58 Commits

Author SHA1 Message Date
hiyouga
790a31404a fix #1742
Former-commit-id: efbb32afdcf0d6aa4ca26f54c95f76dbb84f77dc
2023-12-16 20:50:45 +08:00
hiyouga
f927601702 add xverse-65b-chat model
Former-commit-id: fff6288db6b61ca27010ea47c918298f76922106
2023-12-16 20:21:29 +08:00
hiyouga
c4654d54d7 set version
Former-commit-id: 45a05e3a415eeaf875e2cf15bdba0235fbd7d527
2023-12-16 20:17:51 +08:00
hiyouga
df777c30d1 add noisy mean initialization #1815
Former-commit-id: 3253b1fca0123071913079277186c160046edf21
2023-12-16 19:47:51 +08:00
hiyouga
d81ad2d4bc support dpo-ftx
Former-commit-id: 86dfa04f9821556019fa777106787f73eb70b452
2023-12-16 19:21:41 +08:00
hiyouga
9f77e8b025 support autogptq in llama board #246
Former-commit-id: fea01226703d1534b5cf511bcb6a49e73bc86ce1
2023-12-16 16:31:30 +08:00
hoshi-hiyouga
04dc3f4614 Merge pull request #1868 from yhyu13/improve_hfargparser
Improve logging for unknown args

Former-commit-id: 6455013a99ca5c63f5b99c1100e93f794a03c497
2023-12-16 16:06:09 +08:00
yhyu13
7d1fe50977 Use llmtuner logger
Former-commit-id: ef5a560b4246e04e0ef2612e3520e05288e93707
2023-12-16 07:15:27 +00:00
yhyu13
c0e5e3c5d5 Improve logging for unknown args
Former-commit-id: 03e49d76ca91f7fcaf1c013740d5f6bfc11a2028
2023-12-16 05:16:29 +00:00
hiyouga
3a45cfb604 update tips
Former-commit-id: 4432cbda6b7535bcbb40ba77df069fca631b4be8
2023-12-15 23:52:50 +08:00
hiyouga
393e4b0f5a fix #1770
Former-commit-id: 8266187cec70bb4bd1b4837d51b09409ec11f93e
2023-12-15 23:50:15 +08:00
hiyouga
296711d502 support quantization in export model
Former-commit-id: f32500ae6edccab7d14df4c92467e15986866def
2023-12-15 23:44:50 +08:00
hiyouga
9121722999 update dc link
Former-commit-id: f6789e50e17a377b6d9b434d8e12ad99d8eecfeb
2023-12-15 22:11:31 +08:00
hoshi-hiyouga
d8d74091f6 Merge pull request #1864 from hiyouga/dev
Refactor hyper-parameters of adapters and model loader

Former-commit-id: d5ce2fb6858b9f2963f355e9f4d6f046eb6efdcd
2023-12-15 22:06:56 +08:00
hiyouga
33521fb45e fix bug
Former-commit-id: 95ac272907a04a64785f928536de1fd099150f92
2023-12-15 21:54:02 +08:00
hiyouga
e5204e60ed fix bug
Former-commit-id: 8b80baf02cfece53527c27712f0899fa3532c414
2023-12-15 21:49:26 +08:00
hiyouga
0409428d87 add configurer
Former-commit-id: c40c9889615ffb49c7ce24c69c0d3d20d841c800
2023-12-15 21:46:40 +08:00
hiyouga
f902b0d420 refactor adapter hparam
Former-commit-id: f82aece9ebd6df83a7a005cc7cbbcec07fa6e14d
2023-12-15 20:53:11 +08:00
hiyouga
27ef5b1aa7 add loftq
Former-commit-id: 0b900882ef19ac49604a24fbae8b3254f1bff7ad
2023-12-14 21:53:56 +08:00
hiyouga
c32303fc7e fix valuehead model
Former-commit-id: 9f628debb6510f2d1c91b00f121a721ab5d648e9
2023-12-14 20:15:20 +08:00
hoshi-hiyouga
45abe361ba tiny fix
Former-commit-id: 987df4c62f34026adfe2089910f4ff9ac6ebd9a6
2023-12-13 17:32:36 +08:00
hoshi-hiyouga
3ae479faae revert peft version
Former-commit-id: 6440fa1a8c28fd2db58d0905a67d071837e0edd1
2023-12-13 10:49:45 +08:00
hoshi-hiyouga
5698038f49 update peft version
Former-commit-id: 31c01e1272bd2cd9588e5ee68c1924a3dd55c67e
2023-12-13 10:23:51 +08:00
hoshi-hiyouga
020233f725 tiny fix
Former-commit-id: 1478bc052417e0939188f55a0adcbf00956960f2
2023-12-13 10:21:29 +08:00
hoshi-hiyouga
6f9d55b8eb fix #1819
Former-commit-id: f2e2b0354cbe9a7190ccab807f690cc8ab433a6e
2023-12-13 10:14:01 +08:00
hiyouga
2542b62d77 remove loftq
Former-commit-id: e175c0a1c631296117abda2403a4b87bbdd35a66
2023-12-13 01:53:46 +08:00
hiyouga
95678bb6b1 fix sharegpt loading
Former-commit-id: ad35c35f9328bff69e8b9ea7dba6a61a2dc9e28b
2023-12-13 00:56:16 +08:00
hiyouga
a78759e7ee add model urls
Former-commit-id: 3139a9fafab246f5461697efd5ed7a6599d85481
2023-12-13 00:09:17 +08:00
hiyouga
cc5c523f58 update readme
Former-commit-id: e81037d766f89f7e2b6539596397983eba52b492
2023-12-12 23:30:29 +08:00
hiyouga
e39bbdd287 support loftq
Former-commit-id: e7ac2eb7f7daae17525a278ffbe2f82c0fbd8093
2023-12-12 22:47:06 +08:00
hiyouga
d9a50bf93f fix #1795
Former-commit-id: 949ab45487155525789c08027d4f8e7da1b8bc0c
2023-12-12 19:58:34 +08:00
hiyouga
934d00ea1e support system column #1765
Former-commit-id: f425584a511c5e42bae8b3ba090eaa898b28adad
2023-12-12 19:45:59 +08:00
hiyouga
c27675f70d fix modelscope data hub
Former-commit-id: 5b63e8c22538a4788e4b6c8df50e6e6be93ceeac
2023-12-12 18:33:06 +08:00
hoshi-hiyouga
7c9f37c83d Merge pull request #1802 from tastelikefeet/feat/support_ms
Support ModelScope Datahub

Former-commit-id: f73f321e765aab9325673218779ff4ee7f281514
2023-12-12 17:58:37 +08:00
hoshi-hiyouga
b9736c13e0 Merge branch 'main' into feat/support_ms
Former-commit-id: 698756dffb7d4e602b3e0cab66ef0a4befe7215c
2023-12-12 17:55:32 +08:00
hiyouga
c47725ff34 fix webui
Former-commit-id: 15ad266206b12181788db5bb112c2299050d6139
2023-12-12 15:27:40 +08:00
xingjun.wang
3ee3fe0bbb add use_streaming
Former-commit-id: 80388abdb7ee88eb4afad92d8c706370c0574039
2023-12-12 14:23:05 +08:00
xingjun.wang
e54dad75da fix cache dir
Former-commit-id: 6231272b9c51d44196f1fbec026973231e489b67
2023-12-12 14:21:33 +08:00
xingjun.wang
39c2f03eab add print info for test
Former-commit-id: e4ae2fccf0cbec57fb5fb01fd7cc352da69b23bf
2023-12-12 14:14:40 +08:00
xingjun.wang
fb9e1c4087 update cache dir
Former-commit-id: c8a1ce847fd7a75a06659133d92a0ac42e52a839
2023-12-12 13:08:18 +08:00
xingjun.wang
ed26bb3d82 update args for MsDataset.load
Former-commit-id: c5f69357a167cbf99a93607177526e787419ea05
2023-12-12 13:02:54 +08:00
xingjun.wang
0baf32e219 update
Former-commit-id: e15fc417d897c3063a25d6eb7eb89d1916db3cc5
2023-12-12 12:03:23 +08:00
xingjun.wang
79a376d1db for test
Former-commit-id: 33d9082320098f994bfa0c6353459afcb93165b7
2023-12-12 11:52:59 +08:00
xingjun.wang
b634e91c43 for test
Former-commit-id: 95ea942bd32402018e7c5dc61d50153c602ab67a
2023-12-12 11:47:59 +08:00
hiyouga
9e2cc21d04 update readme
Former-commit-id: 42e042a4206aeb5177ddde56386e9655b0c06460
2023-12-12 11:44:30 +08:00
hiyouga
6975124a57 support mixtral
Former-commit-id: 75b5b8e36ab1933b2625f11b645f56cbc805fd85
2023-12-12 11:39:04 +08:00
hiyouga
9f69307db1 fix baichuan resize
Former-commit-id: 66956d13074a9bc74d7a737b9476f38361a7764a
2023-12-11 20:55:50 +08:00
hiyouga
c3448a045c tiny fix
Former-commit-id: 1f839fc4f278c2a258df22899241fc66a2cca682
2023-12-11 18:09:40 +08:00
hiyouga
95c561983c support resize embeddings #1786
Former-commit-id: 368a41bd3c6a04f869083058d9165954fbdad105
2023-12-11 17:50:02 +08:00
hiyouga
7a03c8dab5 use peft 0.7.0, fix #1561 #1764
Former-commit-id: 423947bd58aa50da8785b8ceca1e7e288447a9da
2023-12-11 17:13:40 +08:00
hiyouga
f3ffa8310f fix #1784
Former-commit-id: 4e1af5a5d39d9e2f374c1372e2d67120c63fea09
2023-12-09 20:53:18 +08:00
yuze.zyz
596f496f19 support ms dataset
Former-commit-id: 98638b35dc24045ac17b9b01d08d3a02372acef3
2023-12-08 18:00:57 +08:00
hiyouga
2e6ed731cf fix #1771 and temporarily fix #1764
Former-commit-id: d0e5a5d604e16c2fe0035b0ac1d54dc3625d4da3
2023-12-08 16:26:20 +08:00
hiyouga
24ce319b6f add models
Former-commit-id: 758ae7937a41a95016e70180fb343011763c1b67
2023-12-06 13:33:18 +08:00
hiyouga
7b7bfea37d fix ppo trainer save logic
Former-commit-id: 5e70c41e4e12a1109570b0ff56346fe212c028ed
2023-12-04 19:00:19 +08:00
hiyouga
3be461260a update readme
Former-commit-id: a15f8cf19cac42acfb9917a2d7c9fa36a838b360
2023-12-04 11:22:01 +08:00
hiyouga
8dab8d9831 update readme
Former-commit-id: d3c46cb126a9182be765341fe31c860d71430712
2023-12-04 11:02:29 +08:00
hiyouga
fb4c5f3c91 fix #1715
Former-commit-id: 3f9192dbbbafdc2171d2eb80282d5cae47565b7b
2023-12-03 22:35:47 +08:00
43 changed files with 1039 additions and 635 deletions

View File

@@ -6,7 +6,7 @@
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/) [![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/) [![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU) [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
@@ -55,17 +55,19 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog ## Changelog
[23/12/01] We supported downloading pre-trained models from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-models-optional) for usage. [23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`. [23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-hub-optional) for usage.
<details><summary>Full Changelog</summary> <details><summary>Full Changelog</summary>
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention. [23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models. [23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs. [23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings. [23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
@@ -101,6 +103,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
@@ -206,13 +209,13 @@ huggingface-cli login
### Hardware Requirement ### Hardware Requirement
| Method | Bits | 7B | 13B | 30B | 65B | | Method | Bits | 7B | 13B | 30B | 65B | 8x7B |
| ------ | ---- | ----- | ----- | ----- | ------ | | ------ | ---- | ----- | ----- | ----- | ------ | ------ |
| Full | 16 | 140GB | 240GB | 520GB | 1200GB | | Full | 16 | 160GB | 320GB | 600GB | 1200GB | 1000GB |
| Freeze | 16 | 20GB | 40GB | 120GB | 240GB | | Freeze | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## Getting Started ## Getting Started
@@ -239,9 +242,9 @@ If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you wi
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
``` ```
### Use ModelScope Models (optional) ### Use ModelScope Hub (optional)
If you have trouble with downloading models from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner. If you have trouble with downloading models and datasets from Hugging Face, you can use LLaMA-Factory together with ModelScope in the following manner.
