapter(
Note that the trainable parameters must be cast to float32. Note that the trainable parameters must be cast to float32.
""" """
if (not is_trainable) and model_args.checkpoint_dir is None: if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Checkpoint is not found at evaluation, load the original model.") logger.info("Adapter is not found at evaluation, load the base model.")
return model return model
if finetuning_args.finetuning_type == "full" and is_trainable: if finetuning_args.finetuning_type == "full" and is_trainable:
@@ -44,10 +46,11 @@ def init_adapter(
) )
if not num_layers: if not num_layers:
raise ValueError("Current model does not support freeze tuning.") raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0 else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)] # noqa: C416
trainable_layers = [] trainable_layers = []
for module_name in finetuning_args.name_module_trainable: for module_name in finetuning_args.name_module_trainable:
@@ -62,47 +65,74 @@ def init_adapter(
if finetuning_args.finetuning_type == "lora": if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA") logger.info("Fine-tuning method: LoRA")
checkpoint_to_resume = None adapter_to_resume = None
if model_args.checkpoint_dir is not None: if model_args.adapter_name_or_path is not None:
is_mergeable = True is_mergeable = True
if getattr(model, "quantization_method", None) == "gptq": if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.checkpoint_dir) == 1, "GPTQ quantized model only accepts a single checkpoint." assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False is_mergeable = False
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): if is_deepspeed_zero3_enabled():
checkpoints_to_merge, checkpoint_to_resume = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
else: is_mergeable = False
checkpoints_to_merge = model_args.checkpoint_dir
for checkpoint in checkpoints_to_merge: if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
model = PeftModel.from_pretrained(model, checkpoint) adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model = PeftModel.from_pretrained(model, adapter)
model = model.merge_and_unload() model = model.merge_and_unload()
if len(checkpoints_to_merge) > 0: if len(adapter_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if checkpoint_to_resume is not None: # resume lora training if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(model, checkpoint_to_resume, is_trainable=is_trainable) model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable)
if is_trainable and checkpoint_to_resume is None: # create new lora weights while training if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model) target_modules = find_all_linear_modules(model)
else: else:
target_modules = finetuning_args.lora_target target_modules = finetuning_args.lora_target
lora_config = LoraConfig( peft_kwargs = {
task_type=TaskType.CAUSAL_LM, "r": finetuning_args.lora_rank,
inference_mode=False, "target_modules": target_modules,
r=finetuning_args.lora_rank, "lora_alpha": finetuning_args.lora_alpha,
lora_alpha=finetuning_args.lora_alpha, "lora_dropout": finetuning_args.lora_dropout,
lora_dropout=finetuning_args.lora_dropout, }
target_modules=target_modules,
modules_to_save=finetuning_args.additional_target
)
model = get_peft_model(model, lora_config)
if model_args.checkpoint_dir is not None: if model_args.use_unsloth:
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir))) from unsloth import FastLlamaModel, FastMistralModel # type: ignore
unsloth_peft_kwargs = {"model": model, "max_seq_length": model_args.model_max_length}
if "loftq_config" in inspect.signature(FastLlamaModel.get_peft_model).parameters:
unsloth_peft_kwargs["loftq_config"] = {}
if getattr(model.config, "model_type", None) == "llama":
model = FastLlamaModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
elif getattr(model.config, "model_type", None) == "mistral":
model = FastMistralModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
raise NotImplementedError
else:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
modules_to_save=finetuning_args.additional_target,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.bfloat16 if finetuning_args.lora_bf16_mode else torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model return model

View File

@@ -1,56 +1,39 @@
import os from typing import TYPE_CHECKING, Optional, Tuple
import math
import torch
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Tuple
from transformers import ( from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
AutoConfig, from transformers.integrations import is_deepspeed_zero3_enabled
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizerBase
)
from transformers.models.llama import modeling_llama as LlamaModule
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
try: from ..extras.logging import get_logger
from transformers.integrations import is_deepspeed_zero3_enabled from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1 from .adapter import init_adapter
from transformers.deepspeed import is_deepspeed_zero3_enabled from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
from .utils import load_valuehead_params, register_autoclass
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.packages import is_flash_attn2_available
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments
from llmtuner.model.adapter import init_adapter
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedTokenizer from transformers import PreTrainedModel, PreTrainedTokenizer
from llmtuner.hparams import ModelArguments
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__) logger = get_logger(__name__)
require_version("transformers>=4.31.0,<4.35.0", "To fix: pip install \"transformers>=4.31.0,<4.35.0\"") require_version("transformers>=4.36.2", "To fix: pip install transformers>=4.36.2")
require_version("datasets>=2.14.0", "To fix: pip install datasets>=2.14.0") require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.6.0", "To fix: pip install peft>=0.6.0") require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0")
require_version("trl>=0.7.4", "To fix: pip install trl>=0.7.4") require_version("trl>=0.7.6", "To fix: pip install trl>=0.7.6")
def load_model_and_tokenizer( def load_model_and_tokenizer(
model_args: "ModelArguments", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
is_trainable: Optional[bool] = False, is_trainable: Optional[bool] = False,
add_valuehead: Optional[bool] = False add_valuehead: Optional[bool] = False,
) -> Tuple[PreTrainedModel, "PreTrainedTokenizer"]: ) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
r""" r"""
Loads pretrained model and tokenizer. Loads pretrained model and tokenizer.
@@ -63,174 +46,88 @@ def load_model_and_tokenizer(
"trust_remote_code": True, "trust_remote_code": True,
"cache_dir": model_args.cache_dir, "cache_dir": model_args.cache_dir,
"revision": model_args.model_revision, "revision": model_args.model_revision,
"token": model_args.hf_hub_token "token": model_args.hf_hub_token,
} }
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer, use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens, split_special_tokens=model_args.split_special_tokens,
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow padding_side="right",
**config_kwargs **config_kwargs,
) )
patch_tokenizer(tokenizer)
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
logger.info("Use `model_name_or_path` to specify the model trained with full/freeze method.") patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
model_to_load = model_args.checkpoint_dir[0]
else:
model_to_load = model_args.model_name_or_path
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs) model = None
if is_trainable and model_args.use_unsloth:
require_version("unsloth", "Follow the instructions at: https://github.com/unslothai/unsloth")
from unsloth import FastLlamaModel, FastMistralModel # type: ignore
# Fix tokenizer (for ChatGLM2 and ChatGLM3) unsloth_kwargs = {
if getattr(config, "model_type", None) == "chatglm": "model_name": model_args.model_name_or_path,
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) "max_seq_length": model_args.model_max_length,
"dtype": model_args.compute_dtype,
# Set model dtype "load_in_4bit": model_args.quantization_bit == 4,
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32 "token": model_args.hf_hub_token,
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) "device_map": get_current_device(),
setattr(config, "torch_dtype", model_args.compute_dtype) "rope_scaling": getattr(config, "rope_scaling", None),
}
# Fix config (for Qwen)
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
# Set RoPE scaling
if model_args.rope_scaling is not None:
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
else:
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
# Set FlashAttention-2
if model_args.flash_attn:
if getattr(config, "model_type", None) == "llama": if getattr(config, "model_type", None) == "llama":
if is_flash_attn2_available(): model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs)
LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2 elif getattr(config, "model_type", None) == "mistral":
LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask model, _ = FastMistralModel.from_pretrained(**unsloth_kwargs)
logger.info("Using FlashAttention-2 for faster training and inference.")
else:
logger.warning("FlashAttention-2 is not installed.")
elif getattr(config, "model_type", None) in ["qwen", "Yi"]:
logger.info("Current model automatically enables FlashAttention if installed.")
else: else:
logger.warning("Current model does not support FlashAttention.") logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
elif is_trainable and model_args.shift_attn and getattr(config, "model_type", None) == "llama": model_args.use_unsloth = False
LlamaModule.LlamaAttention = LlamaPatches.LlamaShiftShortAttention
logger.warning("Using `--flash_attn` for faster training in large context length.")
# Set shift short attention (S^2-Attn) if model_args.adapter_name_or_path:
if is_trainable and model_args.shift_attn: model_args.adapter_name_or_path = None
if getattr(config, "model_type", None) == "llama": logger.warning("Unsloth does not support loading adapters.")
setattr(config, "group_size_ratio", 0.25)
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
# Quantization configurations (using gptq or awq) if model is None:
if getattr(config, "quantization_config", None): model = AutoModelForCausalLM.from_pretrained(
if model_args.quantization_bit is not None: # remove bnb quantization model_args.model_name_or_path,
model_args.quantization_bit = None config=config,
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} torch_dtype=model_args.compute_dtype,
quantization_config = getattr(config, "quantization_config", None) low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
logger.info("Loading {}-bit quantized model.".format(quantization_config.get("bits", -1))) **config_kwargs,
)
# Quantization configurations (using bitsandbytes library) patch_model(model, tokenizer, model_args, is_trainable)
if model_args.quantization_bit is not None: register_autoclass(config, model, tokenizer)
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
if model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load pre-trained models (without valuehead)
model = AutoModelForCausalLM.from_pretrained(
model_to_load,
config=config,
torch_dtype=model_args.compute_dtype,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs
)
# Disable custom generate method (for Qwen and Baichuan2)
if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
# Fix LM head (for ChatGLM2 and ChatGLM3)
if getattr(config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
# Register auto class to save the custom code files
if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if isinstance(model, PreTrainedModel) and "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if isinstance(tokenizer, PreTrainedTokenizerBase) and "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()
# Initialize adapters
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable) model = init_adapter(model, model_args, finetuning_args, is_trainable)
# Prepare model with valuehead for RLHF
if add_valuehead: if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
setattr(model, "_keys_to_ignore_on_save", [name for name, _ in model.named_parameters() if "pretrained_model" in name]) patch_valuehead_model(model)
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
vhead_path = ( if model_args.adapter_name_or_path is not None:
model_args.checkpoint_dir[-1] if model_args.checkpoint_dir is not None else model_args.model_name_or_path vhead_path = model_args.adapter_name_or_path[-1]
) else:
vhead_path = model_args.model_name_or_path
vhead_params = load_valuehead_params(vhead_path, model_args) vhead_params = load_valuehead_params(vhead_path, model_args)
if vhead_params is not None: if vhead_params is not None:
model.load_state_dict(vhead_params, strict=False) model.load_state_dict(vhead_params, strict=False)
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
# Prepare model for inference
if not is_trainable: if not is_trainable:
model.requires_grad_(False) # fix all model params model.requires_grad_(False)
model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
model.eval() model.eval()
else: else:
model.train() model.train()
trainable_params, all_param = count_parameters(model) trainable_params, all_param = count_parameters(model)
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( logger.info(
trainable_params, all_param, 100 * trainable_params / all_param "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
)) trainable_params, all_param, 100 * trainable_params / all_param
)
)
if not is_trainable: if not is_trainable:
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")

View File

@@ -0,0 +1,299 @@
import math
import os
import random
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import torch
from datasets import load_dataset
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils.versions import require_version
from ..extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES
from ..extras.logging import get_logger
from ..extras.misc import get_current_device, infer_optim_dtype
from ..extras.packages import is_flash_attn2_available
from ..extras.patches.llama_patch import apply_llama_patch
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import ModelArguments
logger = get_logger(__name__)
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
embedding_dim = embed_weight.size(1)
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:])
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
r"""
Resize token embeddings.
"""
if is_deepspeed_zero3_enabled():
import deepspeed # type: ignore
params = [model.get_input_embeddings().weight]
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
params.append(model.get_output_embeddings().weight)
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
else:
context_maybe_zero3 = nullcontext()
with context_maybe_zero3:
current_embedding_size = model.get_input_embeddings().weight.size(0)
if len(tokenizer) > current_embedding_size:
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
logger.warning("Current model does not support resizing token embeddings.")
return
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
with context_maybe_zero3:
new_embedding_size = model.get_input_embeddings().weight.size(0)
num_new_tokens = new_embedding_size - current_embedding_size
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
r"""
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
"""
if os.path.isfile(model_args.export_quantization_dataset):
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None)
data_files = model_args.export_quantization_dataset
else:
data_path = model_args.export_quantization_dataset
data_files = None
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
maxlen = model_args.export_quantization_maxlen
samples = []
for _ in range(model_args.export_quantization_nsamples):
while True:
sample_idx = random.randint(0, len(dataset) - 1)
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
if sample["input_ids"].size(1) >= maxlen:
break # TODO: fix large maxlen
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen]
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
return samples
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
return
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK scaling may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info(
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor)
)
def _configure_flashattn(config_kwargs: Dict[str, Any]) -> None:
if not is_flash_attn2_available():
logger.warning("FlashAttention2 is not installed.")
return
config_kwargs["use_flash_attention_2"] = True
logger.info("Using FlashAttention-2 for faster training and inference.")
def _configure_longlora(config: "PretrainedConfig") -> None:
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
setattr(config, "group_size_ratio", 0.25)
apply_llama_patch()
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
def _configure_quantization(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
config_kwargs: Dict[str, Any],
) -> None:
r"""
Priority: GPTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
"""
if getattr(config, "quantization_config", None): # gptq
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
config_kwargs["device_map"] = {"": get_current_device()}
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None)
if quantization_config.get("quant_method", None) == "gptq" and quantization_config.get("bits", -1) == 4:
quantization_config["use_exllama"] = False # disable exllama
logger.info("Loading {}-bit GPTQ-quantized model.".format(quantization_config.get("bits", -1)))
elif model_args.export_quantization_bit is not None: # auto-gptq
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
from accelerate.utils import get_max_memory
if getattr(config, "model_type", None) == "chatglm":
raise ValueError("ChatGLM model is not supported.")
config_kwargs["quantization_config"] = GPTQConfig(
bits=model_args.export_quantization_bit,
tokenizer=tokenizer,
dataset=_get_quantization_dataset(tokenizer, model_args),
)
config_kwargs["device_map"] = "auto"
config_kwargs["max_memory"] = get_max_memory()
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
elif model_args.quantization_bit is not None: # bnb
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type,
)
config_kwargs["device_map"] = {"": get_current_device()}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
def _prepare_model_for_training(
model: "PreTrainedModel", model_args: "ModelArguments", output_layer_name: Optional[str] = "lm_head"
) -> None:
r"""
Includes:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) add the upcasting of the lm_head in fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72
"""
if model_args.upcast_layernorm:
for name, param in model.named_parameters():
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
param.data = param.data.to(torch.float32)
logger.info("Upcasting layernorm weights in float32.")
if not model_args.disable_gradient_checkpointing:
if not getattr(model, "supports_gradient_checkpointing", False):
logger.warning("Current model does not support gradient checkpointing.")
else:
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
model.config.use_cache = False # turn off when gradient checkpointing is enabled
logger.info("Gradient checkpointing enabled.")
if hasattr(model, output_layer_name) and model_args.upcast_lmhead_output:
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
return output.to(torch.float32)
output_layer = getattr(model, output_layer_name)
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
output_layer.register_forward_hook(fp32_forward_post_hook)
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
def patch_config(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
config_kwargs: Dict[str, Any],
is_trainable: bool,
) -> None:
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, model_args.compute_dtype == dtype)
if model_args.rope_scaling is not None:
_configure_rope(config, model_args, is_trainable)
if model_args.flash_attn:
_configure_flashattn(config_kwargs)
if is_trainable and model_args.shift_attn:
_configure_longlora(config)
_configure_quantization(config, tokenizer, model_args, config_kwargs)
def patch_model(
model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", is_trainable: bool
) -> None:
if "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
if getattr(model.config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
if model_args.resize_vocab:
_resize_embedding_layer(model, tokenizer)
if is_trainable:
_prepare_model_for_training(model, model_args)
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
if isinstance(self.pretrained_model, PreTrainedModel):
self.pretrained_model.tie_weights()
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
if isinstance(self.pretrained_model, PreTrainedModel):
return self.pretrained_model.get_input_embeddings()
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(tie_weights, model))
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))

View File

@@ -1,17 +1,19 @@
import torch
import inspect import inspect
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple from typing import TYPE_CHECKING, Any, Dict, List
import torch
from transformers import PreTrainedModel
from transformers.utils import cached_file from transformers.utils import cached_file
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from llmtuner.extras.constants import LAYERNORM_NAMES from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from llmtuner.extras.logging import get_logger from ..extras.logging import get_logger
from llmtuner.hparams import ModelArguments, FinetuningArguments from ..extras.misc import get_current_device
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel from transformers import PretrainedConfig, PreTrainedTokenizer
from llmtuner.hparams import DataArguments
from ..hparams import DataArguments, FinetuningArguments, ModelArguments
logger = get_logger(__name__) logger = get_logger(__name__)
@@ -19,27 +21,32 @@ logger = get_logger(__name__)
def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel": def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel":
r""" r"""
Dispatches a pre-trained model to GPUs with balanced memory. Dispatches a pre-trained model to GPUs with balanced memory when the GPU is available.
Borrowed from: https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/modeling_utils.py#L2803 Borrowed from: https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/modeling_utils.py#L3570
""" """
if getattr(model, "quantization_method", None): # already set on current device if getattr(model, "quantization_method", None): # already set on current device
return model return model
if torch.cuda.device_count() > 1 and getattr(model.config, "model_type", None) != "chatglm": if (
torch.cuda.device_count() > 1
and isinstance(model, PreTrainedModel)
and model._no_split_modules is not None
and model.config.model_type != "chatglm"
):
from accelerate import dispatch_model from accelerate import dispatch_model
from accelerate.utils import infer_auto_device_map, get_balanced_memory from accelerate.utils import get_balanced_memory, infer_auto_device_map
if model._no_split_modules is None: kwargs = {"dtype": model.dtype, "no_split_module_classes": model._get_no_split_modules("auto")}
raise ValueError("The model class needs to implement the `_no_split_modules` attribute.")
kwargs = {"dtype": model.dtype, "no_split_module_classes": model._no_split_modules}
max_memory = get_balanced_memory(model, **kwargs) max_memory = get_balanced_memory(model, **kwargs)
# Make sure tied weights are tied before creating the device map. # Make sure tied weights are tied before creating the device map.
model.tie_weights() model.tie_weights()
device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs) device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs)
return dispatch_model(model, device_map) device_map_kwargs = {"device_map": device_map}
if "skip_keys" in inspect.signature(dispatch_model).parameters:
device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
return dispatch_model(model, **device_map_kwargs)
else: else:
return model.cuda() return model.to(device=get_current_device())
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]: def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
@@ -51,6 +58,7 @@ def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
linear_cls = torch.nn.Linear linear_cls = torch.nn.Linear
elif quantization_method == "bitsandbytes": elif quantization_method == "bitsandbytes":
import bitsandbytes as bnb import bitsandbytes as bnb
linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt
else: else:
raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method)) raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method))
@@ -61,10 +69,7 @@ def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
module_names = set() module_names = set()
for name, module in model.named_modules(): for name, module in model.named_modules():
if ( if isinstance(module, linear_cls) and not any(output_layer in name for output_layer in output_layer_names):
isinstance(module, linear_cls)
and not any([output_layer in name for output_layer in output_layer_names])
):
module_names.add(name.split(".")[-1]) module_names.add(name.split(".")[-1])
logger.info("Found linear modules: {}".format(",".join(module_names))) logger.info("Found linear modules: {}".format(",".join(module_names)))
@@ -72,112 +77,49 @@ def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
def get_modelcard_args( def get_modelcard_args(
model_args: "ModelArguments", model_args: "ModelArguments", data_args: "DataArguments", finetuning_args: "FinetuningArguments"
data_args: "DataArguments",
finetuning_args: "FinetuningArguments"
) -> Dict[str, Any]: ) -> Dict[str, Any]:
return { return {
"tasks": "text-generation", "tasks": "text-generation",
"license": "other", "license": "other",
"finetuned_from": model_args.model_name_or_path, "finetuned_from": model_args.model_name_or_path,
"dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], "dataset": [dataset.strip() for dataset in data_args.dataset.split(",")],
"tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []) "tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []),
} }
def load_valuehead_params( def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
path_or_repo_id: str,
model_args: "ModelArguments"
) -> Dict[str, torch.Tensor]:
r""" r"""
Loads value head parameters from Hugging Face Hub or local disk. Loads value head parameters from Hugging Face Hub or local disk.
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
""" """
kwargs = { kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
"path_or_repo_id": path_or_repo_id,
"cache_dir": model_args.cache_dir
}
if "token" in inspect.signature(cached_file).parameters:
kwargs["token"] = model_args.hf_hub_token
elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0
kwargs["use_auth_token"] = model_args.hf_hub_token
else:
logger.warning("Ignore `hf_hub_token` since matched parameter is not found.")
try:
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err)))
try: try:
from safetensors import safe_open from safetensors import safe_open
vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs)
with safe_open(vhead_file, framework="pt", device="cpu") as f:
return {
"v_head.summary.weight": f.get_tensor("v_head.summary.weight"),
"v_head.summary.bias": f.get_tensor("v_head.summary.bias")
}
except Exception as err:
logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err)))
logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id)) vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
with safe_open(vhead_file, framework="pt", device="cpu") as f:
return {key: f.get_tensor(key) for key in f.keys()}
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
try:
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
return None return None
def prepare_model_for_training( def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
model: "PreTrainedModel", if "AutoConfig" in getattr(config, "auto_map", {}):
finetuning_args: "FinetuningArguments", config.__class__.register_for_auto_class()
output_layer_name: Optional[str] = "lm_head", if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
use_gradient_checkpointing: Optional[bool] = True, model.__class__.register_for_auto_class()
layernorm_names: Optional[Set[str]] = LAYERNORM_NAMES if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
) -> "PreTrainedModel": tokenizer.__class__.register_for_auto_class()
r"""
Includes:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) upcast the lm_head to fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
"""
if finetuning_args.upcast_layernorm:
for name, param in model.named_parameters():
if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names):
param.data = param.data.to(torch.float32)
logger.info("Upcasting weights in layernorm in float32.")
if finetuning_args.neft_alpha > 1e-6:
def neftune_forward_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = finetuning_args.neft_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
model.get_input_embeddings().register_forward_hook(neftune_forward_hook)
logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha))
if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False):
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
logger.info("Gradient checkpointing enabled.")
if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name):
output_layer = getattr(model, output_layer_name)
if isinstance(output_layer, torch.nn.Linear):
def fp32_forward_pre_hook(module: torch.nn.Module, args: Tuple[torch.Tensor]):
return args[0].to(output_layer.weight.dtype)
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
return output.to(torch.float32)
output_layer.register_forward_pre_hook(fp32_forward_pre_hook)
output_layer.register_forward_hook(fp32_forward_post_hook)
return model

View File

@@ -1 +1,4 @@
from llmtuner.train.tuner import export_model, run_exp from .tuner import export_model, run_exp
__all__ = ["export_model", "run_exp"]

View File

@@ -1 +1,4 @@
from llmtuner.train.dpo.workflow import run_dpo from .workflow import run_dpo
__all__ = ["run_dpo"]

View File

@@ -1,6 +1,7 @@
import torch
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple from typing import Any, Dict, List, Sequence, Tuple
import torch
from transformers import DataCollatorForSeq2Seq from transformers import DataCollatorForSeq2Seq
@@ -20,7 +21,7 @@ class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
padded_tensor = self.label_pad_token_id * torch.ones_like(feature) padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end] padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor) padded_labels.append(padded_tensor)
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]: def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r""" r"""
@@ -34,10 +35,12 @@ class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
for key in ("chosen_ids", "rejected_ids"): for key in ("chosen_ids", "rejected_ids"):
for feature in features: for feature in features:
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key]) prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
concatenated_features.append({ concatenated_features.append(
"input_ids": feature["prompt_ids"] + feature[key], {
"attention_mask": [1] * (prompt_len + answer_len) "input_ids": feature["prompt_ids"] + feature[key],
}) "attention_mask": [1] * (prompt_len + answer_len),
}
)
label_positions.append((prompt_len, answer_len)) label_positions.append((prompt_len, answer_len))
batch = self.tokenizer.pad( batch = self.tokenizer.pad(

View File

@@ -1,40 +1,50 @@
import torch
from collections import defaultdict from collections import defaultdict
from contextlib import nullcontext
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
import torch
from transformers import BatchEncoding, Trainer from transformers import BatchEncoding, Trainer
from trl import DPOTrainer from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model from trl.trainer.utils import disable_dropout_in_model
from llmtuner.extras.constants import IGNORE_INDEX from ...extras.constants import IGNORE_INDEX
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedModel from transformers import PreTrainedModel
class CustomDPOTrainer(DPOTrainer): class CustomDPOTrainer(DPOTrainer):
def __init__( def __init__(
self, self,
beta: float, beta: float,
loss_type: Literal["sigmoid", "hinge", "ipo", "kto"],
ftx_gamma: float,
model: Union["PreTrainedModel", torch.nn.Module], model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None, ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: Optional[bool] = True, disable_dropout: Optional[bool] = True,
loss_type: Optional[Literal["sigmoid", "hinge"]] = "sigmoid", **kwargs,
**kwargs
): ):
if disable_dropout: if disable_dropout:
disable_dropout_in_model(model) disable_dropout_in_model(model)
if ref_model is not None: if ref_model is not None:
disable_dropout_in_model(ref_model) disable_dropout_in_model(ref_model)
self.is_encoder_decoder = model.config.is_encoder_decoder self.use_dpo_data_collator = True # hack to avoid warning
self.ref_model = ref_model self.generate_during_eval = False # disable at evaluation
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0 self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self._peft_has_been_casted_to_bf16 = False
self.ref_model = ref_model
self.beta = beta self.beta = beta
self.label_smoothing = 0
self.loss_type = loss_type self.loss_type = loss_type
self.ftx_gamma = ftx_gamma
self._stored_metrics = defaultdict(lambda: defaultdict(list)) self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, model=model, **kwargs) Trainer.__init__(self, model=model, **kwargs)
@@ -44,32 +54,95 @@ class CustomDPOTrainer(DPOTrainer):
if ref_model is not None: if ref_model is not None:
if self.is_deepspeed_enabled: if self.is_deepspeed_enabled:
if not ( if not (
getattr(ref_model, "is_loaded_in_8bit", False) getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
or getattr(ref_model, "is_loaded_in_4bit", False) ): # quantized models are already set on the correct device
): # quantized models are already set on the correct device
self.ref_model = self._prepare_deepspeed(self.ref_model) self.ref_model = self._prepare_deepspeed(self.ref_model)
else: else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
r"""
Computes supervised cross-entropy loss of given labels under the given logits.
Returns:
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
"""
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
return -all_logps
def concatenated_forward( def concatenated_forward(
self, self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor]
model: Optional[torch.nn.Module] = None,
batch: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
all_logits = model( all_logits = model(
input_ids=batch_copied["input_ids"], input_ids=batch_copied["input_ids"], attention_mask=batch_copied["attention_mask"], return_dict=True
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32) ).logits.to(torch.float32)
all_logps = self._get_batch_logps( all_logps = self.get_batch_logps(
all_logits, all_logits,
batch["labels"], batch["labels"],
average_log_prob=False average_log_prob=False,
label_pad_token_id=self.label_pad_token_id,
) )
batch_size = batch["input_ids"].size(0) // 2 batch_size = batch["input_ids"].size(0) // 2
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
return chosen_logps, rejected_logps, chosen_logits, rejected_logits return chosen_logps, rejected_logps, chosen_logits, rejected_logits
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, torch.Tensor],
train_eval: Optional[Literal["train", "eval"]] = "train",
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
r"""
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
"""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
) = self.concatenated_forward(model, batch)
with torch.no_grad():
if self.ref_model is None:
ref_model = self.model
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
else:
ref_model = self.ref_model
ref_context = nullcontext()
with ref_context:
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(ref_model, batch)
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
)
if self.ftx_gamma > 1e-6:
batch_size = batch["input_ids"].size(0) // 2
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
return losses.mean(), metrics

View File

@@ -1,20 +1,23 @@
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py # Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
from typing import TYPE_CHECKING, Optional, List from typing import TYPE_CHECKING, List, Optional
from transformers import Seq2SeqTrainingArguments from transformers import Seq2SeqTrainingArguments
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset from ...data import get_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX from ...extras.constants import IGNORE_INDEX
from llmtuner.extras.ploting import plot_loss from ...extras.ploting import plot_loss
from llmtuner.hparams import ModelArguments from ...hparams import ModelArguments
from llmtuner.model import load_model_and_tokenizer from ...model import load_model_and_tokenizer
from llmtuner.train.dpo.collator import DPODataCollatorWithPadding from ...train.dpo.collator import DPODataCollatorWithPadding
from llmtuner.train.dpo.trainer import CustomDPOTrainer from ...train.dpo.trainer import CustomDPOTrainer
from llmtuner.train.utils import create_modelcard_and_push, create_ref_model from ...train.utils import create_modelcard_and_push, create_ref_model
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainerCallback from transformers import TrainerCallback
from llmtuner.hparams import DataArguments, FinetuningArguments
from ...hparams import DataArguments, FinetuningArguments
def run_dpo( def run_dpo(
@@ -22,38 +25,39 @@ def run_dpo(
data_args: "DataArguments", data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None callbacks: Optional[List["TrainerCallback"]] = None,
): ):
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
data_collator = DPODataCollatorWithPadding( data_collator = DPODataCollatorWithPadding(
tokenizer=tokenizer, tokenizer=tokenizer,
pad_to_multiple_of=8, pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
) )
# Create reference model # Create reference model
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
ref_model = model ref_model = model
else: else:
ref_model = create_ref_model(model_args, finetuning_args) ref_model = create_ref_model(model_args, finetuning_args)
# Update arguments # Update arguments
training_args_dict = training_args.to_dict() training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer # Initialize our Trainer
trainer = CustomDPOTrainer( trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta, beta=finetuning_args.dpo_beta,
loss_type=finetuning_args.dpo_loss,
ftx_gamma=finetuning_args.dpo_ftx,
model=model, model=model,
ref_model=ref_model, ref_model=ref_model,
args=training_args, args=training_args,
tokenizer=tokenizer, tokenizer=tokenizer,
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks, callbacks=callbacks,
**split_dataset(dataset, data_args, training_args) **split_dataset(dataset, data_args, training_args),
) )
# Training # Training
@@ -69,7 +73,7 @@ def run_dpo(
# Evaluation # Evaluation
if training_args.do_eval: if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval") metrics = trainer.evaluate(metric_key_prefix="eval")
if id(model) == id(ref_model): # unable to compute rewards without a reference model if id(model) == id(ref_model): # unable to compute rewards without a reference model
remove_keys = [key for key in metrics.keys() if "rewards" in key] remove_keys = [key for key in metrics.keys() if "rewards" in key]
for key in remove_keys: for key in remove_keys:
metrics.pop(key) metrics.pop(key)

View File

@@ -1 +1,4 @@
from llmtuner.train.ppo.workflow import run_ppo from .workflow import run_ppo
__all__ = ["run_ppo"]

View File

@@ -1,27 +1,28 @@
import math
import os import os
import sys import sys
import math
import torch
from tqdm import tqdm
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl import torch
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME from tqdm import tqdm
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
from transformers.trainer_pt_utils import remove_dummy_checkpoint from transformers.trainer_pt_utils import remove_dummy_checkpoint
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from trl import PPOTrainer from trl import PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits from trl.core import PPODecorators, logprobs_from_logits
from llmtuner.extras.callbacks import LogCallback, SavePeftModelCallback from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
from llmtuner.extras.logging import get_logger from ...extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor from ...extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.train.ppo.utils import dump_layernorm, get_rewards_from_server, restore_layernorm, replace_model from .utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback from transformers import Seq2SeqTrainingArguments, TrainerCallback
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments, FinetuningArguments, GeneratingArguments
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
logger = get_logger(__name__) logger = get_logger(__name__)
@@ -40,7 +41,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
callbacks: List["TrainerCallback"], callbacks: List["TrainerCallback"],
reward_model: "AutoModelForCausalLMWithValueHead", reward_model: "AutoModelForCausalLMWithValueHead",
**kwargs **kwargs,
): ):
PPOTrainer.__init__(self, **kwargs) PPOTrainer.__init__(self, **kwargs)
@@ -52,7 +53,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.generation_config = GenerationConfig( self.generation_config = GenerationConfig(
pad_token_id=self.tokenizer.pad_token_id, pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids, eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
**generating_args.to_dict() **generating_args.to_dict(),
) )
self.state = TrainerState() self.state = TrainerState()
@@ -61,7 +62,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.accelerator.state, "deepspeed_plugin" self.accelerator.state, "deepspeed_plugin"
) )
self.log_callback, self.save_callback = callbacks[0], callbacks[1] self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, SavePeftModelCallback) assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
if self.args.max_steps > 0: if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs") logger.info("max_steps is given, it will override any value given in num_train_epochs")
@@ -71,7 +72,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
if not ( if not (
getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False) getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False) or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
): # quantized models are already set on the correct device ): # quantized models are already set on the correct device
self.reward_model = self._prepare_deepspeed(self.reward_model) self.reward_model = self._prepare_deepspeed(self.reward_model)
else: else:
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True) self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
@@ -111,9 +112,11 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
logger.info(" Num examples = {}".format(num_examples)) logger.info(" Num examples = {}".format(num_examples))
logger.info(" Num Epochs = {}".format(num_train_epochs)) logger.info(" Num Epochs = {}".format(num_train_epochs))
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size)) logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
logger.info(" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format( logger.info(
total_train_batch_size " Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
)) total_train_batch_size
)
)
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps)) logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs)) logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
logger.info(" Total training steps = {}".format(max_steps)) logger.info(" Total training steps = {}".format(max_steps))
@@ -138,10 +141,12 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.model.eval() self.model.eval()
# Get inputs # Get inputs
self.tokenizer.padding_side = "right" # change padding side self.tokenizer.padding_side = "right" # change padding side
queries, responses, rewards = [], [], [] queries, responses, rewards = [], [], []
for idx in range(0, self.config.batch_size, self.config.mini_batch_size): for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
mini_batch_queries, mini_batch_responses = self.get_inputs(batch[idx:idx+self.config.mini_batch_size]) mini_batch_queries, mini_batch_responses = self.get_inputs(
batch[idx : idx + self.config.mini_batch_size]
)
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model) mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model)
queries.extend(mini_batch_queries) queries.extend(mini_batch_queries)
responses.extend(mini_batch_responses) responses.extend(mini_batch_responses)
@@ -154,7 +159,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
# Run PPO step # Run PPO step
stats = self.step(queries, responses, rewards) stats = self.step(queries, responses, rewards)
self.tokenizer.padding_side = "left" # restore padding side self.tokenizer.padding_side = "left" # restore padding side
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards)) loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards)) reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
@@ -163,18 +168,18 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True) batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True) batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
self.log_stats(stats, batch, rewards) self.log_stats(stats, batch, rewards)
except: except Exception:
logger.warning("Failed to save stats due to unknown errors.") logger.warning("Failed to save stats due to unknown errors.")
self.state.global_step += 1 self.state.global_step += 1
self.log_callback.on_step_end(self.args, self.state, self.control) self.log_callback.on_step_end(self.args, self.state, self.control)
if self.is_local_process_zero() and (step+1) % self.args.logging_steps == 0: if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
logs = dict( logs = dict(
loss=round(loss_meter.avg, 4), loss=round(loss_meter.avg, 4),
reward=round(reward_meter.avg, 4), reward=round(reward_meter.avg, 4),
learning_rate=stats["ppo/learning_rate"], learning_rate=stats["ppo/learning_rate"],
epoch=round(step / steps_in_epoch, 2) epoch=round(step / steps_in_epoch, 2),
) )
tqdm.write(str(logs)) tqdm.write(str(logs))
logs["step"] = step logs["step"] = step
@@ -183,10 +188,10 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
loss_meter.reset() loss_meter.reset()
reward_meter.reset() reward_meter.reset()
if (step+1) % self.args.save_steps == 0: # save checkpoint if (step + 1) % self.args.save_steps == 0: # save checkpoint
self.save_model(os.path.join( self.save_model(
self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step) os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
)) )
self.save_callback.on_save( self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model) self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
) )
@@ -204,33 +209,36 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
r""" r"""
Generates model's responses given queries. Generates model's responses given queries.
""" """
if self.finetuning_args.upcast_layernorm: if self.model_args.upcast_layernorm:
layernorm_params = dump_layernorm(self.model) layernorm_params = dump_layernorm(self.model)
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
for k, v in batch.items():
batch[k] = v[:, start_index:]
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
generate_output: torch.Tensor = unwrapped_model.generate( generate_output: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config, generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
logits_processor=get_logits_processor(),
**batch
) )
if self.finetuning_args.upcast_layernorm: if self.model_args.upcast_layernorm:
restore_layernorm(self.model, layernorm_params) restore_layernorm(self.model, layernorm_params)
query = batch["input_ids"].detach().cpu() query = batch["input_ids"].detach().cpu()
response = generate_output[:, batch["input_ids"].size(-1):].detach().cpu() response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
queries, responses = [], [] queries, responses = [], []
for i in range(len(query)): for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item() query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero() response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0: if len(response_index) == 0:
response_length = 1 # allow empty response response_length = 1 # allow empty response
else: else:
response_length = response_index[-1].item() + 1 response_length = response_index[-1].item() + 1
queries.append(query[i, query_length:]) # remove padding from left queries.append(query[i, query_start_index:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right responses.append(response[i, :response_length]) # remove padding from right
return queries, responses return queries, responses
@@ -239,7 +247,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self, self,
queries: List[torch.Tensor], queries: List[torch.Tensor],
responses: List[torch.Tensor], responses: List[torch.Tensor],
unwrapped_model: "AutoModelForCausalLMWithValueHead" unwrapped_model: "AutoModelForCausalLMWithValueHead",
) -> List[torch.Tensor]: ) -> List[torch.Tensor]:
r""" r"""
Computes scores using given reward model. Computes scores using given reward model.
@@ -259,17 +267,17 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
batch = self.prepare_model_inputs(queries, responses) batch = self.prepare_model_inputs(queries, responses)
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16 with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True) _, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True)
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture
values = torch.transpose(values, 0, 1) values = torch.transpose(values, 0, 1)
rewards = [] rewards = []
for i in range(values.size(0)): for i in range(values.size(0)):
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero() end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0 end_index = end_indexes[-1].item() if len(end_indexes) else 0
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
if self.finetuning_args.reward_model_type == "lora": if self.finetuning_args.reward_model_type == "lora":
replace_model(unwrapped_model, target="default") replace_model(unwrapped_model, target="default")
@@ -284,7 +292,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
responses: torch.Tensor, responses: torch.Tensor,
model_inputs: dict, model_inputs: dict,
return_logits: Optional[bool] = False, return_logits: Optional[bool] = False,
response_masks: Optional[torch.Tensor] = None response_masks: Optional[torch.Tensor] = None,
): ):
r""" r"""
Calculates model outputs in multiple batches. Calculates model outputs in multiple batches.
@@ -307,7 +315,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
input_ids = input_kwargs["input_ids"] input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"] attention_mask = input_kwargs["attention_mask"]
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16 with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
logits, _, values = model(**input_kwargs) logits, _, values = model(**input_kwargs)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
@@ -320,14 +328,12 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
for j in range(len(query_batch)): for j in range(len(query_batch)):
start = len(query_batch[j]) - 1 start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0].item() start += attention_mask[j, :].nonzero()[0].item()
end = start + len(response_batch[j]) end = start + len(response_batch[j])
if response_masks is not None: if response_masks is not None:
response_masks_batch = torch.cat( response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]
(torch.zeros_like(query_batch[j]), response_masks_batch[j])
)[1:]
masks[j, :start] = 0 masks[j, :start] = 0
masks[j, end:] = 0 masks[j, end:] = 0
@@ -361,9 +367,9 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model)) self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
except ValueError: except ValueError:
logger.warning( logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use" " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
" zero_to_fp32.py to recover weights" " use zero_to_fp32.py to recover weights"
) )
self._save(output_dir, state_dict={}) self._save(output_dir, state_dict={})
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]) remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
self.model.save_checkpoint(output_dir) # wrapped model self.model.save_checkpoint(output_dir)