```bash ```bash
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
@@ -255,7 +258,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
... # arguments (same as above) ... # arguments (same as above)
``` ```
LLaMA Board also supports using the models on the ModelScope Hub. LLaMA Board also supports using the models and datasets on the ModelScope Hub.
```bash ```bash
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
@@ -271,8 +274,8 @@ CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \ --stage pt \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset wiki_demo \ --dataset wiki_demo \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
@@ -294,8 +297,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
@@ -318,14 +321,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \ --stage rm \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_en \ --dataset comparison_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \ --output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -343,14 +346,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \ --stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \ --reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \ --output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
@@ -374,14 +377,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \ --stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_en \ --dataset comparison_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \ --output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -469,20 +472,26 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
```bash ```bash
python src/export_model.py \ python src/export_model.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--export_dir path_to_export --export_dir path_to_export
``` ```
> [!WARNING]
> Merging LoRA weights into a quantized model is not supported.
> [!TIP]
> Use `--export_quantization_bit 4` and `--export_quantization_dataset data/c4_demo.json` to quantize the model.
### API Demo ### API Demo
```bash ```bash
python src/api_demo.py \ python src/api_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
> [!TIP] > [!TIP]
@@ -493,9 +502,9 @@ python src/api_demo.py \
```bash ```bash
python src/cli_demo.py \ python src/cli_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### Web Demo ### Web Demo
@@ -503,9 +512,9 @@ python src/cli_demo.py \
```bash ```bash
python src/web_demo.py \ python src/web_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### Evaluation ### Evaluation
@@ -513,9 +522,9 @@ python src/web_demo.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--finetuning_type lora \ --adapter_name_or_path path_to_checkpoint \
--checkpoint_dir path_to_checkpoint \
--template vanilla \ --template vanilla \
--finetuning_type lora
--task mmlu \ --task mmlu \
--split test \ --split test \
--lang en \ --lang en \
@@ -528,12 +537,12 @@ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \ --do_predict \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--dataset alpaca_gpt4_en \ --dataset alpaca_gpt4_en \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \ --output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \ --per_device_eval_batch_size 8 \
--max_samples 100 \ --max_samples 100 \

View File

@@ -6,7 +6,7 @@
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/) [![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/) [![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls) [![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU) [![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board) [![Spaces](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board) [![Studios](https://img.shields.io/badge/ModelScope-Open%20In%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
@@ -55,23 +55,25 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
## 更新日志 ## 更新日志
[23/12/01] 我们支持了**[魔搭社区](https://modelscope.cn/models)** 下载预训练模型。详细用法请参照 [教程](#使用魔搭社区可跳过)。 [23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[](#硬件依赖)。
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5` [23/12/01] 我们支持了 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#使用魔搭社区可跳过)
<details><summary>展开日志</summary> <details><summary>展开日志</summary>
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune例如 `--neftune_noise_alpha 5`
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。 [23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。 [23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。 [23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。 [23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。 [23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。 [23/07/31] 我们支持了**数据流式加载**。请使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。 [23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
@@ -101,6 +103,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
@@ -206,13 +209,13 @@ huggingface-cli login
### 硬件依赖 ### 硬件依赖
| 训练方法 | 精度 | 7B | 13B | 30B | 65B | | 训练方法 | 精度 | 7B | 13B | 30B | 65B | 8x7B |
| ------- | ---- | ----- | ----- | ----- | ------ | | ------- | ---- | ----- | ----- | ----- | ------ | ------ |
| 全参数 | 16 | 140GB | 240GB | 520GB | 1200GB | | 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | 1000GB |
| 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | | 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## 如何使用 ## 如何使用
@@ -241,7 +244,7 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
### 使用魔搭社区(可跳过) ### 使用魔搭社区(可跳过)
如果您在 Hugging Face 模型的下载中遇到了问题,可以通过下述方法使用魔搭社区。 如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
```bash ```bash
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1` export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
@@ -255,7 +258,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
... # 参数同上 ... # 参数同上
``` ```
LLaMA Board 同样支持魔搭社区的模型下载。 LLaMA Board 同样支持魔搭社区的模型和数据集下载。
```bash ```bash
CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
@@ -271,8 +274,8 @@ CUDA_VISIBLE_DEVICES=0 USE_MODELSCOPE_HUB=1 python src/train_web.py
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \ --stage pt \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset wiki_demo \ --dataset wiki_demo \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
@@ -294,8 +297,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
@@ -318,14 +321,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \ --stage rm \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \ --dataset comparison_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \ --output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -343,14 +346,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \ --stage ppo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \ --reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \ --output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
@@ -374,14 +377,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \ --stage dpo \
--model_name_or_path path_to_llama_model \
--do_train \ --do_train \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_sft_checkpoint \
--create_new_adapter \
--dataset comparison_gpt4_zh \ --dataset comparison_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--lora_target q_proj,v_proj \ --lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \ --output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \ --per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \ --gradient_accumulation_steps 4 \
@@ -469,20 +472,26 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
```bash ```bash
python src/export_model.py \ python src/export_model.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--export_dir path_to_export --export_dir path_to_export
``` ```
> [!WARNING]
> 尚不支持量化模型的 LoRA 权重合并及导出。
> [!TIP]
> 使用 `--export_quantization_bit 4` 和 `--export_quantization_dataset data/c4_demo.json` 量化导出模型。
### API 服务 ### API 服务
```bash ```bash
python src/api_demo.py \ python src/api_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
> [!TIP] > [!TIP]
@@ -493,9 +502,9 @@ python src/api_demo.py \
```bash ```bash
python src/cli_demo.py \ python src/cli_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### 浏览器测试 ### 浏览器测试
@@ -503,9 +512,9 @@ python src/cli_demo.py \
```bash ```bash
python src/web_demo.py \ python src/web_demo.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora
--checkpoint_dir path_to_checkpoint
``` ```
### 模型评估 ### 模型评估
@@ -513,9 +522,9 @@ python src/web_demo.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \ --model_name_or_path path_to_llama_model \
--finetuning_type lora \ --adapter_name_or_path path_to_checkpoint \
--checkpoint_dir path_to_checkpoint \
--template vanilla \ --template vanilla \
--finetuning_type lora \
--task ceval \ --task ceval \
--split validation \ --split validation \
--lang zh \ --lang zh \
@@ -528,12 +537,12 @@ CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \ --stage sft \
--model_name_or_path path_to_llama_model \
--do_predict \ --do_predict \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--dataset alpaca_gpt4_zh \ --dataset alpaca_gpt4_zh \
--template default \ --template default \
--finetuning_type lora \ --finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_predict_result \ --output_dir path_to_predict_result \
--per_device_eval_batch_size 8 \ --per_device_eval_batch_size 8 \
--max_samples 100 \ --max_samples 100 \

View File

@@ -4,9 +4,10 @@ If you are using a custom dataset, please provide your dataset definition in the
"dataset_name": { "dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)", "hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)", "script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)", "file_name": "the name of the dataset file in this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)", "file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)", "subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)", "ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})", "formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"columns": { "columns": {
@@ -16,7 +17,8 @@ If you are using a custom dataset, please provide your dataset definition in the
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)", "history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)", "messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
"role": "the key in the message represents the identity. (default: from, for sharegpt)", "role": "the key in the message represents the identity. (default: from, for sharegpt)",
"content": "the key in the message represents the content. (default: value, for sharegpt)" "content": "the key in the message represents the content. (default: value, for sharegpt)",
"system": "the column name in the dataset containing the system prompts. (default: None, for both)"
} }
} }
``` ```
@@ -31,6 +33,7 @@ Currently we support dataset in **alpaca** or **sharegpt** format, the dataset i
"instruction": "user instruction (required)", "instruction": "user instruction (required)",
"input": "user input (optional)", "input": "user input (optional)",
"output": "model response (required)", "output": "model response (required)",
"system": "system prompt (optional)",
"history": [ "history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"], ["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"] ["user instruction in the second round (optional)", "model response in the second round (optional)"]
@@ -47,6 +50,7 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
"prompt": "instruction", "prompt": "instruction",
"query": "input", "query": "input",
"response": "output", "response": "output",
"system": "system",
"history": "history" "history": "history"
} }
} }
@@ -54,7 +58,7 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model. where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**. The `system` column will be used as the system prompt in the template. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
For the pre-training datasets, only the `prompt` column will be used for training. For the pre-training datasets, only the `prompt` column will be used for training.
@@ -85,7 +89,8 @@ The dataset in sharegpt format should follow the below format:
"from": "gpt", "from": "gpt",
"value": "model response" "value": "model response"
} }
] ],
"system": "system prompt (optional)"
} }
] ]
``` ```
@@ -97,7 +102,8 @@ Regarding the above dataset, the `columns` in `dataset_info.json` should be:
"columns": { "columns": {
"messages": "conversations", "messages": "conversations",
"role": "from", "role": "from",
"content": "value" "content": "value",
"system": "system"
} }
} }
``` ```

View File

@@ -2,11 +2,12 @@
```json ```json
"数据集名称": { "数据集名称": {
"hf_hub_url": "Hugging Face 上的项目地址(若指定,则忽略下列三个参数)", "hf_hub_url": "Hugging Face 的仓库地址(若指定,则忽略下列三个参数)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)", "script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)", "file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选留空不影响训练", "file_sha1": "数据集文件的 SHA-1 哈希值(可选,留空不影响训练)",
"subset": "数据集子集的名称可选默认None", "subset": "数据集子集的名称可选默认None",
"folder": "Hugging Face 仓库的文件夹名称可选默认None",
"ranking": "是否为偏好数据集可选默认False", "ranking": "是否为偏好数据集可选默认False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt", "formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"columns": { "columns": {
@@ -16,7 +17,8 @@
"history": "数据集代表历史对话的表头名称默认None用于 alpaca 格式)", "history": "数据集代表历史对话的表头名称默认None用于 alpaca 格式)",
"messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)", "messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)",
"role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)", "role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)",
"content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)" "content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)",
"system": "数据集代表系统提示的表头名称默认None用于两种格式"
} }
} }
``` ```
@@ -31,6 +33,7 @@
"instruction": "用户指令(必填)", "instruction": "用户指令(必填)",
"input": "用户输入(选填)", "input": "用户输入(选填)",
"output": "模型回答(必填)", "output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [ "history": [
["第一轮指令(选填)", "第一轮回答(选填)"], ["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"] ["第二轮指令(选填)", "第二轮回答(选填)"]
@@ -47,6 +50,7 @@
"prompt": "instruction", "prompt": "instruction",
"query": "input", "query": "input",
"response": "output", "response": "output",
"system": "system",
"history": "history" "history": "history"
} }
} }
@@ -54,7 +58,7 @@
其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。 其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。 `system` 为模板中的系统提示词。`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。 对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
@@ -85,7 +89,8 @@
"from": "gpt", "from": "gpt",
"value": "模型回答" "value": "模型回答"
} }
] ],
"system": "系统提示词(选填)"
} }
] ]
``` ```
@@ -97,7 +102,8 @@
"columns": { "columns": {
"messages": "conversations", "messages": "conversations",
"role": "from", "role": "from",
"content": "value" "content": "value",
"system": "system"
} }
} }
``` ```

View File

@@ -1 +0,0 @@
38c89869c6aeca2a3af9ea1e09afe460f9b46810

View File

@@ -1,9 +1,9 @@
torch>=1.13.1 torch>=1.13.1
transformers>=4.31.0,<4.35.0 transformers>=4.36.1
datasets>=2.14.0 datasets>=2.14.3
accelerate>=0.21.0 accelerate>=0.21.0
peft>=0.6.0 peft>=0.7.0
trl>=0.7.4 trl==0.7.4
gradio>=3.38.0,<4.0.0 gradio>=3.38.0,<4.0.0
scipy scipy
sentencepiece sentencepiece

View File

@@ -7,4 +7,4 @@ from llmtuner.train import export_model, run_exp
from llmtuner.webui import create_ui, create_web_demo from llmtuner.webui import create_ui, create_web_demo
__version__ = "0.3.3" __version__ = "0.4.0"

View File

@@ -128,7 +128,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest): async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
choice_data = ChatCompletionResponseStreamChoice( choice_data = ChatCompletionResponseStreamChoice(
index=0, index=0,
delta=DeltaMessage(role=Role.ASSISTANT), delta=DeltaMessage(role=Role.ASSISTANT, content=""),
finish_reason=None finish_reason=None
) )
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])

View File

@@ -30,7 +30,6 @@ class ChatModel:
self.tokenizer.padding_side = "left" if self.can_generate else "right" self.tokenizer.padding_side = "left" if self.can_generate else "right"
self.model = dispatch_model(self.model) self.model = dispatch_model(self.model)
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer) self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
self.system_prompt = data_args.system_prompt
def _process_args( def _process_args(
self, self,
@@ -39,7 +38,6 @@ class ChatModel:
system: Optional[str] = None, system: Optional[str] = None,
**input_kwargs **input_kwargs
) -> Tuple[Dict[str, Any], int]: ) -> Tuple[Dict[str, Any], int]:
system = system or self.system_prompt
prompt, _ = self.template.encode_oneturn( prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp="", history=history, system=system tokenizer=self.tokenizer, query=query, resp="", history=history, system=system
) )

View File

@@ -3,7 +3,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Union
from datasets import concatenate_datasets, interleave_datasets, load_dataset from datasets import concatenate_datasets, interleave_datasets, load_dataset
from llmtuner.data.utils import checksum, EXT2TYPE from llmtuner.data.utils import checksum
from llmtuner.extras.constants import FILEEXT2TYPE
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -24,27 +25,27 @@ def get_dataset(
for dataset_attr in data_args.dataset_list: for dataset_attr in data_args.dataset_list:
logger.info("Loading dataset {}...".format(dataset_attr)) logger.info("Loading dataset {}...".format(dataset_attr))
if dataset_attr.load_from == "hf_hub": data_path, data_name, data_dir, data_files = None, None, None, None
if dataset_attr.load_from in ["hf_hub", "ms_hub"]:
data_path = dataset_attr.dataset_name data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset data_name = dataset_attr.subset
data_files = None data_dir = dataset_attr.folder
elif dataset_attr.load_from == "script": elif dataset_attr.load_from == "script":
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_name = dataset_attr.subset data_name = dataset_attr.subset
data_files = None
elif dataset_attr.load_from == "file": elif dataset_attr.load_from == "file":
data_path, data_name = None, None data_files = []
data_files: List[str] = [] local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
if os.path.isdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is directory if os.path.isdir(local_path): # is directory
for file_name in os.listdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): for file_name in os.listdir(local_path):
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name, file_name)) data_files.append(os.path.join(local_path, file_name))
if data_path is None: if data_path is None:
data_path = EXT2TYPE.get(file_name.split(".")[-1], None) data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None)
else: else:
assert data_path == EXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical." assert data_path == FILEEXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical."