View File

@@ -1,8 +1,10 @@
import json import json
import torch
from typing import TYPE_CHECKING, Dict, List, Literal, Optional from typing import TYPE_CHECKING, Dict, List, Literal, Optional
from llmtuner.extras.packages import is_requests_available import torch
from ...extras.packages import is_requests_available
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedModel from transformers import PreTrainedModel
@@ -21,16 +23,18 @@ def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None: def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
if target == "reward": # save default head temporarily if target == "reward": # save default head temporarily
valuehead_state_dict: Dict[str, torch.Tensor] = model.v_head.state_dict() valuehead_state_dict: Dict[str, torch.Tensor] = model.v_head.state_dict()
setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone()) setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone())
setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone()) setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone())
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
model.v_head.load_state_dict({ model.v_head.load_state_dict(
"summary.weight": model.get_buffer("{}_head_weight".format(target)).detach().clone(), {
"summary.bias": model.get_buffer("{}_head_bias".format(target)).detach().clone() "summary.weight": model.get_buffer("{}_head_weight".format(target)).detach().clone(),
}) "summary.bias": model.get_buffer("{}_head_bias".format(target)).detach().clone(),
}
)
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]: def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:

View File

@@ -1,22 +1,26 @@
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py # Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
import math import math
from trl import PPOConfig from typing import TYPE_CHECKING, List, Optional
from torch.optim import AdamW from torch.optim import AdamW
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorWithPadding from transformers import DataCollatorWithPadding
from transformers.optimization import get_scheduler from transformers.optimization import get_scheduler
from trl import PPOConfig
from ...data import get_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model_and_tokenizer
from ...train.ppo.trainer import CustomPPOTrainer
from ...train.utils import create_ref_model, create_reward_model
from llmtuner.data import get_dataset, preprocess_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.model import load_model_and_tokenizer
from llmtuner.train.utils import create_ref_model, create_reward_model
from llmtuner.train.ppo.trainer import CustomPPOTrainer
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_ppo( def run_ppo(
@@ -25,13 +29,14 @@ def run_ppo(
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None callbacks: Optional[List["TrainerCallback"]] = None,
): ):
dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, add_valuehead=True) model_args, finetuning_args, training_args.do_train, add_valuehead=True
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="ppo") )
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="ppo")
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Create reference model and reward model # Create reference model and reward model
@@ -55,7 +60,7 @@ def run_ppo(
use_score_scaling=finetuning_args.ppo_score_norm, use_score_scaling=finetuning_args.ppo_score_norm,
use_score_norm=finetuning_args.ppo_score_norm, use_score_norm=finetuning_args.ppo_score_norm,
whiten_rewards=finetuning_args.ppo_whiten_rewards, whiten_rewards=finetuning_args.ppo_whiten_rewards,
accelerator_kwargs={"step_scheduler_with_optimizer": False} accelerator_kwargs={"step_scheduler_with_optimizer": False},
) )
# Create optimizer and scheduler # Create optimizer and scheduler
@@ -70,7 +75,7 @@ def run_ppo(
training_args.lr_scheduler_type, training_args.lr_scheduler_type,
optimizer=optimizer, optimizer=optimizer,
num_warmup_steps=training_args.get_warmup_steps(num_training_steps), num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
num_training_steps=num_training_steps num_training_steps=num_training_steps,
) )
# Initialize our Trainer # Initialize our Trainer
@@ -79,7 +84,7 @@ def run_ppo(
training_args=training_args, training_args=training_args,
finetuning_args=finetuning_args, finetuning_args=finetuning_args,
generating_args=generating_args, generating_args=generating_args,
callbacks=callbacks + [SavePeftModelCallback()], callbacks=callbacks + [FixValueHeadModelCallback()],
reward_model=reward_model, reward_model=reward_model,
config=ppo_config, config=ppo_config,
model=model, model=model,
@@ -88,13 +93,15 @@ def run_ppo(
dataset=dataset, dataset=dataset,
data_collator=data_collator, data_collator=data_collator,
optimizer=optimizer, optimizer=optimizer,
lr_scheduler=lr_scheduler lr_scheduler=lr_scheduler,
) )
# Training # Training
if training_args.do_train: if training_args.do_train:
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint) ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint)
ppo_trainer.save_model() ppo_trainer.save_model()
ppo_trainer.save_state() # must be called after save_model to have a folder if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
ppo_trainer.save_state() # must be called after save_model to have a folder
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss: if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"]) plot_loss(training_args.output_dir, keys=["loss", "reward"])

View File

@@ -1 +1,4 @@
from llmtuner.train.pt.workflow import run_pt from .workflow import run_pt
__all__ = ["run_pt"]

View File

@@ -1,17 +1,20 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py # Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py
import math import math
from typing import TYPE_CHECKING, Optional, List from typing import TYPE_CHECKING, List, Optional
from transformers import DataCollatorForLanguageModeling, Trainer from transformers import DataCollatorForLanguageModeling, Trainer
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset from ...data import get_dataset, split_dataset
from llmtuner.extras.ploting import plot_loss from ...extras.ploting import plot_loss
from llmtuner.model import load_model_and_tokenizer from ...model import load_model_and_tokenizer
from llmtuner.train.utils import create_modelcard_and_push from ...train.utils import create_modelcard_and_push
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
def run_pt( def run_pt(
@@ -19,11 +22,10 @@ def run_pt(
data_args: "DataArguments", data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None callbacks: Optional[List["TrainerCallback"]] = None,
): ):
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="pt") dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="pt")
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Initialize our Trainer # Initialize our Trainer
@@ -33,7 +35,7 @@ def run_pt(
tokenizer=tokenizer, tokenizer=tokenizer,
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks, callbacks=callbacks,
**split_dataset(dataset, data_args, training_args) **split_dataset(dataset, data_args, training_args),
) )
# Training # Training

View File

@@ -1 +1,4 @@
from llmtuner.train.rm.workflow import run_rm from .workflow import run_rm
__all__ = ["run_rm"]

View File

@@ -1,6 +1,7 @@
import torch
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Dict, Sequence from typing import Any, Dict, Sequence
import torch
from transformers import DataCollatorWithPadding from transformers import DataCollatorWithPadding
@@ -20,8 +21,9 @@ class PairwiseDataCollatorWithPadding(DataCollatorWithPadding):
features = [ features = [
{ {
"input_ids": feature["prompt_ids"] + feature[key], "input_ids": feature["prompt_ids"] + feature[key],
"attention_mask": [1] * (len(feature["prompt_ids"]) + len(feature[key])) "attention_mask": [1] * (len(feature["prompt_ids"]) + len(feature[key])),
} }
for key in ("chosen_ids", "rejected_ids") for feature in features for key in ("chosen_ids", "rejected_ids")
for feature in features
] ]
return super().__call__(features) return super().__call__(features)

View File

@@ -1,6 +1,7 @@
import numpy as np
from typing import Dict, Sequence, Tuple, Union from typing import Dict, Sequence, Tuple, Union
import numpy as np
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]: def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
preds, _ = eval_preds preds, _ = eval_preds

View File

@@ -1,14 +1,16 @@
import os
import json import json
import torch import os
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
from transformers import Trainer from transformers import Trainer
from llmtuner.extras.logging import get_logger from ...extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
from transformers.modeling_utils import PreTrainedModel from transformers.modeling_utils import PreTrainedModel
from transformers.trainer import PredictionOutput
logger = get_logger(__name__) logger = get_logger(__name__)
@@ -21,13 +23,10 @@ class PairwiseTrainer(Trainer):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.can_return_loss = True # override property to return eval_loss self.can_return_loss = True # override property to return eval_loss
def compute_loss( def compute_loss(
self, self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: Optional[bool] = False
model: "PreTrainedModel",
inputs: Dict[str, torch.Tensor],
return_outputs: Optional[bool] = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]: ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
r""" r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected. Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
@@ -68,9 +67,9 @@ class PairwiseTrainer(Trainer):
assert div_index > 0 assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index] chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index] rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
if return_outputs: # use the score on the last token except pad token for inference if return_outputs: # use the score on the last token except pad token for inference
chosen_scores.append(chosen_rewards[i, chosen_length-1]) chosen_scores.append(chosen_rewards[i, chosen_length - 1])
rejected_scores.append(rejected_rewards[i, rejected_length-1]) rejected_scores.append(rejected_rewards[i, rejected_length - 1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean() loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
loss = loss / batch_size loss = loss / batch_size
@@ -80,10 +79,7 @@ class PairwiseTrainer(Trainer):
return loss return loss
def save_predictions( def save_predictions(self, predict_results: "PredictionOutput") -> None:
self,
predict_results: "PredictionOutput"
) -> None:
r""" r"""
Saves model predictions to `output_dir`. Saves model predictions to `output_dir`.

View File

@@ -1,20 +1,24 @@
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py # Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from typing import TYPE_CHECKING, Optional, List from typing import TYPE_CHECKING, List, Optional
from transformers import Seq2SeqTrainingArguments from transformers import Seq2SeqTrainingArguments
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset from ...data import get_dataset, split_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback from ...extras.callbacks import FixValueHeadModelCallback
from llmtuner.extras.ploting import plot_loss from ...extras.misc import fix_valuehead_checkpoint
from llmtuner.model import load_model_and_tokenizer from ...extras.ploting import plot_loss
from llmtuner.train.rm.collator import PairwiseDataCollatorWithPadding from ...model import load_model_and_tokenizer
from llmtuner.train.rm.metric import compute_accuracy from ...train.rm.collator import PairwiseDataCollatorWithPadding
from llmtuner.train.rm.trainer import PairwiseTrainer from ...train.rm.metric import compute_accuracy
from llmtuner.train.utils import create_modelcard_and_push from ...train.rm.trainer import PairwiseTrainer
from ...train.utils import create_modelcard_and_push
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainerCallback from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
def run_rm( def run_rm(
@@ -22,16 +26,17 @@ def run_rm(
data_args: "DataArguments", data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None callbacks: Optional[List["TrainerCallback"]] = None,
): ):
dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, add_valuehead=True) model_args, finetuning_args, training_args.do_train, add_valuehead=True
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") )
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
# Update arguments # Update arguments
training_args_dict = training_args.to_dict() training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer # Initialize our Trainer
@@ -40,15 +45,17 @@ def run_rm(
args=training_args, args=training_args,
tokenizer=tokenizer, tokenizer=tokenizer,
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks + [SavePeftModelCallback()], callbacks=callbacks + [FixValueHeadModelCallback()],
compute_metrics=compute_accuracy, compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args) **split_dataset(dataset, data_args, training_args),
) )
# Training # Training
if training_args.do_train: if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model() trainer.save_model()
if training_args.should_save:
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
trainer.log_metrics("train", train_result.metrics) trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics)
trainer.save_state() trainer.save_state()

View File

@@ -1 +1,4 @@
from llmtuner.train.sft.workflow import run_sft from .workflow import run_sft
__all__ = ["run_sft"]

View File

@@ -1,11 +1,11 @@
import numpy as np
from dataclasses import dataclass from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
from llmtuner.extras.constants import IGNORE_INDEX import numpy as np
from llmtuner.extras.packages import (
is_jieba_available, is_nltk_available, is_rouge_available from ...extras.constants import IGNORE_INDEX
) from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils import PreTrainedTokenizer
@@ -14,7 +14,7 @@ if is_jieba_available():
import jieba import jieba
if is_nltk_available(): if is_nltk_available():
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
if is_rouge_available(): if is_rouge_available():
from rouge_chinese import Rouge from rouge_chinese import Rouge

View File

@@ -1,13 +1,15 @@
import os
import json import json
import torch import os
import numpy as np
import torch.nn as nn
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from transformers import Seq2SeqTrainer from transformers import Seq2SeqTrainer
from llmtuner.extras.constants import IGNORE_INDEX from ...extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger from ...extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.trainer import PredictionOutput from transformers.trainer import PredictionOutput
@@ -33,16 +35,16 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
Subclass and override to inject custom behavior. Subclass and override to inject custom behavior.
""" """
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate: if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor." assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1) prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len: if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"]) inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility) if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len] inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated) loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
) )
if generated_tokens is not None and self.args.predict_with_generate: if generated_tokens is not None and self.args.predict_with_generate:
@@ -51,23 +53,16 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
return loss, generated_tokens, labels return loss, generated_tokens, labels
def _pad_tensors_to_target_len( def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
self,
src_tensor: torch.Tensor,
tgt_tensor: torch.Tensor
) -> torch.Tensor:
r""" r"""
Pads the tensor to the same length as the target tensor. Pads the tensor to the same length as the target tensor.
""" """
assert self.tokenizer.pad_token_id is not None, "Pad token is required." assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor) padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory return padded_tensor.contiguous() # in contiguous memory
def save_predictions( def save_predictions(self, predict_results: "PredictionOutput") -> None:
self,
predict_results: "PredictionOutput"
) -> None:
r""" r"""
Saves model predictions to `output_dir`. Saves model predictions to `output_dir`.
@@ -79,15 +74,23 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}") logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id) labels = np.where(
preds = np.where(predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id) predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)): for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0] pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len): if len(pad_len):
preds[i] = np.concatenate((preds[i][pad_len[0]:], preds[i][:pad_len[0]]), axis=-1) # move pad token to last preds[i] = np.concatenate(
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True, clean_up_tokenization_spaces=False) decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True) decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer: with open(output_prediction_file, "w", encoding="utf-8") as writer:

View File

@@ -1,20 +1,23 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py # Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
from typing import TYPE_CHECKING, Optional, List from typing import TYPE_CHECKING, List, Optional
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset from ...data import get_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX from ...extras.constants import IGNORE_INDEX
from llmtuner.extras.misc import get_logits_processor from ...extras.misc import get_logits_processor
from llmtuner.extras.ploting import plot_loss from ...extras.ploting import plot_loss
from llmtuner.model import load_model_and_tokenizer from ...model import load_model_and_tokenizer
from llmtuner.train.sft.metric import ComputeMetrics from ...train.sft.metric import ComputeMetrics
from llmtuner.train.sft.trainer import CustomSeq2SeqTrainer from ...train.sft.trainer import CustomSeq2SeqTrainer
from llmtuner.train.utils import create_modelcard_and_push from ...train.utils import create_modelcard_and_push
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainerCallback from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
def run_sft( def run_sft(
@@ -23,27 +26,31 @@ def run_sft(
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None callbacks: Optional[List["TrainerCallback"]] = None,
): ):
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train)
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft") dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
if training_args.predict_with_generate: if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
data_collator = DataCollatorForSeq2Seq( data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer, tokenizer=tokenizer,
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
) )
# Override the decoding parameters of Seq2SeqTrainer # Override the decoding parameters of Seq2SeqTrainer
training_args_dict = training_args.to_dict() training_args_dict = training_args.to_dict()
training_args_dict.update(dict( training_args_dict.update(
generation_max_length=training_args.generation_max_length or data_args.cutoff_len, dict(
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams generation_max_length=training_args.generation_max_length or data_args.cutoff_len,
)) generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams,
)
)
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer # Initialize our Trainer
@@ -54,7 +61,7 @@ def run_sft(
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks, callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
**split_dataset(dataset, data_args, training_args) **split_dataset(dataset, data_args, training_args),
) )
# Keyword arguments for `model.generate` # Keyword arguments for `model.generate`
@@ -76,7 +83,7 @@ def run_sft(
# Evaluation # Evaluation
if training_args.do_eval: if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None) metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics) trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics) trainer.save_metrics("eval", metrics)
@@ -84,7 +91,7 @@ def run_sft(
# Predict # Predict
if training_args.do_predict: if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None) predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics) trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics)

View File

@@ -1,13 +1,18 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional from typing import TYPE_CHECKING, Any, Dict, List, Optional
from llmtuner.extras.callbacks import LogCallback import torch
from llmtuner.extras.logging import get_logger from transformers import PreTrainedModel
from llmtuner.model import get_train_args, get_infer_args, load_model_and_tokenizer
from llmtuner.train.pt import run_pt from ..extras.callbacks import LogCallback
from llmtuner.train.sft import run_sft from ..extras.logging import get_logger
from llmtuner.train.rm import run_rm from ..hparams import get_infer_args, get_train_args
from llmtuner.train.ppo import run_ppo from ..model import load_model_and_tokenizer
from llmtuner.train.dpo import run_dpo from .dpo import run_dpo
from .ppo import run_ppo
from .pt import run_pt
from .rm import run_rm
from .sft import run_sft
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainerCallback from transformers import TrainerCallback
@@ -36,19 +41,48 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
def export_model(args: Optional[Dict[str, Any]] = None): def export_model(args: Optional[Dict[str, Any]] = None):
model_args, _, finetuning_args, _ = get_infer_args(args) model_args, _, finetuning_args, _ = get_infer_args(args)
if model_args.export_dir is None:
raise ValueError("Please specify `export_dir`.")
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
raise ValueError("Please merge adapters before quantizing the model.")
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
if getattr(model, "quantization_method", None) in ["gptq", "awq"]: if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
raise ValueError("Cannot export a GPTQ or AWQ quantized model.") raise ValueError("Cannot merge adapters to a quantized model.")
model.config.use_cache = True if not isinstance(model, PreTrainedModel):
model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size)) raise ValueError("The model is not a `PreTrainedModel`, export aborted.")
setattr(model.config, "use_cache", True)
if getattr(model.config, "torch_dtype", None) == "bfloat16":
model = model.to(torch.bfloat16).to("cpu")
else:
model = model.to(torch.float16).to("cpu")
setattr(model.config, "torch_dtype", "float16")
model.save_pretrained(
save_directory=model_args.export_dir,
max_shard_size="{}GB".format(model_args.export_size),
safe_serialization=(not model_args.export_legacy_format),
)
if model_args.export_hub_model_id is not None:
model.push_to_hub(
model_args.export_hub_model_id,
token=model_args.hf_hub_token,
max_shard_size="{}GB".format(model_args.export_size),
safe_serialization=(not model_args.export_legacy_format),
)
try: try:
tokenizer.padding_side = "left" # restore padding side tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left" tokenizer.init_kwargs["padding_side"] = "left"
tokenizer.save_pretrained(finetuning_args.export_dir) tokenizer.save_pretrained(model_args.export_dir)
except: if model_args.export_hub_model_id is not None:
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
except Exception:
logger.warning("Cannot save tokenizer, please copy the files manually.") logger.warning("Cannot save tokenizer, please copy the files manually.")