elif os.path.isfile(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is file elif os.path.isfile(local_path): # is file
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)) data_files.append(local_path)
data_path = EXT2TYPE.get(dataset_attr.dataset_name.split(".")[-1], None) data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
else: else:
raise ValueError("File not found.") raise ValueError("File not found.")
@@ -53,17 +54,37 @@ def get_dataset(
else: else:
raise NotImplementedError raise NotImplementedError
dataset = load_dataset( if dataset_attr.load_from == "ms_hub":
path=data_path, try:
name=data_name, from modelscope import MsDataset # type: ignore
data_files=data_files, from modelscope.utils.config_ds import MS_DATASETS_CACHE # type: ignore
split=data_args.split,
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
streaming=(data_args.streaming and (dataset_attr.load_from != "file"))
)
if data_args.streaming and (dataset_attr.load_from == "file"): cache_dir = model_args.cache_dir or MS_DATASETS_CACHE
dataset = MsDataset.load(
dataset_name=data_path,
subset_name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
).to_hf_dataset()
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
else:
dataset = load_dataset(
path=data_path,
name=data_name,
data_dir=data_dir,
data_files=data_files,
split=data_args.split,
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
streaming=(data_args.streaming and (dataset_attr.load_from != "file"))
)
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if max_samples is not None: # truncate dataset if max_samples is not None: # truncate dataset
@@ -71,8 +92,8 @@ def get_dataset(
def convert_format(examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]: def convert_format(examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
# convert dataset from sharegpt format to alpaca format # convert dataset from sharegpt format to alpaca format
outputs = {"prompt": [], "query": [], "response": [], "history": []} outputs = {"prompt": [], "query": [], "response": [], "history": [], "system": []}
for msg_list in examples[dataset_attr.messages]: for i, msg_list in enumerate(examples[dataset_attr.messages]):
msg_list = msg_list[:len(msg_list) // 2 * 2] # should be multiples of 2 msg_list = msg_list[:len(msg_list) // 2 * 2] # should be multiples of 2
if len(msg_list) == 0: if len(msg_list) == 0:
continue continue
@@ -95,7 +116,8 @@ def get_dataset(
outputs["prompt"].append(msg_pairs[-1][0]) outputs["prompt"].append(msg_pairs[-1][0])
outputs["query"].append("") outputs["query"].append("")
outputs["response"].append(msg_pairs[-1][1]) outputs["response"].append(msg_pairs[-1][1])
outputs["history"].append(msg_pairs[:-1]) outputs["history"].append(msg_pairs[:-1] if len(msg_pairs) > 1 else None)
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
return outputs return outputs
@@ -116,17 +138,10 @@ def get_dataset(
**kwargs **kwargs
) )
else: else:
for column_name in ["prompt", "query", "response", "history"]: # align dataset for column_name in ["prompt", "query", "response", "history", "system"]: # align dataset
if getattr(dataset_attr, column_name) and getattr(dataset_attr, column_name) != column_name: if getattr(dataset_attr, column_name) and getattr(dataset_attr, column_name) != column_name:
dataset = dataset.rename_column(getattr(dataset_attr, column_name), column_name) dataset = dataset.rename_column(getattr(dataset_attr, column_name), column_name)
if dataset_attr.system_prompt: # add system prompt
system_prompt = dataset_attr.system_prompt
if data_args.streaming:
dataset = dataset.map(lambda _: {"system": system_prompt})
else:
dataset = dataset.add_column("system", [system_prompt] * len(dataset))
all_datasets.append(dataset) all_datasets.append(dataset)
if len(data_args.dataset_list) == 1: if len(data_args.dataset_list) == 1:

View File

@@ -541,9 +541,7 @@ register_template(
"[INST] {{query}} [/INST]" "[INST] {{query}} [/INST]"
], ],
system="", system="",
sep=[ sep=[]
" "
]
) )
@@ -619,9 +617,6 @@ register_template(
) )
r"""
Supports language model inference without histories.
"""
register_template( register_template(
name="vanilla", name="vanilla",
prefix=[], prefix=[],
@@ -724,6 +719,9 @@ register_template(
sep=[ sep=[
"<|im_end|>\n" "<|im_end|>\n"
], ],
stop_words=[
"<|im_end|>"
],
efficient_eos=True efficient_eos=True
) )

View File

@@ -12,16 +12,6 @@ if TYPE_CHECKING:
logger = get_logger(__name__) logger = get_logger(__name__)
EXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text"
}
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
if file_sha1 is None: if file_sha1 is None:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.") logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")

View File

@@ -9,6 +9,15 @@ DEFAULT_MODULE = defaultdict(str)
DEFAULT_TEMPLATE = defaultdict(str) DEFAULT_TEMPLATE = defaultdict(str)
FILEEXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text"
}
IGNORE_INDEX = -100 IGNORE_INDEX = -100
LAYERNORM_NAMES = {"norm", "ln"} LAYERNORM_NAMES = {"norm", "ln"}
@@ -17,6 +26,8 @@ LOG_FILE_NAME = "trainer_log.jsonl"
METHODS = ["full", "freeze", "lora"] METHODS = ["full", "freeze", "lora"]
PEFT_METHODS = ["lora"]
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"] SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
SUPPORTED_MODELS = OrderedDict() SUPPORTED_MODELS = OrderedDict()
@@ -382,6 +393,25 @@ register_model_group(
"Mistral-7B-Chat": { "Mistral-7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1", DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1" DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1"
},
"Mistral-7B-v0.2-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2"
}
},
template="mistral"
)
register_model_group(
models={
"Mixtral-8x7B": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1"
},
"Mixtral-8x7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1"
} }
}, },
template="mistral" template="mistral"
@@ -547,6 +577,10 @@ register_model_group(
"XVERSE-13B-Chat": { "XVERSE-13B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat", DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat" DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat"
},
"XVERSE-65B-Chat": {
DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat"
} }
}, },
template="xverse" template="xverse"
@@ -578,10 +612,18 @@ register_model_group(
DownloadSource.DEFAULT: "01-ai/Yi-34B", DownloadSource.DEFAULT: "01-ai/Yi-34B",
DownloadSource.MODELSCOPE: "01ai/Yi-34B" DownloadSource.MODELSCOPE: "01ai/Yi-34B"
}, },
"Yi-6B-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat",
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat"
},
"Yi-34B-Chat": { "Yi-34B-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat", DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat" DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat"
}, },
"Yi-6B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits"
},
"Yi-34B-int8-Chat": { "Yi-34B-int8-Chat": {
DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits", DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits" DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits"

View File

@@ -1,8 +1,7 @@
import gc import gc
import os import os
import sys
import torch import torch
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple from typing import TYPE_CHECKING, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
try: try:
@@ -68,6 +67,20 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param return trainable_params, all_param
def get_current_device() -> torch.device:
import accelerate
if accelerate.utils.is_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif accelerate.utils.is_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif torch.cuda.is_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_logits_processor() -> "LogitsProcessorList": def get_logits_processor() -> "LogitsProcessorList":
r""" r"""
Gets logits processor that removes NaN and Inf logits. Gets logits processor that removes NaN and Inf logits.
@@ -89,17 +102,6 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
return torch.float32 return torch.float32
def parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
else:
return parser.parse_args_into_dataclasses()
def torch_gc() -> None: def torch_gc() -> None:
r""" r"""
Collects GPU memory. Collects GPU memory.