View File

@@ -1,15 +1,18 @@
import torch
from typing import TYPE_CHECKING, Optional, Union from typing import TYPE_CHECKING, Optional, Union
from llmtuner.extras.logging import get_logger import torch
from llmtuner.hparams import ModelArguments, FinetuningArguments
from llmtuner.model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params from ..extras.logging import get_logger
from ..hparams import FinetuningArguments, ModelArguments
from ..model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, Trainer from transformers import Seq2SeqTrainingArguments, Trainer
from transformers.modeling_utils import PreTrainedModel from transformers.modeling_utils import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import DataArguments
from ..hparams import DataArguments
logger = get_logger(__name__) logger = get_logger(__name__)
@@ -20,7 +23,7 @@ def create_modelcard_and_push(
model_args: "ModelArguments", model_args: "ModelArguments",
data_args: "DataArguments", data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments" finetuning_args: "FinetuningArguments",
) -> None: ) -> None:
if training_args.do_train: if training_args.do_train:
if training_args.push_to_hub: if training_args.push_to_hub:
@@ -33,9 +36,7 @@ def create_modelcard_and_push(
def create_ref_model( def create_ref_model(
model_args: "ModelArguments", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False
finetuning_args: "FinetuningArguments",
add_valuehead: Optional[bool] = False
) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]: ) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]:
r""" r"""
Creates reference model for PPO/DPO training. Evaluation mode is not supported. Creates reference model for PPO/DPO training. Evaluation mode is not supported.
@@ -44,11 +45,13 @@ def create_ref_model(
""" """
if finetuning_args.ref_model is not None: if finetuning_args.ref_model is not None:
ref_model_args_dict = model_args.to_dict() ref_model_args_dict = model_args.to_dict()
ref_model_args_dict.update(dict( ref_model_args_dict.update(
model_name_or_path=finetuning_args.ref_model, dict(
checkpoint_dir=finetuning_args.ref_model_checkpoint, model_name_or_path=finetuning_args.ref_model,
quantization_bit=finetuning_args.ref_model_quantization_bit adapter_name_or_path=finetuning_args.ref_model_adapters,
)) quantization_bit=finetuning_args.ref_model_quantization_bit,
)
)
ref_model_args = ModelArguments(**ref_model_args_dict) ref_model_args = ModelArguments(**ref_model_args_dict)
ref_finetuning_args = FinetuningArguments(finetuning_type="lora") ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
ref_model, _ = load_model_and_tokenizer( ref_model, _ = load_model_and_tokenizer(
@@ -68,9 +71,7 @@ def create_ref_model(
def create_reward_model( def create_reward_model(
model: "AutoModelForCausalLMWithValueHead", model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments"
) -> "AutoModelForCausalLMWithValueHead": ) -> "AutoModelForCausalLMWithValueHead":
r""" r"""
Creates reward model for PPO training. Creates reward model for PPO training.
@@ -81,24 +82,30 @@ def create_reward_model(
return finetuning_args.reward_model return finetuning_args.reward_model
elif finetuning_args.reward_model_type == "lora": elif finetuning_args.reward_model_type == "lora":
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
if "default" in name: if "default" in name:
param.data = param.data.to(torch.float32) # trainable params should in fp32 param.data = param.data.to(torch.float32) # trainable params should in fp32
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
assert vhead_params is not None, "Reward model is not correctly loaded." assert vhead_params is not None, "Reward model is not correctly loaded."
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer("default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False) model.register_buffer(
model.register_buffer("default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False) "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
)
model.register_buffer(
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
)
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
return None return None
else: else:
reward_model_args_dict = model_args.to_dict() reward_model_args_dict = model_args.to_dict()
reward_model_args_dict.update(dict( reward_model_args_dict.update(
model_name_or_path=finetuning_args.reward_model, dict(
checkpoint_dir=finetuning_args.reward_model_checkpoint, model_name_or_path=finetuning_args.reward_model,
quantization_bit=finetuning_args.reward_model_quantization_bit adapter_name_or_path=finetuning_args.reward_model_adapters,
)) quantization_bit=finetuning_args.reward_model_quantization_bit,
)
)
reward_model_args = ModelArguments(**reward_model_args_dict) reward_model_args = ModelArguments(**reward_model_args_dict)
reward_finetuning_args = FinetuningArguments(finetuning_type="lora") reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
reward_model, _ = load_model_and_tokenizer( reward_model, _ = load_model_and_tokenizer(

View File

@@ -1 +1,4 @@
from llmtuner.webui.interface import create_ui, create_web_demo from .interface import create_ui, create_web_demo
__all__ = ["create_ui", "create_web_demo"]

View File

@@ -1,24 +1,24 @@
import gradio as gr import json
from gradio.components import Component # cannot use TYPE_CHECKING here from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from ..chat import ChatModel
from ..data import Role
from ..extras.misc import torch_gc
from ..hparams import GeneratingArguments
from .common import get_save_dir
from .locales import ALERTS
from llmtuner.chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.hparams import GeneratingArguments
from llmtuner.webui.common import get_save_dir
from llmtuner.webui.locales import ALERTS
if TYPE_CHECKING: if TYPE_CHECKING:
from llmtuner.webui.manager import Manager from .manager import Manager
class WebChatModel(ChatModel): class WebChatModel(ChatModel):
def __init__( def __init__(
self, self, manager: "Manager", demo_mode: Optional[bool] = False, lazy_init: Optional[bool] = True
manager: "Manager",
demo_mode: Optional[bool] = False,
lazy_init: Optional[bool] = True
) -> None: ) -> None:
self.manager = manager self.manager = manager
self.demo_mode = demo_mode self.demo_mode = demo_mode
@@ -26,11 +26,12 @@ class WebChatModel(ChatModel):
self.tokenizer = None self.tokenizer = None
self.generating_args = GeneratingArguments() self.generating_args = GeneratingArguments()
if not lazy_init: # read arguments from command line if not lazy_init: # read arguments from command line
super().__init__() super().__init__()
if demo_mode: # load demo_config.json if exists if demo_mode: # load demo_config.json if exists
import json import json
try: try:
with open("demo_config.json", "r", encoding="utf-8") as f: with open("demo_config.json", "r", encoding="utf-8") as f:
args = json.load(f) args = json.load(f)
@@ -38,7 +39,7 @@ class WebChatModel(ChatModel):
super().__init__(args) super().__init__(args)
except AssertionError: except AssertionError:
print("Please provided model name and template in `demo_config.json`.") print("Please provided model name and template in `demo_config.json`.")
except: except Exception:
print("Cannot find `demo_config.json` at current directory.") print("Cannot find `demo_config.json` at current directory.")
@property @property
@@ -63,24 +64,26 @@ class WebChatModel(ChatModel):
yield error yield error
return return
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join(
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") [
]) get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
for adapter in get("top.adapter_path")
]
)
else: else:
checkpoint_dir = None adapter_name_or_path = None
yield ALERTS["info_loading"][lang] yield ALERTS["info_loading"][lang]
args = dict( args = dict(
model_name_or_path=get("top.model_path"), model_name_or_path=get("top.model_path"),
checkpoint_dir=checkpoint_dir, adapter_name_or_path=adapter_name_or_path,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"), flash_attn=(get("top.booster") == "flash_attn"),
flash_attn=get("top.flash_attn"), use_unsloth=(get("top.booster") == "unsloth"),
shift_attn=get("top.shift_attn"), rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None
) )
super().__init__(args) super().__init__(args)
@@ -104,21 +107,37 @@ class WebChatModel(ChatModel):
self, self,
chatbot: List[Tuple[str, str]], chatbot: List[Tuple[str, str]],
query: str, query: str,
history: List[Tuple[str, str]], messages: Sequence[Tuple[str, str]],
system: str, system: str,
tools: str,
max_new_tokens: int, max_new_tokens: int,
top_p: float, top_p: float,
temperature: float temperature: float,
) -> Generator[Tuple[List[Tuple[str, str]], List[Tuple[str, str]]], None, None]: ) -> Generator[Tuple[Sequence[Tuple[str, str]], Sequence[Tuple[str, str]]], None, None]:
chatbot.append([query, ""]) chatbot.append([query, ""])
query_messages = messages + [{"role": Role.USER, "content": query}]
response = "" response = ""
for new_text in self.stream_chat( for new_text in self.stream_chat(
query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature query_messages, system, tools, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
): ):
response += new_text response += new_text
new_history = history + [(query, response)] if tools:
chatbot[-1] = [query, self.postprocess(response)] result = self.template.format_tools.extract(response)
yield chatbot, new_history else:
result = response
if isinstance(result, tuple):
name, arguments = result
arguments = json.loads(arguments)
tool_call = json.dumps({"name": name, "arguments": arguments}, ensure_ascii=False)
output_messages = query_messages + [{"role": Role.FUNCTION, "content": tool_call}]
bot_text = "```json\n" + tool_call + "\n```"
else:
output_messages = query_messages + [{"role": Role.ASSISTANT, "content": result}]
bot_text = result
chatbot[-1] = [query, self.postprocess(bot_text)]
yield chatbot, output_messages
def postprocess(self, response: str) -> str: def postprocess(self, response: str) -> str:
blocks = response.split("```") blocks = response.split("```")

View File

@@ -1,39 +1,28 @@
import os
import json import json
import gradio as gr import os
from collections import defaultdict
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
from transformers.utils import (
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
)
from llmtuner.extras.constants import ( import gradio as gr
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME
from ..extras.constants import (
DATA_CONFIG,
DEFAULT_MODULE, DEFAULT_MODULE,
DEFAULT_TEMPLATE, DEFAULT_TEMPLATE,
PEFT_METHODS,
SUPPORTED_MODELS, SUPPORTED_MODELS,
TRAINING_STAGES, TRAINING_STAGES,
DownloadSource DownloadSource,
) )
from llmtuner.extras.misc import use_modelscope from ..extras.misc import use_modelscope
from llmtuner.hparams.data_args import DATA_CONFIG
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME}
DEFAULT_CACHE_DIR = "cache" DEFAULT_CACHE_DIR = "cache"
DEFAULT_DATA_DIR = "data" DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves" DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user.config" USER_CONFIG = "user.config"
CKPT_NAMES = [
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
]
def get_save_dir(*args) -> os.PathLike: def get_save_dir(*args) -> os.PathLike:
@@ -48,7 +37,7 @@ def load_config() -> Dict[str, Any]:
try: try:
with open(get_config_path(), "r", encoding="utf-8") as f: with open(get_config_path(), "r", encoding="utf-8") as f:
return json.load(f) return json.load(f)
except: except Exception:
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
@@ -65,13 +54,13 @@ def save_config(lang: str, model_name: Optional[str] = None, model_path: Optiona
def get_model_path(model_name: str) -> str: def get_model_path(model_name: str) -> str:
user_config = load_config() user_config = load_config()
path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, []) path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, "") model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None)
if ( if (
use_modelscope() use_modelscope()
and path_dict.get(DownloadSource.MODELSCOPE) and path_dict.get(DownloadSource.MODELSCOPE)
and model_path == path_dict.get(DownloadSource.DEFAULT) and model_path == path_dict.get(DownloadSource.DEFAULT)
): # replace path ): # replace path
model_path = path_dict.get(DownloadSource.MODELSCOPE) model_path = path_dict.get(DownloadSource.MODELSCOPE)
return model_path return model_path
@@ -90,18 +79,20 @@ def get_template(model_name: str) -> str:
return "default" return "default"
def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]: def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]:
checkpoints = [] if finetuning_type not in PEFT_METHODS:
if model_name: return gr.update(value=[], choices=[], interactive=False)
adapters = []
if model_name and finetuning_type == "lora":
save_dir = get_save_dir(model_name, finetuning_type) save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir): if save_dir and os.path.isdir(save_dir):
for checkpoint in os.listdir(save_dir): for adapter in os.listdir(save_dir):
if ( if os.path.isdir(os.path.join(save_dir, adapter)) and any(
os.path.isdir(os.path.join(save_dir, checkpoint)) os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES
and any([os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CKPT_NAMES])
): ):
checkpoints.append(checkpoint) adapters.append(adapter)
return gr.update(value=[], choices=checkpoints) return gr.update(value=[], choices=adapters, interactive=True)
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:

View File

@@ -1,6 +1,16 @@
from llmtuner.webui.components.top import create_top from .chatbot import create_chat_box
from llmtuner.webui.components.train import create_train_tab from .eval import create_eval_tab
from llmtuner.webui.components.eval import create_eval_tab from .export import create_export_tab
from llmtuner.webui.components.infer import create_infer_tab from .infer import create_infer_tab
from llmtuner.webui.components.export import create_export_tab from .top import create_top
from llmtuner.webui.components.chatbot import create_chat_box from .train import create_train_tab
__all__ = [
"create_chat_box",
"create_eval_tab",
"create_export_tab",
"create_infer_tab",
"create_top",
"create_train_tab",
]

View File

@@ -1,22 +1,27 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict, Optional, Tuple from typing import TYPE_CHECKING, Dict, Optional, Tuple
import gradio as gr
from ..utils import check_json_schema
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.blocks import Block from gradio.blocks import Block
from gradio.components import Component from gradio.components import Component
from llmtuner.webui.engine import Engine
from ..engine import Engine
def create_chat_box( def create_chat_box(
engine: "Engine", engine: "Engine", visible: Optional[bool] = False
visible: Optional[bool] = False
) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]: ) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]:
with gr.Box(visible=visible) as chat_box: with gr.Box(visible=visible) as chat_box:
chatbot = gr.Chatbot() chatbot = gr.Chatbot()
history = gr.State([]) messages = gr.State([])
with gr.Row(): with gr.Row():
with gr.Column(scale=4): with gr.Column(scale=4):
system = gr.Textbox(show_label=False) system = gr.Textbox(show_label=False)
tools = gr.Textbox(show_label=False, lines=2)
query = gr.Textbox(show_label=False, lines=8) query = gr.Textbox(show_label=False, lines=8)
submit_btn = gr.Button(variant="primary") submit_btn = gr.Button(variant="primary")
@@ -27,23 +32,29 @@ def create_chat_box(
top_p = gr.Slider(0.01, 1, value=gen_kwargs.top_p, step=0.01) top_p = gr.Slider(0.01, 1, value=gen_kwargs.top_p, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=gen_kwargs.temperature, step=0.01) temperature = gr.Slider(0.01, 1.5, value=gen_kwargs.temperature, step=0.01)
tools.input(check_json_schema, [tools, engine.manager.get_elem_by_name("top.lang")])
submit_btn.click( submit_btn.click(
engine.chatter.predict, engine.chatter.predict,
[chatbot, query, history, system, max_new_tokens, top_p, temperature], [chatbot, query, messages, system, tools, max_new_tokens, top_p, temperature],
[chatbot, history], [chatbot, messages],
show_progress=True show_progress=True,
).then( ).then(lambda: gr.update(value=""), outputs=[query])
lambda: gr.update(value=""), outputs=[query]
)
clear_btn.click(lambda: ([], []), outputs=[chatbot, history], show_progress=True) clear_btn.click(lambda: ([], []), outputs=[chatbot, messages], show_progress=True)
return chat_box, chatbot, history, dict( return (
system=system, chat_box,
query=query, chatbot,
submit_btn=submit_btn, messages,
clear_btn=clear_btn, dict(
max_new_tokens=max_new_tokens, system=system,
top_p=top_p, tools=tools,
temperature=temperature query=query,
submit_btn=submit_btn,
clear_btn=clear_btn,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature,
),
) )

View File

@@ -1,9 +1,11 @@
import os
import json import json
import gradio as gr import os
from typing import TYPE_CHECKING, Any, Dict, Tuple from typing import TYPE_CHECKING, Any, Dict, Tuple
from llmtuner.webui.common import DATA_CONFIG import gradio as gr
from ...extras.constants import DATA_CONFIG
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
@@ -21,8 +23,11 @@ def next_page(page_index: int, total_num: int) -> int:
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]: def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: try:
dataset_info = json.load(f) with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
except Exception:
return gr.update(interactive=False)
if ( if (
len(dataset) > 0 len(dataset) > 0
@@ -45,7 +50,7 @@ def get_preview(dataset_dir: str, dataset: list, page_index: int) -> Tuple[int,
elif data_file.endswith(".jsonl"): elif data_file.endswith(".jsonl"):
data = [json.loads(line) for line in f] data = [json.loads(line) for line in f]
else: else:
data = [line for line in f] data = [line for line in f] # noqa: C416
return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.update(visible=True) return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.update(visible=True)
@@ -64,32 +69,17 @@ def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dic
with gr.Row(): with gr.Row():
preview_samples = gr.JSON(interactive=False) preview_samples = gr.JSON(interactive=False)
dataset.change( dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn], queue=False).then(
can_preview, [dataset_dir, dataset], [data_preview_btn], queue=False
).then(
lambda: 0, outputs=[page_index], queue=False lambda: 0, outputs=[page_index], queue=False
) )
data_preview_btn.click( data_preview_btn.click(
get_preview, get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
) )
prev_btn.click( prev_btn.click(prev_page, [page_index], [page_index], queue=False).then(
prev_page, [page_index], [page_index], queue=False get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
).then(
get_preview,
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
) )
next_btn.click( next_btn.click(next_page, [page_index, preview_count], [page_index], queue=False).then(
next_page, [page_index, preview_count], [page_index], queue=False get_preview, [dataset_dir, dataset, page_index], [preview_count, preview_samples, preview_box], queue=False
).then(
get_preview,
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
) )
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False) close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False)
return dict( return dict(
@@ -99,5 +89,5 @@ def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dic
prev_btn=prev_btn, prev_btn=prev_btn,
next_btn=next_btn, next_btn=next_btn,
close_btn=close_btn, close_btn=close_btn,
preview_samples=preview_samples preview_samples=preview_samples,
) )