View File

@@ -13,48 +13,37 @@ def get_package_version(name: str) -> str:
return "0.0.0" return "0.0.0"
_fastapi_available = is_package_available("fastapi")
_flash_attn2_available = is_package_available("flash_attn") and get_package_version("flash_attn").startswith("2")
_jieba_available = is_package_available("jieba")
_matplotlib_available = is_package_available("matplotlib")
_nltk_available = is_package_available("nltk")
_requests_available = is_package_available("requests")
_rouge_available = is_package_available("rouge_chinese")
_starlette_available = is_package_available("sse_starlette")
_uvicorn_available = is_package_available("uvicorn")
def is_fastapi_availble(): def is_fastapi_availble():
return _fastapi_available return is_package_available("fastapi")
def is_flash_attn2_available(): def is_flash_attn2_available():
return _flash_attn2_available return is_package_available("flash_attn") and get_package_version("flash_attn").startswith("2")
def is_jieba_available(): def is_jieba_available():
return _jieba_available return is_package_available("jieba")
def is_matplotlib_available(): def is_matplotlib_available():
return _matplotlib_available return is_package_available("matplotlib")
def is_nltk_available(): def is_nltk_available():
return _nltk_available return is_package_available("nltk")
def is_requests_available(): def is_requests_available():
return _requests_available return is_package_available("requests")
def is_rouge_available(): def is_rouge_available():
return _rouge_available return is_package_available("rouge_chinese")
def is_starlette_available(): def is_starlette_available():
return _starlette_available return is_package_available("sse_starlette")
def is_uvicorn_available(): def is_uvicorn_available():
return _uvicorn_available return is_package_available("uvicorn")

View File

@@ -7,14 +7,18 @@ from dataclasses import dataclass, field
DATA_CONFIG = "dataset_info.json" DATA_CONFIG = "dataset_info.json"
def use_modelscope() -> bool:
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0")))
@dataclass @dataclass
class DatasetAttr: class DatasetAttr:
load_from: str load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: Optional[str] = None dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None dataset_sha1: Optional[str] = None
system_prompt: Optional[str] = None
subset: Optional[str] = None subset: Optional[str] = None
folder: Optional[str] = None
ranking: Optional[bool] = False ranking: Optional[bool] = False
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca" formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca"
@@ -25,6 +29,7 @@ class DatasetAttr:
messages: Optional[str] = "conversations" messages: Optional[str] = "conversations"
role: Optional[str] = "from" role: Optional[str] = "from"
content: Optional[str] = "value" content: Optional[str] = "value"
system: Optional[str] = None
def __repr__(self) -> str: def __repr__(self) -> str:
return self.dataset_name return self.dataset_name
@@ -99,10 +104,6 @@ class DataArguments:
default=True, default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."} metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
) )
system_prompt: Optional[str] = field(
default=None,
metadata={"help": "System prompt to add before the user query. Use `|` to separate multiple prompts in training."}
)
val_size: Optional[float] = field( val_size: Optional[float] = field(
default=0, default=0,
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."} metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
@@ -140,22 +141,33 @@ class DataArguments:
raise ValueError("Cannot open {} due to {}.".format(os.path.join(self.dataset_dir, DATA_CONFIG), str(err))) raise ValueError("Cannot open {} due to {}.".format(os.path.join(self.dataset_dir, DATA_CONFIG), str(err)))
dataset_info = None dataset_info = None
prompt_list = self.system_prompt.split("|") if self.system_prompt else [None]
prompt_list = prompt_list * (len(dataset_names) // len(prompt_list))
assert len(prompt_list) == len(dataset_names), "Number of system prompts should be equal to datasets or 1."
if self.interleave_probs is not None: if self.interleave_probs is not None:
self.interleave_probs = [float(prob.strip()) for prob in self.interleave_probs.split(",")] self.interleave_probs = [float(prob.strip()) for prob in self.interleave_probs.split(",")]
self.dataset_list: List[DatasetAttr] = [] self.dataset_list: List[DatasetAttr] = []
for i, name in enumerate(dataset_names): for name in dataset_names:
if name not in dataset_info: if name not in dataset_info:
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG)) raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
if "hf_hub_url" in dataset_info[name]: has_hf_url = "hf_hub_url" in dataset_info[name]
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"]) has_ms_url = "ms_hub_url" in dataset_info[name]
if has_hf_url or has_ms_url:
if (use_modelscope() and has_ms_url) or (not has_hf_url):
dataset_attr = DatasetAttr(
"ms_hub",
dataset_name=dataset_info[name]["ms_hub_url"]
)
else:
dataset_attr = DatasetAttr(
"hf_hub",
dataset_name=dataset_info[name]["hf_hub_url"]
)
elif "script_url" in dataset_info[name]: elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"]) dataset_attr = DatasetAttr(
"script",
dataset_name=dataset_info[name]["script_url"]
)
else: else:
dataset_attr = DatasetAttr( dataset_attr = DatasetAttr(
"file", "file",
@@ -171,9 +183,10 @@ class DataArguments:
dataset_attr.messages = dataset_info[name]["columns"].get("messages", None) dataset_attr.messages = dataset_info[name]["columns"].get("messages", None)
dataset_attr.role = dataset_info[name]["columns"].get("role", None) dataset_attr.role = dataset_info[name]["columns"].get("role", None)
dataset_attr.content = dataset_info[name]["columns"].get("content", None) dataset_attr.content = dataset_info[name]["columns"].get("content", None)
dataset_attr.system = dataset_info[name]["columns"].get("system", None)
dataset_attr.subset = dataset_info[name].get("subset", None) dataset_attr.subset = dataset_info[name].get("subset", None)
dataset_attr.folder = dataset_info[name].get("folder", None)
dataset_attr.ranking = dataset_info[name].get("ranking", False) dataset_attr.ranking = dataset_info[name].get("ranking", False)
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca") dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca")
dataset_attr.system_prompt = prompt_list[i]
self.dataset_list.append(dataset_attr) self.dataset_list.append(dataset_attr)

View File

@@ -15,7 +15,7 @@ class FreezeArguments:
LLaMA choices: [\"mlp\", \"self_attn\"], \ LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \ BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \
Qwen choices: [\"mlp\", \"attn\"], \ Qwen choices: [\"mlp\", \"attn\"], \
Phi-1.5 choices: [\"mlp\", \"mixer\"], \ Phi choices: [\"mlp\", \"mixer\"], \
Others choices: the same as LLaMA."} Others choices: the same as LLaMA."}
) )
num_layer_trainable: Optional[int] = field( num_layer_trainable: Optional[int] = field(
@@ -33,9 +33,9 @@ class LoraArguments:
default=None, default=None,
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."} metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."}
) )
lora_alpha: Optional[float] = field( lora_alpha: Optional[int] = field(
default=None, default=None,
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2.0)."} metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
) )
lora_dropout: Optional[float] = field( lora_dropout: Optional[float] = field(
default=0.1, default=0.1,
@@ -52,12 +52,12 @@ class LoraArguments:
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \ BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \ Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \ Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
Phi-1.5 choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \ Phi choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \
Others choices: the same as LLaMA."} Others choices: the same as LLaMA."}
) )
resume_lora_training: Optional[bool] = field( create_new_adapter: Optional[bool] = field(
default=True, default=False,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."} metadata={"help": "Whether to create a new adapter with randomly initialized weight or not."}
) )
@@ -70,6 +70,14 @@ class RLHFArguments:
default=0.1, default=0.1,
metadata={"help": "The beta parameter for the DPO loss."} metadata={"help": "The beta parameter for the DPO loss."}
) )
dpo_loss: Optional[Literal["sigmoid", "hinge"]] = field(
default="sigmoid",
metadata={"help": "The type of DPO loss to use."}
)
dpo_ftx: Optional[float] = field(
default=0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
)
ppo_buffer_size: Optional[int] = field( ppo_buffer_size: Optional[int] = field(
default=1, default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."} metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}
@@ -98,9 +106,9 @@ class RLHFArguments:
default=None, default=None,
metadata={"help": "Path to the reference model used for the PPO or DPO training."} metadata={"help": "Path to the reference model used for the PPO or DPO training."}
) )
ref_model_checkpoint: Optional[str] = field( ref_model_adapters: Optional[str] = field(
default=None, default=None,
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reference model."} metadata={"help": "Path to the adapters of the reference model."}
) )
ref_model_quantization_bit: Optional[int] = field( ref_model_quantization_bit: Optional[int] = field(
default=None, default=None,
@@ -108,11 +116,11 @@ class RLHFArguments:
) )
reward_model: Optional[str] = field( reward_model: Optional[str] = field(
default=None, default=None,
metadata={"help": "Path to the directory containing the checkpoints of the reward model."} metadata={"help": "Path to the reward model used for the PPO training."}
) )
reward_model_checkpoint: Optional[str] = field( reward_model_adapters: Optional[str] = field(
default=None, default=None,
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reward model."} metadata={"help": "Path to the adapters of the reward model."}
) )
reward_model_quantization_bit: Optional[int] = field( reward_model_quantization_bit: Optional[int] = field(
default=None, default=None,
@@ -125,7 +133,38 @@ class RLHFArguments:
@dataclass @dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments): class ExportArguments:
r"""
Arguments pertaining to model exporting.
"""
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."}
)
export_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the exported model."}
)
export_quantization_dataset: Optional[str] = field(
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
)
export_quantization_nsamples: Optional[int] = field(
default=128,
metadata={"help": "The number of samples used for quantization."}
)
export_quantization_maxlen: Optional[str] = field(
default=1024,
metadata={"help": "The maximum length of the model inputs used for quantization."}
)
@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, ExportArguments):
r""" r"""
Arguments pertaining to which techniques we are going to fine-tuning with. Arguments pertaining to which techniques we are going to fine-tuning with.
""" """
@@ -141,18 +180,6 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
default=False, default=False,
metadata={"help": "Whether to upcast the layernorm weights in fp32."} metadata={"help": "Whether to upcast the layernorm weights in fp32."}
) )
neft_alpha: Optional[float] = field(
default=0,
metadata={"help": "The alpha parameter to control the noise magnitude in NEFTune."}
)
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."}
)
plot_loss: Optional[bool] = field( plot_loss: Optional[bool] = field(
default=False, default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."} metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
@@ -165,15 +192,16 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
return arg return arg
self.name_module_trainable = split_arg(self.name_module_trainable) self.name_module_trainable = split_arg(self.name_module_trainable)
self.lora_alpha = self.lora_alpha or float(self.lora_rank * 2.0) self.lora_alpha = self.lora_alpha or self.lora_rank * 2
self.lora_target = split_arg(self.lora_target) self.lora_target = split_arg(self.lora_target)
self.additional_target = split_arg(self.additional_target) self.additional_target = split_arg(self.additional_target)
self.ref_model_checkpoint = split_arg(self.ref_model_checkpoint) self.ref_model_adapters = split_arg(self.ref_model_adapters)
self.reward_model_checkpoint = split_arg(self.reward_model_checkpoint) self.reward_model_adapters = split_arg(self.reward_model_adapters)
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
if self.stage == "ppo" and self.reward_model is None: if self.stage == "ppo" and self.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.") raise ValueError("Reward model is necessary for PPO training.")
@@ -181,6 +209,9 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.") raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.")
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
raise ValueError("Quantization dataset is necessary for exporting.")
def save_to_json(self, json_path: str): def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`.""" r"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n" json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"

View File

@@ -8,12 +8,15 @@ class ModelArguments:
Arguments pertaining to which model/config/tokenizer we are going to fine-tune. Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
""" """
model_name_or_path: str = field( model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from \ metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."}
huggingface.co/models or modelscope.cn/models."} )
adapter_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
) )
cache_dir: Optional[str] = field( cache_dir: Optional[str] = field(
default=None, default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}
) )
use_fast_tokenizer: Optional[bool] = field( use_fast_tokenizer: Optional[bool] = field(
default=True, default=True,
@@ -43,10 +46,6 @@ class ModelArguments:
default=None, default=None,
metadata={"help": "Adopt scaled rotary positional embeddings."} metadata={"help": "Adopt scaled rotary positional embeddings."}
) )
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the model checkpoints as well as the configurations."}
)
flash_attn: Optional[bool] = field( flash_attn: Optional[bool] = field(
default=False, default=False,
metadata={"help": "Enable FlashAttention-2 for faster training."} metadata={"help": "Enable FlashAttention-2 for faster training."}
@@ -59,6 +58,10 @@ class ModelArguments:
default=None, default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."} metadata={"help": "Auth token to log in with Hugging Face Hub."}
) )
ms_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with ModelScope Hub."}
)
def __post_init__(self): def __post_init__(self):
self.compute_dtype = None self.compute_dtype = None
@@ -67,8 +70,8 @@ class ModelArguments:
if self.split_special_tokens and self.use_fast_tokenizer: if self.split_special_tokens and self.use_fast_tokenizer:
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
if self.checkpoint_dir is not None: # support merging multiple lora weights if self.adapter_name_or_path is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."

View File

@@ -27,8 +27,8 @@ def init_adapter(
Note that the trainable parameters must be cast to float32. Note that the trainable parameters must be cast to float32.