View File

@@ -1,12 +1,15 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict from typing import TYPE_CHECKING, Dict
from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR import gradio as gr
from llmtuner.webui.components.data import create_preview_box
from ..common import DEFAULT_DATA_DIR, list_dataset
from .data import create_preview_box
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
from llmtuner.webui.engine import Engine
from ..engine import Engine
def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]: def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
@@ -30,9 +33,7 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
predict = gr.Checkbox(value=True) predict = gr.Checkbox(value=True)
input_elems.update({cutoff_len, max_samples, batch_size, predict}) input_elems.update({cutoff_len, max_samples, batch_size, predict})
elem_dict.update(dict( elem_dict.update(dict(cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict))
cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict
))
with gr.Row(): with gr.Row():
max_new_tokens = gr.Slider(10, 2048, value=128, step=1) max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
@@ -41,9 +42,7 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
output_dir = gr.Textbox() output_dir = gr.Textbox()
input_elems.update({max_new_tokens, top_p, temperature, output_dir}) input_elems.update({max_new_tokens, top_p, temperature, output_dir})
elem_dict.update(dict( elem_dict.update(dict(max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, output_dir=output_dir))
max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, output_dir=output_dir
))
with gr.Row(): with gr.Row():
cmd_preview_btn = gr.Button() cmd_preview_btn = gr.Button()
@@ -58,10 +57,16 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
output_box = gr.Markdown() output_box = gr.Markdown()
output_elems = [output_box, process_bar] output_elems = [output_box, process_bar]
elem_dict.update(dict( elem_dict.update(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, dict(
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box cmd_preview_btn=cmd_preview_btn,
)) start_btn=start_btn,
stop_btn=stop_btn,
resume_btn=resume_btn,
process_bar=process_bar,
output_box=output_box,
)
)
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems) cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems)
start_btn.click(engine.runner.run_eval, input_elems, output_elems) start_btn.click(engine.runner.run_eval, input_elems, output_elems)

View File

@@ -1,47 +1,66 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict, Generator, List from typing import TYPE_CHECKING, Dict, Generator, List
from llmtuner.train import export_model import gradio as gr
from llmtuner.webui.common import get_save_dir
from llmtuner.webui.locales import ALERTS from ...train import export_model
from ..common import get_save_dir
from ..locales import ALERTS
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
from llmtuner.webui.engine import Engine
from ..engine import Engine
GPTQ_BITS = ["8", "4", "3", "2"]
def save_model( def save_model(
lang: str, lang: str,
model_name: str, model_name: str,
model_path: str, model_path: str,
checkpoints: List[str], adapter_path: List[str],
finetuning_type: str, finetuning_type: str,
template: str, template: str,
max_shard_size: int, max_shard_size: int,
export_dir: str export_quantization_bit: int,
export_quantization_dataset: str,
export_dir: str,
) -> Generator[str, None, None]: ) -> Generator[str, None, None]:
error = "" error = ""
if not model_name: if not model_name:
error = ALERTS["err_no_model"][lang] error = ALERTS["err_no_model"][lang]
elif not model_path: elif not model_path:
error = ALERTS["err_no_path"][lang] error = ALERTS["err_no_path"][lang]
elif not checkpoints:
error = ALERTS["err_no_checkpoint"][lang]
elif not export_dir: elif not export_dir:
error = ALERTS["err_no_export_dir"][lang] error = ALERTS["err_no_export_dir"][lang]
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
error = ALERTS["err_no_dataset"][lang]
elif export_quantization_bit not in GPTQ_BITS and not adapter_path:
error = ALERTS["err_no_adapter"][lang]
if error: if error:
gr.Warning(error) gr.Warning(error)
yield error yield error
return return
if adapter_path:
adapter_name_or_path = ",".join(
[get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path]
)
else:
adapter_name_or_path = None
args = dict( args = dict(
model_name_or_path=model_path, model_name_or_path=model_path,
checkpoint_dir=",".join([get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]), adapter_name_or_path=adapter_name_or_path,
finetuning_type=finetuning_type, finetuning_type=finetuning_type,
template=template, template=template,
export_dir=export_dir, export_dir=export_dir,
export_size=max_shard_size export_size=max_shard_size,
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
export_quantization_dataset=export_quantization_dataset,
) )
yield ALERTS["info_exporting"][lang] yield ALERTS["info_exporting"][lang]
@@ -51,9 +70,11 @@ def save_model(
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Row(): with gr.Row():
export_dir = gr.Textbox()
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100) max_shard_size = gr.Slider(value=1, minimum=1, maximum=100)
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none")
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
export_dir = gr.Textbox()
export_btn = gr.Button() export_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False) info_box = gr.Textbox(show_label=False, interactive=False)
@@ -63,18 +84,22 @@ def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
engine.manager.get_elem_by_name("top.lang"), engine.manager.get_elem_by_name("top.lang"),
engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.model_path"), engine.manager.get_elem_by_name("top.model_path"),
engine.manager.get_elem_by_name("top.checkpoints"), engine.manager.get_elem_by_name("top.adapter_path"),
engine.manager.get_elem_by_name("top.finetuning_type"), engine.manager.get_elem_by_name("top.finetuning_type"),
engine.manager.get_elem_by_name("top.template"), engine.manager.get_elem_by_name("top.template"),
max_shard_size, max_shard_size,
export_dir export_quantization_bit,
export_quantization_dataset,
export_dir,
], ],
[info_box] [info_box],
) )
return dict( return dict(
export_dir=export_dir,
max_shard_size=max_shard_size, max_shard_size=max_shard_size,
export_quantization_bit=export_quantization_bit,
export_quantization_dataset=export_quantization_dataset,
export_dir=export_dir,
export_btn=export_btn, export_btn=export_btn,
info_box=info_box info_box=info_box,
) )

View File

@@ -1,11 +1,14 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict from typing import TYPE_CHECKING, Dict
from llmtuner.webui.components.chatbot import create_chat_box import gradio as gr
from .chatbot import create_chat_box
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
from llmtuner.webui.engine import Engine
from ..engine import Engine
def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]: def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
@@ -22,18 +25,12 @@ def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False) chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False)
elem_dict.update(dict(chat_box=chat_box, **chat_elems)) elem_dict.update(dict(chat_box=chat_box, **chat_elems))
load_btn.click( load_btn.click(engine.chatter.load_model, input_elems, [info_box]).then(
engine.chatter.load_model, input_elems, [info_box]
).then(
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box] lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
) )
unload_btn.click( unload_btn.click(engine.chatter.unload_model, input_elems, [info_box]).then(
engine.chatter.unload_model, input_elems, [info_box]
).then(
lambda: ([], []), outputs=[chatbot, history] lambda: ([], []), outputs=[chatbot, history]
).then( ).then(lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box])
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
return elem_dict return elem_dict

View File

@@ -1,10 +1,12 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict from typing import TYPE_CHECKING, Dict
from llmtuner.data.template import templates import gradio as gr
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
from llmtuner.webui.common import get_model_path, get_template, list_checkpoint, save_config from ...data import templates
from llmtuner.webui.utils import can_quantize from ...extras.constants import METHODS, SUPPORTED_MODELS
from ..common import get_model_path, get_template, list_adapters, save_config
from ..utils import can_quantize
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
@@ -20,55 +22,40 @@ def create_top() -> Dict[str, "Component"]:
with gr.Row(): with gr.Row():
finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1) finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1)
checkpoints = gr.Dropdown(multiselect=True, scale=5) adapter_path = gr.Dropdown(multiselect=True, scale=5, allow_custom_value=True)
refresh_btn = gr.Button(scale=1) refresh_btn = gr.Button(scale=1)
with gr.Accordion(label="Advanced config", open=False) as advanced_tab: with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row(): with gr.Row():
quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none", scale=1) quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none")
template = gr.Dropdown(choices=list(templates.keys()), value="default", scale=1) template = gr.Dropdown(choices=list(templates.keys()), value="default")
system_prompt = gr.Textbox(scale=2)
with gr.Accordion(label="Model config (LLaMA only)", open=False) as llama_tab:
with gr.Row():
with gr.Column():
flash_attn = gr.Checkbox(value=False)
shift_attn = gr.Checkbox(value=False)
rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none") rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none")
booster = gr.Radio(choices=["none", "flash_attn", "unsloth"], value="none")
model_name.change( model_name.change(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False).then(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
).then(
get_model_path, [model_name], [model_path], queue=False get_model_path, [model_name], [model_path], queue=False
).then( ).then(
get_template, [model_name], [template], queue=False get_template, [model_name], [template], queue=False
) # do not save config since the below line will save ) # do not save config since the below line will save
model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False) model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False)
finetuning_type.change( finetuning_type.change(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False).then(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
).then(
can_quantize, [finetuning_type], [quantization_bit], queue=False can_quantize, [finetuning_type], [quantization_bit], queue=False
) )
refresh_btn.click( refresh_btn.click(list_adapters, [model_name, finetuning_type], [adapter_path], queue=False)
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
)
return dict( return dict(
lang=lang, lang=lang,
model_name=model_name, model_name=model_name,
model_path=model_path, model_path=model_path,
finetuning_type=finetuning_type, finetuning_type=finetuning_type,
checkpoints=checkpoints, adapter_path=adapter_path,
refresh_btn=refresh_btn, refresh_btn=refresh_btn,
advanced_tab=advanced_tab, advanced_tab=advanced_tab,
quantization_bit=quantization_bit, quantization_bit=quantization_bit,
template=template, template=template,
system_prompt=system_prompt, rope_scaling=rope_scaling,
llama_tab=llama_tab, booster=booster,
flash_attn=flash_attn,
shift_attn=shift_attn,
rope_scaling=rope_scaling
) )

View File

@@ -1,15 +1,18 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict from typing import TYPE_CHECKING, Dict
import gradio as gr
from transformers.trainer_utils import SchedulerType from transformers.trainer_utils import SchedulerType
from llmtuner.extras.constants import TRAINING_STAGES from ...extras.constants import TRAINING_STAGES
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset
from llmtuner.webui.components.data import create_preview_box from ..components.data import create_preview_box
from llmtuner.webui.utils import gen_plot from ..utils import gen_plot
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
from llmtuner.webui.engine import Engine
from ..engine import Engine
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
@@ -28,54 +31,67 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False) dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
input_elems.update({training_stage, dataset_dir, dataset}) input_elems.update({training_stage, dataset_dir, dataset})
elem_dict.update(dict( elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems
))
with gr.Row(): with gr.Row():
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
learning_rate = gr.Textbox(value="5e-5") learning_rate = gr.Textbox(value="5e-5")
num_train_epochs = gr.Textbox(value="3.0") num_train_epochs = gr.Textbox(value="3.0")
max_samples = gr.Textbox(value="100000") max_samples = gr.Textbox(value="100000")
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16") compute_type = gr.Radio(choices=["fp16", "bf16", "fp32"], value="fp16")
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type}) input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
elem_dict.update(dict( elem_dict.update(
cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs, dict(
max_samples=max_samples, compute_type=compute_type cutoff_len=cutoff_len,
)) learning_rate=learning_rate,
num_train_epochs=num_train_epochs,
max_samples=max_samples,
compute_type=compute_type,
)
)
with gr.Row(): with gr.Row():
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1) batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1) gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
lr_scheduler_type = gr.Dropdown( lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine")
choices=[scheduler.value for scheduler in SchedulerType], value="cosine"
)
max_grad_norm = gr.Textbox(value="1.0") max_grad_norm = gr.Textbox(value="1.0")
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001) val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size}) input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
elem_dict.update(dict( elem_dict.update(
batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps, dict(
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size batch_size=batch_size,
)) gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type,
max_grad_norm=max_grad_norm,
val_size=val_size,
)
)
with gr.Accordion(label="Advanced config", open=False) as advanced_tab: with gr.Accordion(label="Extra config", open=False) as extra_tab:
with gr.Row(): with gr.Row():
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
neft_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1) neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)
with gr.Column(): with gr.Column():
train_on_prompt = gr.Checkbox(value=False) sft_packing = gr.Checkbox(value=False)
upcast_layernorm = gr.Checkbox(value=False) upcast_layernorm = gr.Checkbox(value=False)
input_elems.update({logging_steps, save_steps, warmup_steps, neft_alpha, train_on_prompt, upcast_layernorm}) input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, sft_packing, upcast_layernorm})
elem_dict.update(dict( elem_dict.update(
advanced_tab=advanced_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps, dict(
neft_alpha=neft_alpha, train_on_prompt=train_on_prompt, upcast_layernorm=upcast_layernorm extra_tab=extra_tab,
)) logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
neftune_alpha=neftune_alpha,
sft_packing=sft_packing,
upcast_layernorm=upcast_layernorm,
)
)
with gr.Accordion(label="LoRA config", open=False) as lora_tab: with gr.Accordion(label="LoRA config", open=False) as lora_tab:
with gr.Row(): with gr.Row():
@@ -83,29 +99,38 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
lora_target = gr.Textbox(scale=1) lora_target = gr.Textbox(scale=1)
additional_target = gr.Textbox(scale=1) additional_target = gr.Textbox(scale=1)
resume_lora_training = gr.Checkbox(value=True, scale=1) create_new_adapter = gr.Checkbox(scale=1)
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, resume_lora_training}) input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter})
elem_dict.update(dict( elem_dict.update(
lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target, dict(
additional_target=additional_target, resume_lora_training=resume_lora_training, lora_tab=lora_tab,
)) lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target,
additional_target=additional_target,
create_new_adapter=create_new_adapter,
)
)
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab: with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row(): with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
reward_model = gr.Dropdown(scale=3) dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1)
reward_model = gr.Dropdown(scale=2, allow_custom_value=True)
refresh_btn = gr.Button(scale=1) refresh_btn = gr.Button(scale=1)
refresh_btn.click( refresh_btn.click(
list_checkpoint, list_adapters,
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")], [engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
[reward_model], [reward_model],
queue=False queue=False,
) )
input_elems.update({dpo_beta, reward_model}) input_elems.update({dpo_beta, dpo_ftx, reward_model})
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, reward_model=reward_model, refresh_btn=refresh_btn)) elem_dict.update(
dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn)
)
with gr.Row(): with gr.Row():
cmd_preview_btn = gr.Button() cmd_preview_btn = gr.Button()
@@ -135,20 +160,28 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
stop_btn.click(engine.runner.set_abort, queue=False) stop_btn.click(engine.runner.set_abort, queue=False)
resume_btn.change(engine.runner.monitor, outputs=output_elems) resume_btn.change(engine.runner.monitor, outputs=output_elems)
elem_dict.update(dict( elem_dict.update(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir, dict(
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box, loss_viewer=loss_viewer cmd_preview_btn=cmd_preview_btn,
)) start_btn=start_btn,
stop_btn=stop_btn,
output_dir=output_dir,
resume_btn=resume_btn,
process_bar=process_bar,
output_box=output_box,
loss_viewer=loss_viewer,
)
)
output_box.change( output_box.change(
gen_plot, gen_plot,
[ [
engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.finetuning_type"), engine.manager.get_elem_by_name("top.finetuning_type"),
output_dir output_dir,
], ],
loss_viewer, loss_viewer,
queue=False queue=False,
) )
return elem_dict return elem_dict

View File

@@ -1,17 +1,17 @@
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import Any, Dict, Generator, Optional from typing import Any, Dict, Generator, Optional
from llmtuner.webui.chatter import WebChatModel import gradio as gr
from llmtuner.webui.common import get_model_path, list_dataset, load_config from gradio.components import Component # cannot use TYPE_CHECKING here
from llmtuner.webui.locales import LOCALES
from llmtuner.webui.manager import Manager from .chatter import WebChatModel
from llmtuner.webui.runner import Runner from .common import get_model_path, list_dataset, load_config
from llmtuner.webui.utils import get_time from .locales import LOCALES
from .manager import Manager
from .runner import Runner
from .utils import get_time
class Engine: class Engine:
def __init__(self, demo_mode: Optional[bool] = False, pure_chat: Optional[bool] = False) -> None: def __init__(self, demo_mode: Optional[bool] = False, pure_chat: Optional[bool] = False) -> None:
self.demo_mode = demo_mode self.demo_mode = demo_mode
self.pure_chat = pure_chat self.pure_chat = pure_chat
@@ -26,10 +26,7 @@ class Engine:
user_config = load_config() if not self.demo_mode else {} user_config = load_config() if not self.demo_mode else {}
lang = user_config.get("lang", None) or "en" lang = user_config.get("lang", None) or "en"
init_dict = { init_dict = {"top.lang": {"value": lang}, "infer.chat_box": {"visible": self.chatter.loaded}}
"top.lang": {"value": lang},
"infer.chat_box": {"visible": self.chatter.loaded}
}
if not self.pure_chat: if not self.pure_chat:
init_dict["train.dataset"] = {"choices": list_dataset()["choices"]} init_dict["train.dataset"] = {"choices": list_dataset()["choices"]}
@@ -49,13 +46,17 @@ class Engine:
else: else:
yield self._form_dict({"eval.resume_btn": {"value": True}}) yield self._form_dict({"eval.resume_btn": {"value": True}})
else: else:
yield self._form_dict({ yield self._form_dict(
"train.output_dir": {"value": "train_" + get_time()}, {
"eval.output_dir": {"value": "eval_" + get_time()}, "train.output_dir": {"value": "train_" + get_time()},
}) "eval.output_dir": {"value": "eval_" + get_time()},
}
)
def change_lang(self, lang: str) -> Dict[Component, Dict[str, Any]]: def change_lang(self, lang: str) -> Dict[Component, Dict[str, Any]]:
return { return {
component: gr.update(**LOCALES[name][lang]) component: gr.update(**LOCALES[name][lang])
for elems in self.manager.all_elems.values() for name, component in elems.items() if name in LOCALES for elems in self.manager.all_elems.values()
for name, component in elems.items()
if name in LOCALES
} }

View File

@@ -1,21 +1,22 @@
import gradio as gr
from typing import Optional from typing import Optional
import gradio as gr
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
from llmtuner.webui.components import ( from .common import save_config
from .components import (
create_chat_box,
create_eval_tab,
create_export_tab,
create_infer_tab,
create_top, create_top,
create_train_tab, create_train_tab,
create_eval_tab,
create_infer_tab,
create_export_tab,
create_chat_box
) )
from llmtuner.webui.common import save_config from .css import CSS
from llmtuner.webui.css import CSS from .engine import Engine
from llmtuner.webui.engine import Engine
require_version("gradio>=3.38.0,<4.0.0", "To fix: pip install \"gradio>=3.38.0,<4.0.0\"") require_version("gradio>=3.38.0,<4.0.0", 'To fix: pip install "gradio>=3.38.0,<4.0.0"')
def create_ui(demo_mode: Optional[bool] = False) -> gr.Blocks: def create_ui(demo_mode: Optional[bool] = False) -> gr.Blocks:
@@ -23,11 +24,9 @@ def create_ui(demo_mode: Optional[bool] = False) -> gr.Blocks:
with gr.Blocks(title="LLaMA Board", css=CSS) as demo: with gr.Blocks(title="LLaMA Board", css=CSS) as demo:
if demo_mode: if demo_mode:
gr.HTML("<h1><center>LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory</center></h1>")
gr.HTML( gr.HTML(
"<h1><center>LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory</center></h1>" '<h3><center>Visit <a href="https://github.com/hiyouga/LLaMA-Factory" target="_blank">'
)
gr.HTML(
"<h3><center>Visit <a href=\"https://github.com/hiyouga/LLaMA-Factory\" target=\"_blank\">"
"LLaMA Factory</a> for details.</center></h3>" "LLaMA Factory</a> for details.</center></h3>"
) )
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
@@ -75,4 +74,4 @@ def create_web_demo() -> gr.Blocks:
if __name__ == "__main__": if __name__ == "__main__":
demo = create_ui() demo = create_ui()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)

View File

@@ -1,702 +1,222 @@
LOCALES = { LOCALES = {
"lang": { "lang": {"en": {"label": "Lang"}, "zh": {"label": "语言"}},
"en": { "model_name": {"en": {"label": "Model name"}, "zh": {"label": "模型名称"}},
"label": "Lang"
},
"zh": {
"label": "语言"
}
},
"model_name": {
"en": {
"label": "Model name"
},
"zh": {
"label": "模型名称"
}
},
"model_path": { "model_path": {
"en": { "en": {"label": "Model path", "info": "Path to pretrained model or model identifier from Hugging Face."},
"label": "Model path", "zh": {"label": "模型路径", "info": "本地模型的文件路径或 Hugging Face 的模型标识符。"},
"info": "Path to pretrained model or model identifier from Hugging Face."
},
"zh": {
"label": "模型路径",
"info": "本地模型的文件路径或 Hugging Face 的模型标识符。"
}
},
"finetuning_type": {
"en": {
"label": "Finetuning method"
},
"zh": {
"label": "微调方法"
}
},
"checkpoints": {
"en": {
"label": "Checkpoints"
},
"zh": {
"label": "模型断点"
}
},
"refresh_btn": {
"en": {
"value": "Refresh checkpoints"
},
"zh": {
"value": "刷新断点"
}
},
"advanced_tab": {
"en": {
"label": "Advanced configurations"
},
"zh": {
"label": "高级设置"
}
}, },
"finetuning_type": {"en": {"label": "Finetuning method"}, "zh": {"label": "微调方法"}},
"adapter_path": {"en": {"label": "Adapter path"}, "zh": {"label": "适配器路径"}},
"refresh_btn": {"en": {"value": "Refresh adapters"}, "zh": {"value": "刷新适配器"}},
"advanced_tab": {"en": {"label": "Advanced configurations"}, "zh": {"label": "高级设置"}},
"quantization_bit": { "quantization_bit": {
"en": { "en": {"label": "Quantization bit", "info": "Enable 4/8-bit model quantization (QLoRA)."},
"label": "Quantization bit", "zh": {"label": "量化等级", "info": "启用 4/8 比特模型量化QLoRA"},
"info": "Enable 4/8-bit model quantization (QLoRA)."
},
"zh": {
"label": "量化等级",
"info": "启用 4/8 比特模型量化QLoRA"
}
}, },
"template": { "template": {
"en": { "en": {"label": "Prompt template", "info": "The template used in constructing prompts."},
"label": "Prompt template", "zh": {"label": "提示模板", "info": "构建提示词时使用的模板"},
"info": "The template used in constructing prompts."
},
"zh": {
"label": "提示模板",
"info": "构建提示词时使用的模板"
}
},
"system_prompt": {
"en": {
"label": "System prompt (optional)",
"info": "A sequence used as the default system prompt."
},
"zh": {
"label": "系统提示词(非必填)",
"info": "默认使用的系统提示词"
}
},
"llama_tab": {
"en": {
"label": "Model configurations (LLaMA only)"
},
"zh": {
"label": "模型设置仅LLaMA"
}
},
"flash_attn": {
"en": {
"label": "Use FlashAttention-2"
},
"zh": {
"label": "使用 FlashAttention-2"
}
},
"shift_attn": {
"en": {
"label": "Use shift short attention (S^2-Attn)"
},
"zh": {
"label": "使用 shift short attention (S^2-Attn)"
}
},
"rope_scaling": {
"en": {
"label": "RoPE scaling"
},
"zh": {
"label": "RoPE 插值方法"
}
}, },
"rope_scaling": {"en": {"label": "RoPE scaling"}, "zh": {"label": "RoPE 插值方法"}},
"booster": {"en": {"label": "Booster"}, "zh": {"label": "加速方式"}},
"training_stage": { "training_stage": {
"en": { "en": {"label": "Stage", "info": "The stage to perform in training."},
"label": "Stage", "zh": {"label": "训练阶段", "info": "目前采用的训练方式。"},
"info": "The stage to perform in training."
},
"zh": {
"label": "训练阶段",
"info": "目前采用的训练方式。"
}
}, },
"dataset_dir": { "dataset_dir": {
"en": { "en": {"label": "Data dir", "info": "Path to the data directory."},
"label": "Data dir", "zh": {"label": "数据路径", "info": "数据文件夹的路径。"},
"info": "Path to the data directory."
},
"zh": {
"label": "数据路径",
"info": "数据文件夹的路径。"
}
},
"dataset": {
"en": {
"label": "Dataset"
},
"zh": {
"label": "数据集"
}
},
"data_preview_btn": {
"en": {
"value": "Preview dataset"
},
"zh": {
"value": "预览数据集"
}
},
"preview_count": {
"en": {
"label": "Count"
},
"zh": {
"label": "数量"
}
},
"page_index": {
"en": {
"label": "Page"
},
"zh": {
"label": "页数"
}
},
"prev_btn": {
"en": {
"value": "Prev"
},
"zh": {
"value": "上一页"
}
},
"next_btn": {
"en": {
"value": "Next"
},
"zh": {
"value": "下一页"
}
},
"close_btn": {
"en": {
"value": "Close"
},
"zh": {
"value": "关闭"
}
},
"preview_samples": {
"en": {
"label": "Samples"
},
"zh": {
"label": "样例"
}
}, },
"dataset": {"en": {"label": "Dataset"}, "zh": {"label": "数据集"}},
"data_preview_btn": {"en": {"value": "Preview dataset"}, "zh": {"value": "预览数据集"}},
"preview_count": {"en": {"label": "Count"}, "zh": {"label": "数量"}},
"page_index": {"en": {"label": "Page"}, "zh": {"label": "页数"}},
"prev_btn": {"en": {"value": "Prev"}, "zh": {"value": "上一页"}},
"next_btn": {"en": {"value": "Next"}, "zh": {"value": "下一页"}},
"close_btn": {"en": {"value": "Close"}, "zh": {"value": "关闭"}},
"preview_samples": {"en": {"label": "Samples"}, "zh": {"label": "样例"}},
"cutoff_len": { "cutoff_len": {
"en": { "en": {"label": "Cutoff length", "info": "Max tokens in input sequence."},
"label": "Cutoff length", "zh": {"label": "截断长度", "info": "输入序列分词后的最大长度。"},
"info": "Max tokens in input sequence."
},
"zh": {
"label": "截断长度",
"info": "输入序列分词后的最大长度。"
}
}, },
"learning_rate": { "learning_rate": {
"en": { "en": {"label": "Learning rate", "info": "Initial learning rate for AdamW."},
"label": "Learning rate", "zh": {"label": "学习率", "info": "AdamW 优化器的初始学习率。"},
"info": "Initial learning rate for AdamW."
},
"zh": {
"label": "学习率",
"info": "AdamW 优化器的初始学习率。"
}
}, },
"num_train_epochs": { "num_train_epochs": {
"en": { "en": {"label": "Epochs", "info": "Total number of training epochs to perform."},
"label": "Epochs", "zh": {"label": "训练轮数", "info": "需要执行的训练总轮数。"},
"info": "Total number of training epochs to perform."
},
"zh": {
"label": "训练轮数",
"info": "需要执行的训练总轮数。"
}
}, },
"max_samples": { "max_samples": {
"en": { "en": {"label": "Max samples", "info": "Maximum samples per dataset."},
"label": "Max samples", "zh": {"label": "最大样本数", "info": "每个数据集最多使用的样本数。"},
"info": "Maximum samples per dataset."
},
"zh": {
"label": "最大样本数",
"info": "每个数据集最多使用的样本数。"
}
}, },
"compute_type": { "compute_type": {
"en": { "en": {"label": "Compute type", "info": "Whether to use fp16 or bf16 mixed precision training."},
"label": "Compute type", "zh": {"label": "计算类型", "info": "是否启用 FP16 或 BF16 混合精度训练。"},
"info": "Whether to use fp16 or bf16 mixed precision training."
},
"zh": {
"label": "计算类型",
"info": "是否启用 FP16 或 BF16 混合精度训练。"
}
}, },
"batch_size": { "batch_size": {
"en": { "en": {"label": "Batch size", "info": "Number of samples to process per GPU."},
"label": "Batch size", "zh": {"label": "批处理大小", "info": "每块 GPU 上处理的样本数量。"},
"info": "Number of samples to process per GPU."
},
"zh":{
"label": "批处理大小",
"info": "每块 GPU 上处理的样本数量。"
}
}, },
"gradient_accumulation_steps": { "gradient_accumulation_steps": {
"en": { "en": {"label": "Gradient accumulation", "info": "Number of gradient accumulation steps."},
"label": "Gradient accumulation", "zh": {"label": "梯度累积", "info": "梯度累积的步数。"},
"info": "Number of gradient accumulation steps."
},
"zh": {
"label": "梯度累积",
"info": "梯度累积的步数。"
}
}, },
"lr_scheduler_type": { "lr_scheduler_type": {
"en": { "en": {
"label": "LR Scheduler", "label": "LR Scheduler",
"info": "Name of learning rate scheduler.", "info": "Name of learning rate scheduler.",
}, },
"zh": { "zh": {"label": "学习率调节器", "info": "采用的学习率调节器名称。"},
"label": "学习率调节器",
"info": "采用的学习率调节器名称。"
}
}, },
"max_grad_norm": { "max_grad_norm": {
"en": { "en": {"label": "Maximum gradient norm", "info": "Norm for gradient clipping.."},
"label": "Maximum gradient norm", "zh": {"label": "最大梯度范数", "info": "用于梯度裁剪的范数。"},
"info": "Norm for gradient clipping.."
},
"zh": {
"label": "最大梯度范数",
"info": "用于梯度裁剪的范数。"
}
}, },
"val_size": { "val_size": {
"en": { "en": {"label": "Val size", "info": "Proportion of data in the dev set."},
"label": "Val size", "zh": {"label": "验证集比例", "info": "验证集占全部样本的百分比。"},
"info": "Proportion of data in the dev set."
},
"zh": {
"label": "验证集比例",
"info": "验证集占全部样本的百分比。"
}
}, },
"extra_tab": {"en": {"label": "Extra configurations"}, "zh": {"label": "其它参数设置"}},
"logging_steps": { "logging_steps": {
"en": { "en": {"label": "Logging steps", "info": "Number of steps between two logs."},
"label": "Logging steps", "zh": {"label": "日志间隔", "info": "每两次日志输出间的更新步数。"},
"info": "Number of steps between two logs."
},
"zh": {
"label": "日志间隔",
"info": "每两次日志输出间的更新步数。"
}
}, },
"save_steps": { "save_steps": {
"en": { "en": {"label": "Save steps", "info": "Number of steps between two checkpoints."},
"label": "Save steps", "zh": {"label": "保存间隔", "info": "每两次断点保存间的更新步数。"},
"info": "Number of steps between two checkpoints."
},
"zh": {
"label": "保存间隔",
"info": "每两次断点保存间的更新步数。"
}
}, },
"warmup_steps": { "warmup_steps": {
"en": { "en": {"label": "Warmup steps", "info": "Number of steps used for warmup."},
"label": "Warmup steps", "zh": {"label": "预热步数", "info": "学习率预热采用的步数。"},
"info": "Number of steps used for warmup."
},
"zh": {
"label": "预热步数",
"info": "学习率预热采用的步数。"
}
}, },
"neft_alpha": { "neftune_alpha": {
"en": { "en": {"label": "NEFTune Alpha", "info": "Magnitude of noise adding to embedding vectors."},
"label": "NEFTune Alpha", "zh": {"label": "NEFTune 噪声参数", "info": "嵌入向量所添加的噪声大小。"},
"info": "Magnitude of noise adding to embedding vectors."
},
"zh": {
"label": "NEFTune 噪声参数",
"info": "嵌入向量所添加的噪声大小。"
}
}, },
"train_on_prompt": { "sft_packing": {
"en": { "en": {
"label": "Train on prompt", "label": "Pack sequences",
"info": "Compute loss on the prompt tokens in supervised fine-tuning." "info": "Pack sequences into samples of fixed length in supervised fine-tuning.",
}, },
"zh": { "zh": {"label": "序列打包", "info": "在有监督微调阶段将序列打包为相同长度的样本。"},
"label": "计算输入损失",
"info": "在监督微调时候计算输入序列的损失。"
}
}, },
"upcast_layernorm": { "upcast_layernorm": {
"en": { "en": {"label": "Upcast LayerNorm", "info": "Upcast weights of layernorm in float32."},
"label": "Upcast LayerNorm", "zh": {"label": "缩放归一化层", "info": "将归一化层权重缩放至 32 位精度。"},
"info": "Upcast weights of layernorm in float32."
},
"zh": {
"label": "缩放归一化层",
"info": "将归一化层权重缩放至 32 位浮点数。"
}
},
"lora_tab": {
"en": {
"label": "LoRA configurations"
},
"zh": {
"label": "LoRA 参数设置"
}
}, },
"lora_tab": {"en": {"label": "LoRA configurations"}, "zh": {"label": "LoRA 参数设置"}},
"lora_rank": { "lora_rank": {
"en": { "en": {"label": "LoRA rank", "info": "The rank of LoRA matrices."},
"label": "LoRA rank", "zh": {"label": "LoRA ", "info": "LoRA 矩阵的秩。"},
"info": "The rank of LoRA matrices."
},
"zh": {
"label": "LoRA 秩",
"info": "LoRA 矩阵的秩。"
}
}, },
"lora_dropout": { "lora_dropout": {
"en": { "en": {"label": "LoRA Dropout", "info": "Dropout ratio of LoRA weights."},
"label": "LoRA Dropout", "zh": {"label": "LoRA 随机丢弃", "info": "LoRA 权重随机丢弃的概率。"},
"info": "Dropout ratio of LoRA weights."
},
"zh": {
"label": "LoRA 随机丢弃",
"info": "LoRA 权重随机丢弃的概率。"
}
}, },
"lora_target": { "lora_target": {
"en": { "en": {
"label": "LoRA modules (optional)", "label": "LoRA modules (optional)",
"info": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules." "info": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules.",
}, },
"zh": { "zh": {"label": "LoRA 作用模块(非必填)", "info": "应用 LoRA 的目标模块名称。使用英文逗号分隔多个名称。"},
"label": "LoRA 作用模块(非必填)",
"info": "应用 LoRA 的目标模块名称。使用英文逗号分隔多个名称。"
}
}, },
"additional_target": { "additional_target": {
"en": { "en": {
"label": "Additional modules (optional)", "label": "Additional modules (optional)",
"info": "Name(s) of modules apart from LoRA layers to be set as trainable. Use commas to separate multiple modules." "info": "Name(s) of modules apart from LoRA layers to be set as trainable. Use commas to separate multiple modules.",
}, },
"zh": { "zh": {"label": "附加模块(非必填)", "info": "除 LoRA 层以外的可训练模块名称。使用英文逗号分隔多个名称。"},
"label": "附加模块(非必填)",
"info": "除 LoRA 层以外的可训练模块名称。使用英文逗号分隔多个名称。"
}
}, },
"resume_lora_training": { "create_new_adapter": {
"en": { "en": {
"label": "Resume LoRA training", "label": "Create new adapter",
"info": "Whether to resume training from the last LoRA weights or create new lora weights." "info": "Whether to create a new adapter with randomly initialized weight or not.",
}, },
"zh": { "zh": {"label": "新建适配器", "info": "是否创建一个经过随机初始化的新适配器。"},
"label": "继续上次的训练",
"info": "接着上次的 LoRA 权重训练或创建一个新的 LoRA 权重。"
}
},
"rlhf_tab": {
"en": {
"label": "RLHF configurations"
},
"zh": {
"label": "RLHF 参数设置"
}
}, },
"rlhf_tab": {"en": {"label": "RLHF configurations"}, "zh": {"label": "RLHF 参数设置"}},
"dpo_beta": { "dpo_beta": {
"en": { "en": {"label": "DPO beta", "info": "Value of the beta parameter in the DPO loss."},
"label": "DPO beta", "zh": {"label": "DPO beta 参数", "info": "DPO 损失函数中 beta 超参数大小。"},
"info": "Value of the beta parameter in the DPO loss." },
}, "dpo_ftx": {
"zh": { "en": {"label": "DPO-ftx weight", "info": "The weight of SFT loss in the DPO-ftx."},
"label": "DPO beta 参数", "zh": {"label": "DPO-ftx 权重", "info": "DPO-ftx 中 SFT 损失的权重大小。"},
"info": "DPO 损失函数中 beta 超参数大小。"
}
}, },
"reward_model": { "reward_model": {
"en": { "en": {
"label": "Reward model", "label": "Reward model",
"info": "Checkpoint of the reward model for PPO training. (Needs to refresh checkpoints)" "info": "Adapter of the reward model for PPO training. (Needs to refresh adapters)",
}, },
"zh": { "zh": {"label": "奖励模型", "info": "PPO 训练中奖励模型的适配器路径。(需要刷新适配器)"},
"label": "奖励模型",
"info": "PPO 训练中奖励模型的断点路径。(需要刷新断点)"
}
},
"cmd_preview_btn": {
"en": {
"value": "Preview command"
},
"zh": {
"value": "预览命令"
}
},
"start_btn": {
"en": {
"value": "Start"
},
"zh": {
"value": "开始"
}
},
"stop_btn": {
"en": {
"value": "Abort"
},
"zh": {
"value": "中断"
}
}, },
"cmd_preview_btn": {"en": {"value": "Preview command"}, "zh": {"value": "预览命令"}},
"start_btn": {"en": {"value": "Start"}, "zh": {"value": "开始"}},
"stop_btn": {"en": {"value": "Abort"}, "zh": {"value": "中断"}},
"output_dir": { "output_dir": {
"en": { "en": {"label": "Output dir", "info": "Directory for saving results."},
"label": "Output dir", "zh": {"label": "输出目录", "info": "保存结果的路径。"},
"info": "Directory for saving results."
},
"zh": {
"label": "输出目录",
"info": "保存结果的路径。"
}
}, },
"output_box": { "output_box": {"en": {"value": "Ready."}, "zh": {"value": "准备就绪。"}},
"en": { "loss_viewer": {"en": {"label": "Loss"}, "zh": {"label": "损失"}},
"value": "Ready." "predict": {"en": {"label": "Save predictions"}, "zh": {"label": "保存预测结果"}},
}, "load_btn": {"en": {"value": "Load model"}, "zh": {"value": "加载模型"}},
"zh": { "unload_btn": {"en": {"value": "Unload model"}, "zh": {"value": "卸载模型"}},
"value": "准备就绪。" "info_box": {"en": {"value": "Model unloaded, please load a model first."}, "zh": {"value": "模型未加载,请先加载模型。"}},
} "system": {"en": {"placeholder": "System prompt (optional)"}, "zh": {"placeholder": "系统提示词(非必填)"}},
"tools": {"en": {"placeholder": "Tools (optional)"}, "zh": {"placeholder": "工具列表(非必填)"}},
"query": {"en": {"placeholder": "Input..."}, "zh": {"placeholder": "输入..."}},
"submit_btn": {"en": {"value": "Submit"}, "zh": {"value": "提交"}},
"clear_btn": {"en": {"value": "Clear history"}, "zh": {"value": "清空历史"}},
"max_length": {"en": {"label": "Maximum length"}, "zh": {"label": "最大长度"}},
"max_new_tokens": {"en": {"label": "Maximum new tokens"}, "zh": {"label": "最大生成长度"}},
"top_p": {"en": {"label": "Top-p"}, "zh": {"label": "Top-p 采样值"}},
"temperature": {"en": {"label": "Temperature"}, "zh": {"label": "温度系数"}},
"max_shard_size": {
"en": {"label": "Max shard size (GB)", "info": "The maximum size for a model file."},
"zh": {"label": "最大分块大小GB", "info": "单个模型文件的最大大小。"},
}, },
"loss_viewer": { "export_quantization_bit": {
"en": { "en": {"label": "Export quantization bit.", "info": "Quantizing the exported model."},
"label": "Loss" "zh": {"label": "导出量化等级", "info": "量化导出模型。"},
},
"zh": {
"label": "损失"
}
}, },
"predict": { "export_quantization_dataset": {
"en": { "en": {"label": "Export quantization dataset.", "info": "The calibration dataset used for quantization."},
"label": "Save predictions" "zh": {"label": "导出量化数据集", "info": "量化过程中使用的校准数据集。"},
},
"zh": {
"label": "保存预测结果"
}
},
"load_btn": {
"en": {
"value": "Load model"
},
"zh": {
"value": "加载模型"
}
},
"unload_btn": {
"en": {
"value": "Unload model"
},
"zh": {
"value": "卸载模型"
}
},
"info_box": {
"en": {
"value": "Model unloaded, please load a model first."
},
"zh": {
"value": "模型未加载,请先加载模型。"
}
},
"system": {
"en": {
"placeholder": "System prompt (optional)"
},
"zh": {
"placeholder": "系统提示词(非必填)"
}
},
"query": {
"en": {
"placeholder": "Input..."
},
"zh": {
"placeholder": "输入..."
}
},
"submit_btn": {
"en": {
"value": "Submit"
},
"zh": {
"value": "提交"
}
},
"clear_btn": {
"en": {
"value": "Clear history"
},
"zh": {
"value": "清空历史"
}
},
"max_length": {
"en": {
"label": "Maximum length"
},
"zh": {
"label": "最大长度"
}
},
"max_new_tokens": {
"en": {
"label": "Maximum new tokens"
},
"zh": {
"label": "最大生成长度"
}
},
"top_p": {
"en": {
"label": "Top-p"
},
"zh": {
"label": "Top-p 采样值"
}
},
"temperature": {
"en": {
"label": "Temperature"
},
"zh": {
"label": "温度系数"
}
}, },
"export_dir": { "export_dir": {
"en": { "en": {"label": "Export dir", "info": "Directory to save exported model."},
"label": "Export dir", "zh": {"label": "导出目录", "info": "保存导出模型的文件夹路径。"},
"info": "Directory to save exported model."
},
"zh": {
"label": "导出目录",
"info": "保存导出模型的文件夹路径。"
}
}, },
"max_shard_size": { "export_btn": {"en": {"value": "Export"}, "zh": {"value": "开始导出"}},
"en": {
"label": "Max shard size (GB)",
"info": "The maximum size for a model file."
},
"zh": {
"label": "最大分块大小GB",
"info": "模型文件的最大大小。"
}
},
"export_btn": {
"en": {
"value": "Export"
},
"zh": {
"value": "开始导出"
}
}
} }
ALERTS = { ALERTS = {
"err_conflict": { "err_conflict": {"en": "A process is in running, please abort it firstly.", "zh": "任务已存在,请先中断训练。"},
"en": "A process is in running, please abort it firstly.", "err_exists": {"en": "You have loaded a model, please unload it first.", "zh": "模型已存在,请先卸载模型。"},
"zh": "任务已存在,请先中断训练。" "err_no_model": {"en": "Please select a model.", "zh": "请选择模型。"},
}, "err_no_path": {"en": "Model not found.", "zh": "模型未找到。"},
"err_exists": { "err_no_dataset": {"en": "Please choose a dataset.", "zh": "请选择数据集。"},
"en": "You have loaded a model, please unload it first.", "err_no_adapter": {"en": "Please select an adapter.", "zh": "请选择一个适配器。"},
"zh": "模型已存在,请先卸载模型。" "err_no_export_dir": {"en": "Please provide export dir.", "zh": "请填写导出目录"},
}, "err_failed": {"en": "Failed.", "zh": "训练出错。"},
"err_no_model": {
"en": "Please select a model.",
"zh": "请选择模型。"
},
"err_no_path": {
"en": "Model not found.",
"zh": "模型未找到。"
},
"err_no_dataset": {
"en": "Please choose a dataset.",
"zh": "请选择数据集。"
},
"err_no_checkpoint": {
"en": "Please select a checkpoint.",
"zh": "请选择断点。"
},
"err_no_export_dir": {
"en": "Please provide export dir.",
"zh": "请填写导出目录"
},
"err_failed": {
"en": "Failed.",
"zh": "训练出错。"
},
"err_demo": { "err_demo": {
"en": "Training is unavailable in demo mode, duplicate the space to a private one first.", "en": "Training is unavailable in demo mode, duplicate the space to a private one first.",
"zh": "展示模式不支持训练,请先复制到私人空间。" "zh": "展示模式不支持训练,请先复制到私人空间。",
}, },
"info_aborting": { "err_device_count": {"en": "Multiple GPUs are not supported yet.", "zh": "尚不支持多 GPU 训练。"},
"en": "Aborted, wait for terminating...", "err_tool_name": {"en": "Tool name not found.", "zh": "工具名称未找到。"},
"zh": "训练中断,正在等待线程结束……" "err_json_schema": {"en": "Invalid JSON schema.", "zh": "Json 格式错误。"},
}, "info_aborting": {"en": "Aborted, wait for terminating...", "zh": "训练中断,正在等待线程结束……"},
"info_aborted": { "info_aborted": {"en": "Ready.", "zh": "准备就绪。"},
"en": "Ready.", "info_finished": {"en": "Finished.", "zh": "训练完毕。"},
"zh": "准备就绪。" "info_loading": {"en": "Loading model...", "zh": "加载中……"},
}, "info_unloading": {"en": "Unloading model...", "zh": "卸载中……"},
"info_finished": { "info_loaded": {"en": "Model loaded, now you can chat with your model!", "zh": "模型已加载,可以开始聊天了!"},
"en": "Finished.", "info_unloaded": {"en": "Model unloaded.", "zh": "模型已卸载。"},
"zh": "训练完毕。" "info_exporting": {"en": "Exporting model...", "zh": "正在导出模型……"},
}, "info_exported": {"en": "Model exported.", "zh": "模型导出完成。"},
"info_loading": {
"en": "Loading model...",
"zh": "加载中……"
},
"info_unloading": {
"en": "Unloading model...",
"zh": "卸载中……"
},
"info_loaded": {
"en": "Model loaded, now you can chat with your model!",
"zh": "模型已加载,可以开始聊天了!"
},
"info_unloaded": {
"en": "Model unloaded.",
"zh": "模型已卸载。"
},
"info_exporting": {
"en": "Exporting model...",
"zh": "正在导出模型……"
},
"info_exported": {
"en": "Model exported.",
"zh": "模型导出完成。"
}
} }