""" """
if (not is_trainable) and model_args.checkpoint_dir is None: if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Checkpoint is not found at evaluation, load the original model.") logger.info("Adapter is not found at evaluation, load the base model.")
return model return model
if finetuning_args.finetuning_type == "full" and is_trainable: if finetuning_args.finetuning_type == "full" and is_trainable:
@@ -44,6 +44,7 @@ def init_adapter(
) )
if not num_layers: if not num_layers:
raise ValueError("Current model does not support freeze tuning.") raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)] trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0 else: # fine-tuning the first n layers if num_layer_trainable < 0
@@ -62,30 +63,31 @@ def init_adapter(
if finetuning_args.finetuning_type == "lora": if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA") logger.info("Fine-tuning method: LoRA")
checkpoint_to_resume = None adapter_to_resume = None
if model_args.checkpoint_dir is not None: if model_args.adapter_name_or_path is not None:
is_mergeable = True is_mergeable = True
if getattr(model, "quantization_method", None) == "gptq": if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.checkpoint_dir) == 1, "GPTQ quantized model only accepts a single checkpoint." assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False is_mergeable = False
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
checkpoints_to_merge, checkpoint_to_resume = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else: else:
checkpoints_to_merge = model_args.checkpoint_dir adapter_to_merge = model_args.adapter_name_or_path
for checkpoint in checkpoints_to_merge: for adapter in adapter_to_merge:
model = PeftModel.from_pretrained(model, checkpoint) model = PeftModel.from_pretrained(model, adapter)
model = model.merge_and_unload() model = model.merge_and_unload()
if len(checkpoints_to_merge) > 0: if len(adapter_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if checkpoint_to_resume is not None: # resume lora training if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(model, checkpoint_to_resume, is_trainable=is_trainable) model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable)
if is_trainable and checkpoint_to_resume is None: # create new lora weights while training if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model) target_modules = find_all_linear_modules(model)
else: else:
@@ -102,7 +104,10 @@ def init_adapter(
) )
model = get_peft_model(model, lora_config) model = get_peft_model(model, lora_config)
if model_args.checkpoint_dir is not None: for param in filter(lambda p: p.requires_grad, model.parameters()):
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir))) param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model return model

View File

@@ -1,48 +1,30 @@
import os from typing import TYPE_CHECKING, Optional, Tuple
import math from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch from transformers.integrations import is_deepspeed_zero3_enabled
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Tuple
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizerBase
)
from transformers.models.llama import modeling_llama as LlamaModule
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
try: import llmtuner.model.patcher as patcher
from transformers.integrations import is_deepspeed_zero3_enabled
except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1
from transformers.deepspeed import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, infer_optim_dtype, try_download_model_from_ms from llmtuner.extras.misc import count_parameters, try_download_model_from_ms
from llmtuner.extras.packages import is_flash_attn2_available
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments
from llmtuner.model.adapter import init_adapter from llmtuner.model.adapter import init_adapter
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training from llmtuner.model.utils import (
load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass
)
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedTokenizer from transformers import PreTrainedModel, PreTrainedTokenizer
from llmtuner.hparams import ModelArguments from llmtuner.hparams import ModelArguments, FinetuningArguments
logger = get_logger(__name__) logger = get_logger(__name__)
require_version("transformers>=4.31.0,<4.35.0", "To fix: pip install \"transformers>=4.31.0,<4.35.0\"") require_version("transformers>=4.36.1", "To fix: pip install transformers>=4.36.1")
require_version("datasets>=2.14.0", "To fix: pip install datasets>=2.14.0") require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.6.0", "To fix: pip install peft>=0.6.0") require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0")
require_version("trl>=0.7.4", "To fix: pip install trl>=0.7.4") require_version("trl==0.7.4", "To fix: pip install trl==0.7.4")
def load_model_and_tokenizer( def load_model_and_tokenizer(
@@ -50,7 +32,7 @@ def load_model_and_tokenizer(
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
is_trainable: Optional[bool] = False, is_trainable: Optional[bool] = False,
add_valuehead: Optional[bool] = False add_valuehead: Optional[bool] = False
) -> Tuple[PreTrainedModel, "PreTrainedTokenizer"]: ) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
r""" r"""
Loads pretrained model and tokenizer. Loads pretrained model and tokenizer.
@@ -73,156 +55,46 @@ def load_model_and_tokenizer(
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
**config_kwargs **config_kwargs
) )
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None: patcher.patch_tokenizer(tokenizer)
logger.info("Use `model_name_or_path` to specify the model trained with full/freeze method.") patcher.patch_config(config, model_args)
model_to_load = model_args.checkpoint_dir[0] patcher.configure_rope(config, model_args, is_trainable)
else: patcher.configure_flashattn(config_kwargs, model_args)
model_to_load = model_args.model_name_or_path patcher.configure_longlora(config, model_args, is_trainable)
patcher.configure_quantization(config, config_kwargs, tokenizer, model_args, finetuning_args)
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs)
# Fix tokenizer (for ChatGLM2 and ChatGLM3)
if getattr(config, "model_type", None) == "chatglm":
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
# Set model dtype
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
setattr(config, "torch_dtype", model_args.compute_dtype)
# Fix config (for Qwen)
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
# Set RoPE scaling
if model_args.rope_scaling is not None:
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
else:
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
# Set FlashAttention-2
if model_args.flash_attn:
if getattr(config, "model_type", None) == "llama":
if is_flash_attn2_available():
LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2
LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask
logger.info("Using FlashAttention-2 for faster training and inference.")
else:
logger.warning("FlashAttention-2 is not installed.")
elif getattr(config, "model_type", None) in ["qwen", "Yi"]:
logger.info("Current model automatically enables FlashAttention if installed.")
else:
logger.warning("Current model does not support FlashAttention.")
elif is_trainable and model_args.shift_attn and getattr(config, "model_type", None) == "llama":
LlamaModule.LlamaAttention = LlamaPatches.LlamaShiftShortAttention
logger.warning("Using `--flash_attn` for faster training in large context length.")
# Set shift short attention (S^2-Attn)
if is_trainable and model_args.shift_attn:
if getattr(config, "model_type", None) == "llama":
setattr(config, "group_size_ratio", 0.25)
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
# Quantization configurations (using gptq or awq)
if getattr(config, "quantization_config", None):
if model_args.quantization_bit is not None: # remove bnb quantization
model_args.quantization_bit = None
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
quantization_config = getattr(config, "quantization_config", None)
logger.info("Loading {}-bit quantized model.".format(quantization_config.get("bits", -1)))
# Quantization configurations (using bitsandbytes library)
if model_args.quantization_bit is not None:
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
if model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load pre-trained models (without valuehead)
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
model_to_load, model_args.model_name_or_path,
config=config, config=config,
torch_dtype=model_args.compute_dtype, torch_dtype=model_args.compute_dtype,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs **config_kwargs
) )
patcher.patch_model(model)
register_autoclass(config, model, tokenizer)
resize_embedding_layer(model, tokenizer)
# Disable custom generate method (for Qwen and Baichuan2)
if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
# Fix LM head (for ChatGLM2 and ChatGLM3)
if getattr(config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
# Register auto class to save the custom code files
if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if isinstance(model, PreTrainedModel) and "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if isinstance(tokenizer, PreTrainedTokenizerBase) and "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()
# Initialize adapters
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable) model = init_adapter(model, model_args, finetuning_args, is_trainable)
# Prepare model with valuehead for RLHF
if add_valuehead: if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
setattr(model, "_keys_to_ignore_on_save", [name for name, _ in model.named_parameters() if "pretrained_model" in name]) patcher.patch_valuehead_model(model)
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
vhead_path = ( if model_args.adapter_name_or_path is not None:
model_args.checkpoint_dir[-1] if model_args.checkpoint_dir is not None else model_args.model_name_or_path vhead_path = model_args.adapter_name_or_path[-1]
) else:
vhead_path = model_args.model_name_or_path
vhead_params = load_valuehead_params(vhead_path, model_args) vhead_params = load_valuehead_params(vhead_path, model_args)
if vhead_params is not None: if vhead_params is not None:
model.load_state_dict(vhead_params, strict=False) model.load_state_dict(vhead_params, strict=False)
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
# Prepare model for inference
if not is_trainable: if not is_trainable:
model.requires_grad_(False) # fix all model params model.requires_grad_(False) # fix all model params
model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
model.eval() model.eval()
else: else:
model.train() model.train()

View File

@@ -1,5 +1,7 @@
import os import os
import sys
import torch import torch
import logging
import datasets import datasets
import transformers import transformers
from typing import Any, Dict, Optional, Tuple from typing import Any, Dict, Optional, Tuple
@@ -7,7 +9,6 @@ from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.trainer_utils import get_last_checkpoint from transformers.trainer_utils import get_last_checkpoint
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import parse_args
from llmtuner.hparams import ( from llmtuner.hparams import (
ModelArguments, ModelArguments,
DataArguments, DataArguments,
@@ -40,47 +41,72 @@ _EVAL_CLS = Tuple[
] ]
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None: def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora": if args is not None:
raise ValueError("Quantization is only compatible with the LoRA method.") return parser.parse_dict(args)
if ( if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
model_args.checkpoint_dir is not None return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
and len(model_args.checkpoint_dir) != 1
and finetuning_args.finetuning_type != "lora" if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
): return parser.parse_json_file(os.path.abspath(sys.argv[1]))
raise ValueError("Multiple checkpoints are only available for LoRA tuning.")
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if unknown_args:
print(parser.format_help())
print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args))
raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args))
return (*parsed_args,)
def parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
parser = HfArgumentParser(_TRAIN_ARGS)
return parse_args(parser, args)
def parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
return parse_args(parser, args)
def parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
return parse_args(parser, args)
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = parse_train_args(args)
# Setup logging
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
datasets.utils.logging.set_verbosity(log_level) datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format() transformers.utils.logging.enable_explicit_format()
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None:
if model_args.quantization_bit is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if finetuning_args.create_new_adapter:
raise ValueError("Cannot create new adapter upon a quantized model.")
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Multiple adapters are only available for LoRA tuning.")
if model_args.quantization_bit is not None:
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
parser = HfArgumentParser(_TRAIN_ARGS)
return _parse_args(parser, args)
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
parser = HfArgumentParser(_INFER_ARGS)
return _parse_args(parser, args)
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
parser = HfArgumentParser(_EVAL_ARGS)
return _parse_args(parser, args)
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)
# Setup logging
if training_args.should_log:
log_level = training_args.get_process_log_level()
_set_transformers_logging(log_level)
# Check arguments # Check arguments
data_args.init_for_training(training_args.seed) data_args.init_for_training(training_args.seed)
@@ -139,11 +165,18 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
training_args_dict.update(dict(ddp_find_unused_parameters=False)) training_args_dict.update(dict(ddp_find_unused_parameters=False))
training_args = Seq2SeqTrainingArguments(**training_args_dict) training_args = Seq2SeqTrainingArguments(**training_args_dict)
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
can_resume_from_checkpoint = False
training_args.resume_from_checkpoint = None
else:
can_resume_from_checkpoint = True
if ( if (
training_args.resume_from_checkpoint is None training_args.resume_from_checkpoint is None
and training_args.do_train and training_args.do_train
and os.path.isdir(training_args.output_dir) and os.path.isdir(training_args.output_dir)
and not training_args.overwrite_output_dir and not training_args.overwrite_output_dir
and can_resume_from_checkpoint
): ):
last_checkpoint = get_last_checkpoint(training_args.output_dir) last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
@@ -158,7 +191,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
)) ))
if finetuning_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None: if finetuning_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None:
logger.warning("Add {} to `checkpoint_dir` to resume training from checkpoint.".format( logger.warning("Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
training_args.resume_from_checkpoint training_args.resume_from_checkpoint
)) ))
@@ -182,7 +215,8 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args) model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)
_set_transformers_logging()
if data_args.template is None: if data_args.template is None:
raise ValueError("Please specify which `template` to use.") raise ValueError("Please specify which `template` to use.")
@@ -193,7 +227,8 @@ def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
model_args, data_args, eval_args, finetuning_args = parse_eval_args(args) model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)
_set_transformers_logging()
if data_args.template is None: if data_args.template is None:
raise ValueError("Please specify which `template` to use.") raise ValueError("Please specify which `template` to use.")