View File

@@ -1,11 +1,11 @@
from typing import TYPE_CHECKING, Dict, List, Set from typing import TYPE_CHECKING, Dict, List, Set
if TYPE_CHECKING: if TYPE_CHECKING:
from gradio.components import Component from gradio.components import Component
class Manager: class Manager:
def __init__(self) -> None: def __init__(self) -> None:
self.all_elems: Dict[str, Dict[str, "Component"]] = {} self.all_elems: Dict[str, Dict[str, "Component"]] = {}
@@ -21,14 +21,12 @@ class Manager:
self.all_elems["top"]["lang"], self.all_elems["top"]["lang"],
self.all_elems["top"]["model_name"], self.all_elems["top"]["model_name"],
self.all_elems["top"]["model_path"], self.all_elems["top"]["model_path"],
self.all_elems["top"]["checkpoints"], self.all_elems["top"]["adapter_path"],
self.all_elems["top"]["finetuning_type"], self.all_elems["top"]["finetuning_type"],
self.all_elems["top"]["quantization_bit"], self.all_elems["top"]["quantization_bit"],
self.all_elems["top"]["template"], self.all_elems["top"]["template"],
self.all_elems["top"]["system_prompt"], self.all_elems["top"]["rope_scaling"],
self.all_elems["top"]["flash_attn"], self.all_elems["top"]["booster"],
self.all_elems["top"]["shift_attn"],
self.all_elems["top"]["rope_scaling"]
} }
def list_elems(self) -> List["Component"]: def list_elems(self) -> List["Component"]:

View File

@@ -1,29 +1,29 @@
import logging
import os import os
import time import time
import logging
import gradio as gr
from threading import Thread from threading import Thread
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional, Tuple from typing import TYPE_CHECKING, Any, Dict, Generator, Optional, Tuple
import gradio as gr
import transformers import transformers
from gradio.components import Component # cannot use TYPE_CHECKING here
from transformers.trainer import TRAINING_ARGS_NAME from transformers.trainer import TRAINING_ARGS_NAME
from llmtuner.extras.callbacks import LogCallback from ..extras.callbacks import LogCallback
from llmtuner.extras.constants import TRAINING_STAGES from ..extras.constants import TRAINING_STAGES
from llmtuner.extras.logging import LoggerHandler from ..extras.logging import LoggerHandler
from llmtuner.extras.misc import torch_gc from ..extras.misc import get_device_count, torch_gc
from llmtuner.train import run_exp from ..train import run_exp
from llmtuner.webui.common import get_module, get_save_dir, load_config from .common import get_module, get_save_dir, load_config
from llmtuner.webui.locales import ALERTS from .locales import ALERTS
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar from .utils import gen_cmd, get_eval_results, update_process_bar
if TYPE_CHECKING: if TYPE_CHECKING:
from llmtuner.webui.manager import Manager from .manager import Manager
class Runner: class Runner:
def __init__(self, manager: "Manager", demo_mode: Optional[bool] = False) -> None: def __init__(self, manager: "Manager", demo_mode: Optional[bool] = False) -> None:
self.manager = manager self.manager = manager
self.demo_mode = demo_mode self.demo_mode = demo_mode
@@ -67,6 +67,9 @@ class Runner:
if self.demo_mode and (not from_preview): if self.demo_mode and (not from_preview):
return ALERTS["err_demo"][lang] return ALERTS["err_demo"][lang]
if not from_preview and get_device_count() > 1:
return ALERTS["err_device_count"][lang]
self.aborted = False self.aborted = False
self.logger_handler.reset() self.logger_handler.reset()
self.trainer_callback = LogCallback(self) self.trainer_callback = LogCallback(self)
@@ -86,26 +89,28 @@ class Runner:
get = lambda name: data[self.manager.get_elem_by_name(name)] get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config() user_config = load_config()
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join(
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") [
]) get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
for adapter in get("top.adapter_path")
]
)
else: else:
checkpoint_dir = None adapter_name_or_path = None
args = dict( args = dict(
stage=TRAINING_STAGES[get("train.training_stage")], stage=TRAINING_STAGES[get("train.training_stage")],
model_name_or_path=get("top.model_path"),
do_train=True, do_train=True,
model_name_or_path=get("top.model_path"),
adapter_name_or_path=adapter_name_or_path,
cache_dir=user_config.get("cache_dir", None), cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
flash_attn=(get("top.booster") == "flash_attn"),
use_unsloth=(get("top.booster") == "unsloth"),
dataset_dir=get("train.dataset_dir"), dataset_dir=get("train.dataset_dir"),
dataset=",".join(get("train.dataset")), dataset=",".join(get("train.dataset")),
cutoff_len=get("train.cutoff_len"), cutoff_len=get("train.cutoff_len"),
@@ -119,24 +124,22 @@ class Runner:
logging_steps=get("train.logging_steps"), logging_steps=get("train.logging_steps"),
save_steps=get("train.save_steps"), save_steps=get("train.save_steps"),
warmup_steps=get("train.warmup_steps"), warmup_steps=get("train.warmup_steps"),
neft_alpha=get("train.neft_alpha"), neftune_noise_alpha=get("train.neftune_alpha") or None,
train_on_prompt=get("train.train_on_prompt"), sft_packing=get("train.sft_packing"),
upcast_layernorm=get("train.upcast_layernorm"), upcast_layernorm=get("train.upcast_layernorm"),
lora_rank=get("train.lora_rank"), lora_rank=get("train.lora_rank"),
lora_dropout=get("train.lora_dropout"), lora_dropout=get("train.lora_dropout"),
lora_target=get("train.lora_target") or get_module(get("top.model_name")), lora_target=get("train.lora_target") or get_module(get("top.model_name")),
additional_target=get("train.additional_target") if get("train.additional_target") else None, additional_target=get("train.additional_target") or None,
resume_lora_training=get("train.resume_lora_training"), create_new_adapter=get("train.create_new_adapter"),
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")) output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")),
fp16=(get("train.compute_type") == "fp16"),
bf16=(get("train.compute_type") == "bf16"),
) )
args[get("train.compute_type")] = True
args["disable_tqdm"] = True args["disable_tqdm"] = True
if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]: if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]:
args["resume_lora_training"] = (args["quantization_bit"] is not None) args["create_new_adapter"] = args["quantization_bit"] is None
if args["quantization_bit"] is not None:
args["upcast_layernorm"] = True
if args["stage"] == "ppo": if args["stage"] == "ppo":
args["reward_model"] = get_save_dir( args["reward_model"] = get_save_dir(
@@ -146,6 +149,7 @@ class Runner:
if args["stage"] == "dpo": if args["stage"] == "dpo":
args["dpo_beta"] = get("train.dpo_beta") args["dpo_beta"] = get("train.dpo_beta")
args["dpo_ftx"] = get("train.dpo_ftx")
if get("train.val_size") > 1e-6 and args["stage"] != "ppo": if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
args["val_size"] = get("train.val_size") args["val_size"] = get("train.val_size")
@@ -159,45 +163,49 @@ class Runner:
get = lambda name: data[self.manager.get_elem_by_name(name)] get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config() user_config = load_config()
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join(
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") [
]) get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
for adapter in get("top.adapter_path")
]
)
else: else:
checkpoint_dir = None adapter_name_or_path = None
args = dict( args = dict(
stage="sft", stage="sft",
model_name_or_path=get("top.model_path"), model_name_or_path=get("top.model_path"),
do_eval=True, adapter_name_or_path=adapter_name_or_path,
predict_with_generate=True,
cache_dir=user_config.get("cache_dir", None), cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
flash_attn=(get("top.booster") == "flash_attn"),
use_unsloth=(get("top.booster") == "unsloth"),
dataset_dir=get("eval.dataset_dir"), dataset_dir=get("eval.dataset_dir"),
dataset=",".join(get("eval.dataset")), dataset=",".join(get("eval.dataset")),
cutoff_len=get("eval.cutoff_len"), cutoff_len=get("eval.cutoff_len"),
max_samples=int(get("eval.max_samples")), max_samples=int(get("eval.max_samples")),
per_device_eval_batch_size=get("eval.batch_size"), per_device_eval_batch_size=get("eval.batch_size"),
predict_with_generate=True,
max_new_tokens=get("eval.max_new_tokens"), max_new_tokens=get("eval.max_new_tokens"),
top_p=get("eval.top_p"), top_p=get("eval.top_p"),
temperature=get("eval.temperature"), temperature=get("eval.temperature"),
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("eval.output_dir")) output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("eval.output_dir")),
) )
if get("eval.predict"): if get("eval.predict"):
args.pop("do_eval", None)
args["do_predict"] = True args["do_predict"] = True
else:
args["do_eval"] = True
return args return args
def _preview(self, data: Dict[Component, Any], do_train: bool) -> Generator[Tuple[str, Dict[str, Any]], None, None]: def _preview(
self, data: Dict[Component, Any], do_train: bool
) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
error = self._initialize(data, do_train, from_preview=True) error = self._initialize(data, do_train, from_preview=True)
if error: if error:
gr.Warning(error) gr.Warning(error)
@@ -235,9 +243,11 @@ class Runner:
get = lambda name: self.running_data[self.manager.get_elem_by_name(name)] get = lambda name: self.running_data[self.manager.get_elem_by_name(name)]
self.running = True self.running = True
lang = get("top.lang") lang = get("top.lang")
output_dir = get_save_dir(get("top.model_name"), get("top.finetuning_type"), get( output_dir = get_save_dir(
"{}.output_dir".format("train" if self.do_train else "eval") get("top.model_name"),
)) get("top.finetuning_type"),
get("{}.output_dir".format("train" if self.do_train else "eval")),
)
while self.thread.is_alive(): while self.thread.is_alive():
time.sleep(2) time.sleep(2)

View File

@@ -1,15 +1,18 @@
import os
import json import json
import gradio as gr import os
from typing import TYPE_CHECKING, Any, Dict
from datetime import datetime from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict
import gradio as gr
from ..extras.packages import is_matplotlib_available
from ..extras.ploting import smooth
from .common import get_save_dir
from .locales import ALERTS
from llmtuner.extras.packages import is_matplotlib_available
from llmtuner.extras.ploting import smooth
from llmtuner.webui.common import get_save_dir
if TYPE_CHECKING: if TYPE_CHECKING:
from llmtuner.extras.callbacks import LogCallback from ..extras.callbacks import LogCallback
if is_matplotlib_available(): if is_matplotlib_available():
import matplotlib.figure import matplotlib.figure
@@ -22,16 +25,13 @@ def update_process_bar(callback: "LogCallback") -> Dict[str, Any]:
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0 percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0
label = "Running {:d}/{:d}: {} < {}".format( label = "Running {:d}/{:d}: {} < {}".format(
callback.cur_steps, callback.cur_steps, callback.max_steps, callback.elapsed_time, callback.remaining_time
callback.max_steps,
callback.elapsed_time,
callback.remaining_time
) )
return gr.update(label=label, value=percentage, visible=True) return gr.update(label=label, value=percentage, visible=True)
def get_time() -> str: def get_time() -> str:
return datetime.now().strftime('%Y-%m-%d-%H-%M-%S') return datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
def can_quantize(finetuning_type: str) -> Dict[str, Any]: def can_quantize(finetuning_type: str) -> Dict[str, Any]:
@@ -41,13 +41,24 @@ def can_quantize(finetuning_type: str) -> Dict[str, Any]:
return gr.update(interactive=True) return gr.update(interactive=True)
def check_json_schema(text: str, lang: str) -> None:
try:
tools = json.loads(text)
for tool in tools:
assert "name" in tool
except AssertionError:
gr.Warning(ALERTS["err_tool_name"][lang])
except json.JSONDecodeError:
gr.Warning(ALERTS["err_json_schema"][lang])
def gen_cmd(args: Dict[str, Any]) -> str: def gen_cmd(args: Dict[str, Any]) -> str:
args.pop("disable_tqdm", None) args.pop("disable_tqdm", None)
args["plot_loss"] = args.get("do_train", None) args["plot_loss"] = args.get("do_train", None)
current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0") current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)] cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)]
for k, v in args.items(): for k, v in args.items():
if v is not None and v != "": if v is not None and v is not False and v != "":
cmd_lines.append(" --{} {} ".format(k, str(v))) cmd_lines.append(" --{} {} ".format(k, str(v)))
cmd_text = "\\\n".join(cmd_lines) cmd_text = "\\\n".join(cmd_lines)
cmd_text = "```bash\n{}\n```".format(cmd_text) cmd_text = "```bash\n{}\n```".format(cmd_text)

View File

@@ -4,7 +4,7 @@ from llmtuner import create_ui
def main(): def main():
demo = create_ui() demo = create_ui()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -4,7 +4,7 @@ from llmtuner import create_web_demo
def main(): def main():
demo = create_web_demo() demo = create_web_demo()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -3,11 +3,12 @@
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 # Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/ # Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
from typing import Optional
import fire import fire
import torch import torch
from typing import Optional from deepspeed.accelerator import get_accelerator # type: ignore
from deepspeed.accelerator import get_accelerator # type: ignore from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
from llmtuner import ChatModel from llmtuner import ChatModel
@@ -16,25 +17,13 @@ def calculate_flops(
model_name_or_path: str, model_name_or_path: str,
batch_size: Optional[int] = 1, batch_size: Optional[int] = 1,
seq_length: Optional[int] = 256, seq_length: Optional[int] = 256,
flash_attn: Optional[bool] = False flash_attn: Optional[bool] = False,
): ):
with get_accelerator().device(0): with get_accelerator().device(0):
chat_model = ChatModel(dict( chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="vanilla", flash_attn=flash_attn))
model_name_or_path=model_name_or_path,
template="vanilla",
flash_attn=flash_attn
))
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device) fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
input_dict = { input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
"input_ids": fake_input, flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
"labels": fake_input.clone()
}
flops, macs, params = get_model_profile(
chat_model.model,
kwargs=input_dict,
print_profile=True,
detailed=True
)
print("FLOPs:", flops) print("FLOPs:", flops)
print("MACs:", macs) print("MACs:", macs)
print("Params:", params) print("Params:", params)

View File

@@ -3,21 +3,23 @@
# Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16 # Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py # Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
import fire
import math import math
import torch
from tqdm import tqdm
from typing import Optional from typing import Optional
import fire
import torch
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import DataCollatorForSeq2Seq from transformers import DataCollatorForSeq2Seq
from llmtuner.data import get_dataset, preprocess_dataset from llmtuner.data import get_dataset
from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.model import get_train_args, load_model_and_tokenizer from llmtuner.hparams import get_train_args
from llmtuner.model import load_model_and_tokenizer
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models
BASE_BS = 4_000_000 # from llama paper BASE_BS = 4_000_000 # from llama paper
def calculate_lr( def calculate_lr(
@@ -25,21 +27,22 @@ def calculate_lr(
dataset: str, dataset: str,
cutoff_len: int, # i.e. maximum input length during training cutoff_len: int, # i.e. maximum input length during training
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size) batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
is_mistral: bool, # mistral model uses a smaller learning rate, is_mistral: bool, # mistral model uses a smaller learning rate,
dataset_dir: Optional[str] = "data" dataset_dir: Optional[str] = "data",
): ):
model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict( model_args, data_args, training_args, finetuning_args, _ = get_train_args(
stage="sft", dict(
model_name_or_path=model_name_or_path, stage="sft",
dataset=dataset, model_name_or_path=model_name_or_path,
dataset_dir=dataset_dir, dataset=dataset,
template="default", dataset_dir=dataset_dir,
cutoff_len=cutoff_len, template="default",
output_dir="dummy_dir" cutoff_len=cutoff_len,
)) output_dir="dummy_dir",
trainset = get_dataset(model_args, data_args) )
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft") )
trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft") _, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
dataloader = DataLoader( dataloader = DataLoader(
dataset=trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, pin_memory=True dataset=trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, pin_memory=True
@@ -49,14 +52,16 @@ def calculate_lr(
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item() valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
total_tokens += torch.numel(batch["labels"]) total_tokens += torch.numel(batch["labels"])
batch_max_len = cutoff_len * batch_size # max tokens in a batch batch_max_len = cutoff_len * batch_size # max tokens in a batch
valid_ratio = valid_tokens / total_tokens valid_ratio = valid_tokens / total_tokens
batch_valid_len = batch_max_len * valid_ratio batch_valid_len = batch_max_len * valid_ratio
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size) lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size)
lr = lr / 6.0 if is_mistral else lr lr = lr / 6.0 if is_mistral else lr
print("Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format( print(
lr, valid_ratio * 100, batch_valid_len "Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
)) lr, valid_ratio * 100, batch_valid_len
)
)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -4,57 +4,65 @@
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py # Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied # Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
import os
import fire
import json import json
import torch import os
from collections import OrderedDict from collections import OrderedDict
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME from typing import Any, Dict, Optional
from typing import Any, Dict
import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
shard_checkpoint,
)
CONFIG_NAME = "config.json" CONFIG_NAME = "config.json"
def save_weight( def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
input_dir: str,
output_dir: str,
shard_size: str
):
baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict() baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in os.listdir(input_dir): for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
baichuan2_state_dict.update(shard_weight) baichuan2_state_dict.update(shard_weight)
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for key, value in baichuan2_state_dict.items(): for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
if "W_pack" in key: if "W_pack" in key:
proj_size = value.size(0) // 3 proj_size = value.size(0) // 3
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :] llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size:2*proj_size, :] llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*proj_size:, :] llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
elif "lm_head" in key: elif "lm_head" in key:
llama2_state_dict[key] = torch.nn.functional.normalize(value) llama2_state_dict[key] = torch.nn.functional.normalize(value)
else: else:
llama2_state_dict[key] = value llama2_state_dict[key] = value
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME) weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
for shard_file, shard in shards.items(): shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
torch.save(shard, os.path.join(output_dir, shard_file))
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
if save_safetensors:
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
else:
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None: if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else: else:
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f: index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True) json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir)) print("Model weights saved in {}".format(output_dir))
def save_config( def save_config(input_dir: str, output_dir: str):
input_dir: str,
output_dir: str
):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
llama2_config_dict: Dict[str, Any] = json.load(f) llama2_config_dict: Dict[str, Any] = json.load(f)
@@ -68,18 +76,14 @@ def save_config(
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_baichuan2( def llamafy_baichuan2(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False):
input_dir: str,
output_dir: str,
shard_size: str
):
try: try:
os.makedirs(output_dir, exist_ok=False) os.makedirs(output_dir, exist_ok=False)
except Exception as e: except Exception as e:
raise print("Output dir already exists", e) raise print("Output dir already exists", e)
save_weight(input_dir, output_dir, shard_size) save_weight(input_dir, output_dir, shard_size, save_safetensors)
save_config(input_dir, output_dir) save_config(input_dir, output_dir)
if __name__ == "__main__": if __name__ == "__main__":

112
tests/llamafy_internlm2.py Normal file
View File

@@ -0,0 +1,112 @@
# coding=utf-8
# Converts the InternLM2 model in the same format as LLaMA2.
# Usage: python llamafy_internlm2.py --input_dir input --output_dir output --shard_size 10GB
# Warning: We have found that the converted model cannot infer correctly. It will be fixed later.
import json
import os
from collections import OrderedDict
from typing import Any, Dict, Optional
import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
shard_checkpoint,
)
CONFIG_NAME = "config.json"
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
internlm2_config_dict: Dict[str, Any] = json.load(f)
internlm2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
internlm2_state_dict.update(shard_weight)
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for key, value in tqdm(internlm2_state_dict.items(), desc="Convert format"):
if "output" in key:
llama2_state_dict[key.replace("output", "lm_head")] = value
elif "tok_embeddings" in key:
llama2_state_dict[key.replace("tok_embeddings", "embed_tokens")] = value
elif "wqkv" in key:
num_q_heads = internlm2_config_dict["num_attention_heads"]
num_kv_heads = internlm2_config_dict["num_key_value_heads"]
q_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_q_heads
kv_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_kv_heads
llama2_state_dict[key.replace("attention.wqkv", "self_attn.q_proj")] = value[:q_size, ...]
llama2_state_dict[key.replace("attention.wqkv", "self_attn.k_proj")] = value[
q_size : q_size + kv_size, ...
]
llama2_state_dict[key.replace("attention.wqkv", "self_attn.v_proj")] = value[q_size + kv_size :, ...]
elif "wo" in key:
llama2_state_dict[key.replace("attention.wo", "self_attn.o_proj")] = value
elif "attention_norm" in key:
llama2_state_dict[key.replace("attention_norm", "input_layernorm")] = value
elif "ffn_norm" in key:
llama2_state_dict[key.replace("ffn_norm", "post_attention_layernorm")] = value
elif "w1" in key:
llama2_state_dict[key.replace("feed_forward.w1", "mlp.gate_proj")] = value
elif "w2" in key:
llama2_state_dict[key.replace("feed_forward.w2", "mlp.down_proj")] = value
elif "w3" in key:
llama2_state_dict[key.replace("feed_forward.w3", "mlp.up_proj")] = value
else:
llama2_state_dict[key] = value
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
if save_safetensors:
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
else:
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else:
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
def save_config(input_dir: str, output_dir: str):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
llama2_config_dict: Dict[str, Any] = json.load(f)
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
llama2_config_dict.pop("auto_map", None)
llama2_config_dict.pop("bias", None)
llama2_config_dict.pop("rope_scaling", None)
llama2_config_dict["model_type"] = "llama"
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
json.dump(llama2_config_dict, f, indent=2)
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_internlm2(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False):
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:
raise print("Output dir already exists", e)
save_weight(input_dir, output_dir, shard_size, save_safetensors)
save_config(input_dir, output_dir)
if __name__ == "__main__":
fire.Fire(llamafy_internlm2)

View File

@@ -1,33 +1,40 @@
# coding=utf-8 # coding=utf-8
# Converts the Qwen models in the same format as LLaMA2. # Converts the Qwen models in the same format as LLaMA2.
# Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB # Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB
# Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied
import os
import fire
import json import json
import torch import os
from collections import OrderedDict from collections import OrderedDict
from typing import Any, Dict, Optional
import fire
import torch
from safetensors import safe_open from safetensors import safe_open
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
shard_checkpoint,
)
from transformers.utils import check_min_version from transformers.utils import check_min_version
from typing import Any, Dict
try: try:
check_min_version("4.34.0") check_min_version("4.34.0")
except: except Exception:
raise ValueError("Please upgrade `transformers` to 4.34.0") raise ValueError("Please upgrade `transformers` to 4.34.0")
CONFIG_NAME = "config.json" CONFIG_NAME = "config.json"
def save_weight( def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool) -> str:
input_dir: str,
output_dir: str,
shard_size: str
) -> str:
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict() qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in os.listdir(input_dir): for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"): if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"):
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f: with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f:
for key in f.keys(): for key in f.keys():
@@ -35,7 +42,7 @@ def save_weight(
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
torch_dtype = None torch_dtype = None
for key, value in qwen_state_dict.items(): for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"):
if torch_dtype is None: if torch_dtype is None:
torch_dtype = value.dtype torch_dtype = value.dtype
if "wte" in key: if "wte" in key:
@@ -47,13 +54,15 @@ def save_weight(
if "attn.c_attn" in key: if "attn.c_attn" in key:
proj_size = value.size(0) // 3 proj_size = value.size(0) // 3
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...] llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[proj_size:2*proj_size, ...] llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2*proj_size:, ...] proj_size : 2 * proj_size, ...
]
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...]
elif "attn.c_proj" in key: elif "attn.c_proj" in key:
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = ( llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like(
torch.zeros_like(value[:, 0]).squeeze() value[:, 0]
) ).squeeze()
elif "ln_1" in key: elif "ln_1" in key:
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
elif "ln_2" in key: elif "ln_2" in key:
@@ -69,25 +78,27 @@ def save_weight(
else: else:
raise KeyError("Unable to process key {}".format(key)) raise KeyError("Unable to process key {}".format(key))
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME) weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
for shard_file, shard in shards.items(): shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
torch.save(shard, os.path.join(output_dir, shard_file))
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
if save_safetensors:
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
else:
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None: if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
else: else:
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f: index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True) json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir)) print("Model weights saved in {}".format(output_dir))
return str(torch_dtype).replace("torch.", "") return str(torch_dtype).replace("torch.", "")
def save_config( def save_config(input_dir: str, output_dir: str, torch_dtype: str):
input_dir: str,
output_dir: str,
torch_dtype: str
):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
qwen_config_dict: Dict[str, Any] = json.load(f) qwen_config_dict: Dict[str, Any] = json.load(f)
@@ -117,18 +128,14 @@ def save_config(
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_qwen( def llamafy_qwen(input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False):
input_dir: str,
output_dir: str,
shard_size: str
):
try: try:
os.makedirs(output_dir, exist_ok=False) os.makedirs(output_dir, exist_ok=False)
except Exception as e: except Exception as e:
raise print("Output dir already exists", e) raise print("Output dir already exists", e)
torch_dtype = save_weight(input_dir, output_dir, shard_size) torch_dtype = save_weight(input_dir, output_dir, shard_size, save_safetensors)
save_config(input_dir, output_dir, torch_dtype) save_config(input_dir, output_dir, torch_dtype)
if __name__ == "__main__": if __name__ == "__main__":

82
tests/loftq_init.py Normal file
View File

@@ -0,0 +1,82 @@
# coding=utf-8
# Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
# Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir
# Inspired by: https://github.com/huggingface/peft/blob/main/examples/loftq_finetuning/quantize_save_load.py
import os
from typing import TYPE_CHECKING, Optional
import fire
import torch
import torch.nn as nn
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
if TYPE_CHECKING:
from transformers import PreTrainedModel
class Shell(nn.Module):
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
super().__init__()
self.weight = nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = nn.Parameter(bias, requires_grad=False)
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
for name in set([k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k]): # noqa: C403
parent_name = ".".join(name.split(".")[:-1])
child_name = name.split(".")[-1]
parent_module = model.get_submodule(parent_name)
child_module = getattr(parent_module, child_name)
base_layer = getattr(child_module, "base_layer")
weight = getattr(base_layer, "weight", None)
bias = getattr(base_layer, "bias", None)
setattr(parent_module, child_name, Shell(weight, bias))
print("Model unwrapped.")
def quantize_loftq(
model_name_or_path: str,
save_dir: str,
loftq_bits: Optional[int] = 4,
loftq_iter: Optional[int] = 1,
lora_alpha: Optional[int] = None,
lora_rank: Optional[int] = 16,
lora_target: Optional[str] = "q_proj,v_proj",
save_safetensors: Optional[bool] = False,
):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=True,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=0.1,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="loftq",
loftq_config=loftq_config,
)
# Init LoftQ model
lora_model = get_peft_model(model, lora_config)
base_model: "PreTrainedModel" = lora_model.get_base_model()
# Save LoftQ model
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir)
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True)
lora_model.save_pretrained(os.path.join(save_dir, "adapters"), safe_serialization=save_safetensors)
# Save base model
unwrap_model(base_model)
base_model.save_pretrained(save_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
fire.Fire(quantize_loftq)

View File

@@ -1,49 +0,0 @@
# coding=utf-8
# Quantizes models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
# Usage: python quantize.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
# --max_length 1024 --max_samples 1024
# dataset format: instruction (string), input (string), output (string), history (List[string])
import fire
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
def quantize(input_dir: str, output_dir: str, data_file: str, max_length: int, max_samples: int):
tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left")
def format_example(examples):
prefix=("A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.")
texts = []
for i in range(len(examples["instruction"])):
prompt = prefix + "\n"
if "history" in examples:
for user_query, bot_resp in examples["history"][i]:
prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp)
prompt += "Human: {}\nAssistant: {}".format(
examples["instruction"][i] + "\n" + examples["input"][i], examples["output"][i]
)
texts.append(prompt)
return tokenizer(texts, truncation=True, max_length=max_length)
dataset = load_dataset("json", data_files=data_file)["train"]
column_names = list(dataset.column_names)
dataset = dataset.select(range(min(len(dataset), max_samples)))
dataset = dataset.map(format_example, batched=True, remove_columns=column_names)
dataset = dataset.shuffle()
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_pretrained(input_dir, quantize_config, trust_remote_code=True)
model.quantize(dataset)
model.save_quantized(output_dir)
if __name__ == "__main__":
fire.Fire(quantize)