View File

@@ -0,0 +1,184 @@
import os
import math
import torch
import random
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List
from datasets import load_dataset
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils.versions import require_version
from llmtuner.extras.constants import FILEEXT2TYPE
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import get_current_device, infer_optim_dtype
from llmtuner.extras.packages import is_flash_attn2_available
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments, FinetuningArguments
logger = get_logger(__name__)
SUPPORTED_CLASS_FOR_S2ATTN = [] # TODO: add llama
def configure_flashattn(config_kwargs: Dict[str, Any], model_args: "ModelArguments"):
if model_args.flash_attn and is_flash_attn2_available():
config_kwargs["use_flash_attention_2"] = True
logger.info("Using FlashAttention-2 for faster training and inference.")
def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
if is_trainable and model_args.shift_attn:
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
setattr(config, "group_size_ratio", 0.25)
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
def configure_quantization(
config: "PretrainedConfig",
config_kwargs: Dict[str, Any],
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments"
):
if getattr(config, "quantization_config", None): # gptq or awq
model_args.quantization_bit = None # remove bnb quantization
config_kwargs["device_map"] = {"": get_current_device()}
quantization_config = getattr(config, "quantization_config", None)
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
if model_args.quantization_bit is not None: # bnb
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
if model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": get_current_device()}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
if finetuning_args.export_quantization_bit is not None: # gptq
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
if getattr(config, "model_type", None) == "chatglm":
raise ValueError("ChatGLM model is not supported.")
config_kwargs["quantization_config"] = GPTQConfig(
bits=finetuning_args.export_quantization_bit,
tokenizer=tokenizer,
dataset=get_quantization_dataset(tokenizer, model_args, finetuning_args)
)
config_kwargs["device_map"] = "auto"
logger.info("Quantizing model to {} bit.".format(finetuning_args.export_quantization_bit))
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
if model_args.rope_scaling is not None:
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
else:
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
def get_quantization_dataset(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments"
) -> List[str]:
r"""
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
"""
if os.path.isfile(finetuning_args.export_quantization_dataset):
data_path = FILEEXT2TYPE.get(finetuning_args.export_quantization_dataset.split(".")[-1], None)
data_files = finetuning_args.export_quantization_dataset
else:
data_path = finetuning_args.export_quantization_dataset
data_files = None
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
maxlen = finetuning_args.export_quantization_maxlen
samples = []
for _ in range(finetuning_args.export_quantization_nsamples):
while True:
sample_idx = random.randint(0, len(dataset) - 1)
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
if sample["input_ids"].size(1) >= maxlen:
break # TODO: fix large maxlen
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
input_ids = sample["input_ids"][:, word_idx:word_idx+maxlen]
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
return samples
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments"):
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
setattr(config, "torch_dtype", model_args.compute_dtype)
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
def patch_model(model: "PreTrainedModel"):
if "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
if getattr(model.config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead"):
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module:
return self.pretrained_model.get_input_embeddings()
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model))
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
def patch_tokenizer(tokenizer: "PreTrainedTokenizer"):
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)

View File

@@ -1,5 +1,5 @@
import math
import torch import torch
import inspect
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple
from transformers.utils import cached_file from transformers.utils import cached_file
@@ -10,7 +10,7 @@ from llmtuner.extras.logging import get_logger
from llmtuner.hparams import ModelArguments, FinetuningArguments from llmtuner.hparams import ModelArguments, FinetuningArguments
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
from llmtuner.hparams import DataArguments from llmtuner.hparams import DataArguments
@@ -85,10 +85,7 @@ def get_modelcard_args(
} }
def load_valuehead_params( def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
path_or_repo_id: str,
model_args: "ModelArguments"
) -> Dict[str, torch.Tensor]:
r""" r"""
Loads value head parameters from Hugging Face Hub or local disk. Loads value head parameters from Hugging Face Hub or local disk.
@@ -96,22 +93,10 @@ def load_valuehead_params(
""" """
kwargs = { kwargs = {
"path_or_repo_id": path_or_repo_id, "path_or_repo_id": path_or_repo_id,
"cache_dir": model_args.cache_dir "cache_dir": model_args.cache_dir,
"token": model_args.hf_hub_token
} }
if "token" in inspect.signature(cached_file).parameters:
kwargs["token"] = model_args.hf_hub_token
elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0
kwargs["use_auth_token"] = model_args.hf_hub_token
else:
logger.warning("Ignore `hf_hub_token` since matched parameter is not found.")
try:
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err)))
try: try:
from safetensors import safe_open from safetensors import safe_open
vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs) vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs)
@@ -123,10 +108,24 @@ def load_valuehead_params(
except Exception as err: except Exception as err:
logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err))) logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err)))
try:
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err)))
logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id)) logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id))
return None return None
def noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
embedding_dim = embed_weight.size(1)
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
noise_weight = torch.empty_like(avg_weight[-num_new_tokens:])
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
def prepare_model_for_training( def prepare_model_for_training(
model: "PreTrainedModel", model: "PreTrainedModel",
finetuning_args: "FinetuningArguments", finetuning_args: "FinetuningArguments",
@@ -147,17 +146,6 @@ def prepare_model_for_training(
param.data = param.data.to(torch.float32) param.data = param.data.to(torch.float32)
logger.info("Upcasting weights in layernorm in float32.") logger.info("Upcasting weights in layernorm in float32.")
if finetuning_args.neft_alpha > 1e-6:
def neftune_forward_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = finetuning_args.neft_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
model.get_input_embeddings().register_forward_hook(neftune_forward_hook)
logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha))
if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False): if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False):
if hasattr(model, "enable_input_require_grads"): if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads() model.enable_input_require_grads()
@@ -181,3 +169,31 @@ def prepare_model_for_training(
output_layer.register_forward_hook(fp32_forward_post_hook) output_layer.register_forward_hook(fp32_forward_post_hook)
return model return model
def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
r"""
Resize token embeddings.
"""
current_embedding_size = model.get_input_embeddings().weight.size(0)
if len(tokenizer) > current_embedding_size:
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
logger.warning("Current model does not support resizing token embeddings.")
return
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
new_embedding_size = model.get_input_embeddings().weight.size(0)
num_new_tokens = new_embedding_size - current_embedding_size
noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
if "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
model.__class__.register_for_auto_class()
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
tokenizer.__class__.register_for_auto_class()

View File

@@ -16,10 +16,11 @@ class CustomDPOTrainer(DPOTrainer):
def __init__( def __init__(
self, self,
beta: float, beta: float,
loss_type: Literal["sigmoid", "hinge"],
ftx_gamma: float,
model: Union["PreTrainedModel", torch.nn.Module], model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None, ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: Optional[bool] = True, disable_dropout: Optional[bool] = True,
loss_type: Optional[Literal["sigmoid", "hinge"]] = "sigmoid",
**kwargs **kwargs
): ):
if disable_dropout: if disable_dropout:
@@ -34,6 +35,8 @@ class CustomDPOTrainer(DPOTrainer):
self.label_pad_token_id = IGNORE_INDEX self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0 self.padding_value = 0
self.beta = beta self.beta = beta
self.label_smoothing = 0
self.ftx_gamma = ftx_gamma
self.loss_type = loss_type self.loss_type = loss_type
self._stored_metrics = defaultdict(lambda: defaultdict(list)) self._stored_metrics = defaultdict(lambda: defaultdict(list))
@@ -51,10 +54,28 @@ class CustomDPOTrainer(DPOTrainer):
else: else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def sft_loss(
self,
chosen_logits: torch.FloatTensor,
chosen_labels: torch.LongTensor
) -> torch.Tensor:
r"""
Computes supervised cross-entropy loss of given labels under the given logits.
Returns:
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
"""
all_logps = self._get_batch_logps(
chosen_logits,
chosen_labels,
average_log_prob=True
)
return -all_logps
def concatenated_forward( def concatenated_forward(
self, self,
model: Optional[torch.nn.Module] = None, model: "PreTrainedModel",
batch: Optional[Dict[str, torch.Tensor]] = None batch: Dict[str, torch.Tensor]
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
@@ -73,3 +94,61 @@ class CustomDPOTrainer(DPOTrainer):
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
return chosen_logps, rejected_logps, chosen_logits, rejected_logits return chosen_logps, rejected_logps, chosen_logits, rejected_logits
def get_batch_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, torch.Tensor],
train_eval: Optional[Literal["train", "eval"]] = "train"
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
r"""
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
"""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
) = self.concatenated_forward(model, batch)
with torch.no_grad():
if self.ref_model is None:
with self.accelerator.unwrap_model(self.model).disable_adapter():
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(self.model, batch)
else:
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(self.ref_model, batch)
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
)
if self.ftx_gamma > 1e-6:
batch_size = batch["input_ids"].size(0) // 2
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
return losses.mean(), metrics

View File

@@ -47,6 +47,8 @@ def run_dpo(
# Initialize our Trainer # Initialize our Trainer
trainer = CustomDPOTrainer( trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta, beta=finetuning_args.dpo_beta,
loss_type=finetuning_args.dpo_loss,
ftx_gamma=finetuning_args.dpo_ftx,
model=model, model=model,
ref_model=ref_model, ref_model=ref_model,
args=training_args, args=training_args,

View File

@@ -8,7 +8,6 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from trl import PPOTrainer from trl import PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits from trl.core import PPODecorators, logprobs_from_logits
@@ -207,6 +206,11 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
if self.finetuning_args.upcast_layernorm: if self.finetuning_args.upcast_layernorm:
layernorm_params = dump_layernorm(self.model) layernorm_params = dump_layernorm(self.model)
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
for k, v in batch.items():
batch[k] = v[:, start_index:]
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
generate_output: torch.Tensor = unwrapped_model.generate( generate_output: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config, generation_config=self.generation_config,
@@ -221,7 +225,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
response = generate_output[:, batch["input_ids"].size(-1):].detach().cpu() response = generate_output[:, batch["input_ids"].size(-1):].detach().cpu()
queries, responses = [], [] queries, responses = [], []
for i in range(len(query)): for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item() query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero() response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0: if len(response_index) == 0:
@@ -229,7 +233,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
else: else:
response_length = response_index[-1].item() + 1 response_length = response_index[-1].item() + 1
queries.append(query[i, query_length:]) # remove padding from left queries.append(query[i, query_start_index:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right responses.append(response[i, :response_length]) # remove padding from right
return queries, responses return queries, responses
@@ -361,9 +365,13 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model)) self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
except ValueError: except ValueError:
logger.warning( logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use" " stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
" zero_to_fp32.py to recover weights" " use zero_to_fp32.py to recover weights"
) )
self._save(output_dir, state_dict={}) self._save(output_dir, state_dict={})
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]) for filename in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]: # remove dummy checkpoint
file = os.path.join(output_dir, filename)
if os.path.isfile(file):
os.remove(file)
self.model.save_checkpoint(output_dir) # wrapped model self.model.save_checkpoint(output_dir) # wrapped model

View File

@@ -36,12 +36,17 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
def export_model(args: Optional[Dict[str, Any]] = None): def export_model(args: Optional[Dict[str, Any]] = None):
model_args, _, finetuning_args, _ = get_infer_args(args) model_args, _, finetuning_args, _ = get_infer_args(args)
if model_args.adapter_name_or_path is not None and finetuning_args.export_quantization_bit is not None:
raise ValueError("Please merge adapters before quantizing the model.")
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
if getattr(model, "quantization_method", None) in ["gptq", "awq"]: if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
raise ValueError("Cannot export a GPTQ or AWQ quantized model.") logger.warning("Cannot merge adapters to a quantized model.")
model.config.use_cache = True model.config.use_cache = True
model = model.to("cpu")
model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size)) model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size))
try: try:

View File

@@ -46,7 +46,7 @@ def create_ref_model(
ref_model_args_dict = model_args.to_dict() ref_model_args_dict = model_args.to_dict()
ref_model_args_dict.update(dict( ref_model_args_dict.update(dict(
model_name_or_path=finetuning_args.ref_model, model_name_or_path=finetuning_args.ref_model,
checkpoint_dir=finetuning_args.ref_model_checkpoint, adapter_name_or_path=finetuning_args.ref_model_adapters,
quantization_bit=finetuning_args.ref_model_quantization_bit quantization_bit=finetuning_args.ref_model_quantization_bit
)) ))
ref_model_args = ModelArguments(**ref_model_args_dict) ref_model_args = ModelArguments(**ref_model_args_dict)
@@ -96,7 +96,7 @@ def create_reward_model(
reward_model_args_dict = model_args.to_dict() reward_model_args_dict = model_args.to_dict()
reward_model_args_dict.update(dict( reward_model_args_dict.update(dict(
model_name_or_path=finetuning_args.reward_model, model_name_or_path=finetuning_args.reward_model,
checkpoint_dir=finetuning_args.reward_model_checkpoint, adapter_name_or_path=finetuning_args.reward_model_adapters,
quantization_bit=finetuning_args.reward_model_quantization_bit quantization_bit=finetuning_args.reward_model_quantization_bit
)) ))
reward_model_args = ModelArguments(**reward_model_args_dict) reward_model_args = ModelArguments(**reward_model_args_dict)

View File

@@ -63,21 +63,20 @@ class WebChatModel(ChatModel):
yield error yield error
return return
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
]) for adapter in get("top.adapter_path")])
else: else:
checkpoint_dir = None adapter_name_or_path = None
yield ALERTS["info_loading"][lang] yield ALERTS["info_loading"][lang]
args = dict( args = dict(
model_name_or_path=get("top.model_path"), model_name_or_path=get("top.model_path"),
checkpoint_dir=checkpoint_dir, adapter_name_or_path=adapter_name_or_path,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"), flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"), shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None

View File

@@ -2,18 +2,12 @@ import os
import json import json
import gradio as gr import gradio as gr
from typing import Any, Dict, Optional from typing import Any, Dict, Optional
from transformers.utils import ( from peft.utils import WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
)
from llmtuner.extras.constants import ( from llmtuner.extras.constants import (
DEFAULT_MODULE, DEFAULT_MODULE,
DEFAULT_TEMPLATE, DEFAULT_TEMPLATE,
PEFT_METHODS,
SUPPORTED_MODELS, SUPPORTED_MODELS,
TRAINING_STAGES, TRAINING_STAGES,
DownloadSource DownloadSource
@@ -22,18 +16,11 @@ from llmtuner.extras.misc import use_modelscope
from llmtuner.hparams.data_args import DATA_CONFIG from llmtuner.hparams.data_args import DATA_CONFIG
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME}
DEFAULT_CACHE_DIR = "cache" DEFAULT_CACHE_DIR = "cache"
DEFAULT_DATA_DIR = "data" DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves" DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user.config" USER_CONFIG = "user.config"
CKPT_NAMES = [
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
]
def get_save_dir(*args) -> os.PathLike: def get_save_dir(*args) -> os.PathLike:
@@ -90,18 +77,21 @@ def get_template(model_name: str) -> str:
return "default" return "default"
def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]: def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]:
checkpoints = [] if finetuning_type not in PEFT_METHODS:
if model_name: return gr.update(value=[], choices=[], interactive=False)
adapters = []
if model_name and finetuning_type == "lora":
save_dir = get_save_dir(model_name, finetuning_type) save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir): if save_dir and os.path.isdir(save_dir):
for checkpoint in os.listdir(save_dir): for adapter in os.listdir(save_dir):
if ( if (
os.path.isdir(os.path.join(save_dir, checkpoint)) os.path.isdir(os.path.join(save_dir, adapter))
and any([os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CKPT_NAMES]) and any([os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES])
): ):
checkpoints.append(checkpoint) adapters.append(adapter)
return gr.update(value=[], choices=checkpoints) return gr.update(value=[], choices=adapters, interactive=True)
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:

View File

@@ -21,8 +21,11 @@ def next_page(page_index: int, total_num: int) -> int:
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]: def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: try:
dataset_info = json.load(f) with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
except:
return gr.update(interactive=False)
if ( if (
len(dataset) > 0 len(dataset) > 0

View File

@@ -10,14 +10,19 @@ if TYPE_CHECKING:
from llmtuner.webui.engine import Engine from llmtuner.webui.engine import Engine
GPTQ_BITS = ["8", "4", "3", "2"]
def save_model( def save_model(
lang: str, lang: str,
model_name: str, model_name: str,
model_path: str, model_path: str,
checkpoints: List[str], adapter_path: List[str],
finetuning_type: str, finetuning_type: str,
template: str, template: str,
max_shard_size: int, max_shard_size: int,
export_quantization_bit: int,
export_quantization_dataset: str,
export_dir: str export_dir: str
) -> Generator[str, None, None]: ) -> Generator[str, None, None]:
error = "" error = ""
@@ -25,23 +30,32 @@ def save_model(
error = ALERTS["err_no_model"][lang] error = ALERTS["err_no_model"][lang]
elif not model_path: elif not model_path:
error = ALERTS["err_no_path"][lang] error = ALERTS["err_no_path"][lang]
elif not checkpoints:
error = ALERTS["err_no_checkpoint"][lang]
elif not export_dir: elif not export_dir:
error = ALERTS["err_no_export_dir"][lang] error = ALERTS["err_no_export_dir"][lang]
elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset:
error = ALERTS["err_no_dataset"][lang]
elif export_quantization_bit not in GPTQ_BITS and not adapter_path:
error = ALERTS["err_no_adapter"][lang]
if error: if error:
gr.Warning(error) gr.Warning(error)
yield error yield error
return return
if adapter_path:
adapter_name_or_path = ",".join([get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path])
else:
adapter_name_or_path = None
args = dict( args = dict(
model_name_or_path=model_path, model_name_or_path=model_path,
checkpoint_dir=",".join([get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]), adapter_name_or_path=adapter_name_or_path,
finetuning_type=finetuning_type, finetuning_type=finetuning_type,
template=template, template=template,
export_dir=export_dir, export_dir=export_dir,
export_size=max_shard_size export_size=max_shard_size,
export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None,
export_quantization_dataset=export_quantization_dataset
) )
yield ALERTS["info_exporting"][lang] yield ALERTS["info_exporting"][lang]
@@ -51,9 +65,11 @@ def save_model(
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Row(): with gr.Row():
export_dir = gr.Textbox()
max_shard_size = gr.Slider(value=1, minimum=1, maximum=100) max_shard_size = gr.Slider(value=1, minimum=1, maximum=100)
export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none")
export_quantization_dataset = gr.Textbox(value="data/c4_demo.json")
export_dir = gr.Textbox()
export_btn = gr.Button() export_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False) info_box = gr.Textbox(show_label=False, interactive=False)
@@ -63,18 +79,22 @@ def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
engine.manager.get_elem_by_name("top.lang"), engine.manager.get_elem_by_name("top.lang"),
engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.model_path"), engine.manager.get_elem_by_name("top.model_path"),
engine.manager.get_elem_by_name("top.checkpoints"), engine.manager.get_elem_by_name("top.adapter_path"),
engine.manager.get_elem_by_name("top.finetuning_type"), engine.manager.get_elem_by_name("top.finetuning_type"),
engine.manager.get_elem_by_name("top.template"), engine.manager.get_elem_by_name("top.template"),
max_shard_size, max_shard_size,
export_quantization_bit,
export_quantization_dataset,
export_dir export_dir
], ],
[info_box] [info_box]
) )
return dict( return dict(
export_dir=export_dir,
max_shard_size=max_shard_size, max_shard_size=max_shard_size,
export_quantization_bit=export_quantization_bit,
export_quantization_dataset=export_quantization_dataset,
export_dir=export_dir,
export_btn=export_btn, export_btn=export_btn,
info_box=info_box info_box=info_box
) )

View File

@@ -3,7 +3,7 @@ from typing import TYPE_CHECKING, Dict
from llmtuner.data.template import templates from llmtuner.data.template import templates
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
from llmtuner.webui.common import get_model_path, get_template, list_checkpoint, save_config from llmtuner.webui.common import get_model_path, get_template, list_adapters, save_config
from llmtuner.webui.utils import can_quantize from llmtuner.webui.utils import can_quantize
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -20,24 +20,21 @@ def create_top() -> Dict[str, "Component"]:
with gr.Row(): with gr.Row():
finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1) finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1)
checkpoints = gr.Dropdown(multiselect=True, scale=5) adapter_path = gr.Dropdown(multiselect=True, scale=5, allow_custom_value=True)
refresh_btn = gr.Button(scale=1) refresh_btn = gr.Button(scale=1)
with gr.Accordion(label="Advanced config", open=False) as advanced_tab: with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row(): with gr.Row():
quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none", scale=1) quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none")
template = gr.Dropdown(choices=list(templates.keys()), value="default", scale=1) template = gr.Dropdown(choices=list(templates.keys()), value="default")
system_prompt = gr.Textbox(scale=2) rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none")
with gr.Accordion(label="Model config (LLaMA only)", open=False) as llama_tab:
with gr.Row():
with gr.Column(): with gr.Column():
flash_attn = gr.Checkbox(value=False) flash_attn = gr.Checkbox(value=False)
shift_attn = gr.Checkbox(value=False) shift_attn = gr.Checkbox(value=False)
rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none")
model_name.change( model_name.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False list_adapters, [model_name, finetuning_type], [adapter_path], queue=False
).then( ).then(
get_model_path, [model_name], [model_path], queue=False get_model_path, [model_name], [model_path], queue=False
).then( ).then(
@@ -47,13 +44,13 @@ def create_top() -> Dict[str, "Component"]:
model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False) model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False)
finetuning_type.change( finetuning_type.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False list_adapters, [model_name, finetuning_type], [adapter_path], queue=False
).then( ).then(
can_quantize, [finetuning_type], [quantization_bit], queue=False can_quantize, [finetuning_type], [quantization_bit], queue=False
) )
refresh_btn.click( refresh_btn.click(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False list_adapters, [model_name, finetuning_type], [adapter_path], queue=False
) )
return dict( return dict(
@@ -61,14 +58,12 @@ def create_top() -> Dict[str, "Component"]:
model_name=model_name, model_name=model_name,
model_path=model_path, model_path=model_path,
finetuning_type=finetuning_type, finetuning_type=finetuning_type,
checkpoints=checkpoints, adapter_path=adapter_path,
refresh_btn=refresh_btn, refresh_btn=refresh_btn,
advanced_tab=advanced_tab, advanced_tab=advanced_tab,
quantization_bit=quantization_bit, quantization_bit=quantization_bit,
template=template, template=template,
system_prompt=system_prompt, rope_scaling=rope_scaling,
llama_tab=llama_tab,
flash_attn=flash_attn, flash_attn=flash_attn,
shift_attn=shift_attn, shift_attn=shift_attn
rope_scaling=rope_scaling
) )

View File

@@ -3,7 +3,7 @@ from typing import TYPE_CHECKING, Dict
from transformers.trainer_utils import SchedulerType from transformers.trainer_utils import SchedulerType
from llmtuner.extras.constants import TRAINING_STAGES from llmtuner.extras.constants import TRAINING_STAGES
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR from llmtuner.webui.common import list_adapters, list_dataset, DEFAULT_DATA_DIR
from llmtuner.webui.components.data import create_preview_box from llmtuner.webui.components.data import create_preview_box
from llmtuner.webui.utils import gen_plot from llmtuner.webui.utils import gen_plot
@@ -60,21 +60,21 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size
)) ))
with gr.Accordion(label="Advanced config", open=False) as advanced_tab: with gr.Accordion(label="Extra config", open=False) as extra_tab:
with gr.Row(): with gr.Row():
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
neft_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1) neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)
with gr.Column(): with gr.Column():
train_on_prompt = gr.Checkbox(value=False) train_on_prompt = gr.Checkbox(value=False)
upcast_layernorm = gr.Checkbox(value=False) upcast_layernorm = gr.Checkbox(value=False)
input_elems.update({logging_steps, save_steps, warmup_steps, neft_alpha, train_on_prompt, upcast_layernorm}) input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, train_on_prompt, upcast_layernorm})
elem_dict.update(dict( elem_dict.update(dict(
advanced_tab=advanced_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps, extra_tab=extra_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps,
neft_alpha=neft_alpha, train_on_prompt=train_on_prompt, upcast_layernorm=upcast_layernorm neftune_alpha=neftune_alpha, train_on_prompt=train_on_prompt, upcast_layernorm=upcast_layernorm
)) ))
with gr.Accordion(label="LoRA config", open=False) as lora_tab: with gr.Accordion(label="LoRA config", open=False) as lora_tab:
@@ -83,22 +83,22 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
lora_target = gr.Textbox(scale=1) lora_target = gr.Textbox(scale=1)
additional_target = gr.Textbox(scale=1) additional_target = gr.Textbox(scale=1)
resume_lora_training = gr.Checkbox(value=True, scale=1) create_new_adapter = gr.Checkbox(scale=1)
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, resume_lora_training}) input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter})
elem_dict.update(dict( elem_dict.update(dict(
lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target, lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target,
additional_target=additional_target, resume_lora_training=resume_lora_training, additional_target=additional_target, create_new_adapter=create_new_adapter
)) ))
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab: with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row(): with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
reward_model = gr.Dropdown(scale=3) reward_model = gr.Dropdown(scale=3, allow_custom_value=True)
refresh_btn = gr.Button(scale=1) refresh_btn = gr.Button(scale=1)
refresh_btn.click( refresh_btn.click(
list_checkpoint, list_adapters,
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")], [engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
[reward_model], [reward_model],
queue=False queue=False

View File

@@ -75,4 +75,4 @@ def create_web_demo() -> gr.Blocks:
if __name__ == "__main__": if __name__ == "__main__":
demo = create_ui() demo = create_ui()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)

View File

@@ -33,20 +33,20 @@ LOCALES = {
"label": "微调方法" "label": "微调方法"
} }
}, },
"checkpoints": { "adapter_path": {
"en": { "en": {
"label": "Checkpoints" "label": "Adapter path"
}, },
"zh": { "zh": {
"label": "模型断点" "label": "适配器路径"
} }
}, },
"refresh_btn": { "refresh_btn": {
"en": { "en": {
"value": "Refresh checkpoints" "value": "Refresh adapters"
}, },
"zh": { "zh": {
"value": "刷新断点" "value": "刷新适配器"
} }
}, },
"advanced_tab": { "advanced_tab": {
@@ -77,22 +77,12 @@ LOCALES = {
"info": "构建提示词时使用的模板" "info": "构建提示词时使用的模板"
} }
}, },
"system_prompt": { "rope_scaling": {
"en": { "en": {
"label": "System prompt (optional)", "label": "RoPE scaling"
"info": "A sequence used as the default system prompt."
}, },
"zh": { "zh": {
"label": "系统提示词(非必填)", "label": "RoPE 插值方法"
"info": "默认使用的系统提示词"
}
},
"llama_tab": {
"en": {
"label": "Model configurations (LLaMA only)"
},
"zh": {
"label": "模型设置仅LLaMA"
} }
}, },
"flash_attn": { "flash_attn": {
@@ -111,14 +101,6 @@ LOCALES = {
"label": "使用 shift short attention (S^2-Attn)" "label": "使用 shift short attention (S^2-Attn)"
} }
}, },
"rope_scaling": {
"en": {
"label": "RoPE scaling"
},
"zh": {
"label": "RoPE 插值方法"
}
},
"training_stage": { "training_stage": {
"en": { "en": {
"label": "Stage", "label": "Stage",
@@ -303,6 +285,14 @@ LOCALES = {
"info": "验证集占全部样本的百分比。" "info": "验证集占全部样本的百分比。"
} }
}, },
"extra_tab": {
"en": {
"label": "Extra configurations"
},
"zh": {
"label": "其它参数设置"
}
},
"logging_steps": { "logging_steps": {
"en": { "en": {
"label": "Logging steps", "label": "Logging steps",
@@ -333,7 +323,7 @@ LOCALES = {
"info": "学习率预热采用的步数。" "info": "学习率预热采用的步数。"
} }
}, },
"neft_alpha": { "neftune_alpha": {
"en": { "en": {
"label": "NEFTune Alpha", "label": "NEFTune Alpha",
"info": "Magnitude of noise adding to embedding vectors." "info": "Magnitude of noise adding to embedding vectors."
@@ -411,14 +401,14 @@ LOCALES = {
"info": "除 LoRA 层以外的可训练模块名称。使用英文逗号分隔多个名称。" "info": "除 LoRA 层以外的可训练模块名称。使用英文逗号分隔多个名称。"
} }
}, },
"resume_lora_training": { "create_new_adapter": {
"en": { "en": {
"label": "Resume LoRA training", "label": "Create new adapter",
"info": "Whether to resume training from the last LoRA weights or create new lora weights." "info": "Whether to create a new adapter with randomly initialized weight or not."
}, },
"zh": { "zh": {
"label": "继续上次的训练", "label": "新建适配器",
"info": "接着上次的 LoRA 权重训练或创建一个新的 LoRA 权重" "info": "是否创建一个经过随机初始化的新适配器"
} }
}, },
"rlhf_tab": { "rlhf_tab": {
@@ -442,11 +432,11 @@ LOCALES = {
"reward_model": { "reward_model": {
"en": { "en": {
"label": "Reward model", "label": "Reward model",
"info": "Checkpoint of the reward model for PPO training. (Needs to refresh checkpoints)" "info": "Adapter of the reward model for PPO training. (Needs to refresh adapters)"
}, },
"zh": { "zh": {
"label": "奖励模型", "label": "奖励模型",
"info": "PPO 训练中奖励模型的断点路径。(需要刷新断点" "info": "PPO 训练中奖励模型的适配器路径。(需要刷新适配器"
} }
}, },
"cmd_preview_btn": { "cmd_preview_btn": {
@@ -595,6 +585,36 @@ LOCALES = {
"label": "温度系数" "label": "温度系数"
} }
}, },
"max_shard_size": {
"en": {
"label": "Max shard size (GB)",
"info": "The maximum size for a model file."
},
"zh": {
"label": "最大分块大小GB",
"info": "单个模型文件的最大大小。"
}
},
"export_quantization_bit": {
"en": {
"label": "Export quantization bit.",
"info": "Quantizing the exported model."
},
"zh": {
"label": "导出量化等级",
"info": "量化导出模型。"
}
},
"export_quantization_dataset": {
"en": {
"label": "Export quantization dataset.",
"info": "The calibration dataset used for quantization."
},
"zh": {
"label": "导出量化数据集",
"info": "量化过程中使用的校准数据集。"
}
},
"export_dir": { "export_dir": {
"en": { "en": {
"label": "Export dir", "label": "Export dir",
@@ -605,16 +625,6 @@ LOCALES = {
"info": "保存导出模型的文件夹路径。" "info": "保存导出模型的文件夹路径。"
} }
}, },
"max_shard_size": {
"en": {
"label": "Max shard size (GB)",
"info": "The maximum size for a model file."
},
"zh": {
"label": "最大分块大小GB",
"info": "模型文件的最大大小。"
}
},
"export_btn": { "export_btn": {
"en": { "en": {
"value": "Export" "value": "Export"
@@ -647,9 +657,9 @@ ALERTS = {
"en": "Please choose a dataset.", "en": "Please choose a dataset.",
"zh": "请选择数据集。" "zh": "请选择数据集。"
}, },
"err_no_checkpoint": { "err_no_adapter": {
"en": "Please select a checkpoint.", "en": "Please select an adapter.",
"zh": "请选择断点" "zh": "请选择一个适配器"
}, },
"err_no_export_dir": { "err_no_export_dir": {
"en": "Please provide export dir.", "en": "Please provide export dir.",

View File

@@ -21,11 +21,10 @@ class Manager:
self.all_elems["top"]["lang"], self.all_elems["top"]["lang"],
self.all_elems["top"]["model_name"], self.all_elems["top"]["model_name"],
self.all_elems["top"]["model_path"], self.all_elems["top"]["model_path"],
self.all_elems["top"]["checkpoints"], self.all_elems["top"]["adapter_path"],
self.all_elems["top"]["finetuning_type"], self.all_elems["top"]["finetuning_type"],
self.all_elems["top"]["quantization_bit"], self.all_elems["top"]["quantization_bit"],
self.all_elems["top"]["template"], self.all_elems["top"]["template"],
self.all_elems["top"]["system_prompt"],
self.all_elems["top"]["flash_attn"], self.all_elems["top"]["flash_attn"],
self.all_elems["top"]["shift_attn"], self.all_elems["top"]["shift_attn"],
self.all_elems["top"]["rope_scaling"] self.all_elems["top"]["rope_scaling"]

View File

@@ -86,23 +86,22 @@ class Runner:
get = lambda name: data[self.manager.get_elem_by_name(name)] get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config() user_config = load_config()
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
]) for adapter in get("top.adapter_path")])
else: else:
checkpoint_dir = None adapter_name_or_path = None
args = dict( args = dict(
stage=TRAINING_STAGES[get("train.training_stage")], stage=TRAINING_STAGES[get("train.training_stage")],
model_name_or_path=get("top.model_path"),
do_train=True, do_train=True,
model_name_or_path=get("top.model_path"),
adapter_name_or_path=adapter_name_or_path,
cache_dir=user_config.get("cache_dir", None), cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"), flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"), shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
@@ -119,24 +118,21 @@ class Runner:
logging_steps=get("train.logging_steps"), logging_steps=get("train.logging_steps"),
save_steps=get("train.save_steps"), save_steps=get("train.save_steps"),
warmup_steps=get("train.warmup_steps"), warmup_steps=get("train.warmup_steps"),
neft_alpha=get("train.neft_alpha"), neftune_noise_alpha=get("train.neftune_alpha"),
train_on_prompt=get("train.train_on_prompt"), train_on_prompt=get("train.train_on_prompt"),
upcast_layernorm=get("train.upcast_layernorm"), upcast_layernorm=get("train.upcast_layernorm"),
lora_rank=get("train.lora_rank"), lora_rank=get("train.lora_rank"),
lora_dropout=get("train.lora_dropout"), lora_dropout=get("train.lora_dropout"),
lora_target=get("train.lora_target") or get_module(get("top.model_name")), lora_target=get("train.lora_target") or get_module(get("top.model_name")),
additional_target=get("train.additional_target") if get("train.additional_target") else None, additional_target=get("train.additional_target") if get("train.additional_target") else None,
resume_lora_training=get("train.resume_lora_training"), create_new_adapter=get("train.create_new_adapter"),
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")) output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir"))
) )
args[get("train.compute_type")] = True args[get("train.compute_type")] = True
args["disable_tqdm"] = True args["disable_tqdm"] = True
if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]: if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]:
args["resume_lora_training"] = (args["quantization_bit"] is not None) args["create_new_adapter"] = (args["quantization_bit"] is None)
if args["quantization_bit"] is not None:
args["upcast_layernorm"] = True
if args["stage"] == "ppo": if args["stage"] == "ppo":
args["reward_model"] = get_save_dir( args["reward_model"] = get_save_dir(
@@ -159,24 +155,22 @@ class Runner:
get = lambda name: data[self.manager.get_elem_by_name(name)] get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config() user_config = load_config()
if get("top.checkpoints"): if get("top.adapter_path"):
checkpoint_dir = ",".join([ adapter_name_or_path = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
]) for adapter in get("top.adapter_path")])
else: else:
checkpoint_dir = None adapter_name_or_path = None
args = dict( args = dict(
stage="sft", stage="sft",
model_name_or_path=get("top.model_path"),
do_eval=True, do_eval=True,
predict_with_generate=True, model_name_or_path=get("top.model_path"),
adapter_name_or_path=adapter_name_or_path,
cache_dir=user_config.get("cache_dir", None), cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"), finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"), template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"), flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"), shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
@@ -185,6 +179,7 @@ class Runner:
cutoff_len=get("eval.cutoff_len"), cutoff_len=get("eval.cutoff_len"),
max_samples=int(get("eval.max_samples")), max_samples=int(get("eval.max_samples")),
per_device_eval_batch_size=get("eval.batch_size"), per_device_eval_batch_size=get("eval.batch_size"),
predict_with_generate=True,
max_new_tokens=get("eval.max_new_tokens"), max_new_tokens=get("eval.max_new_tokens"),
top_p=get("eval.top_p"), top_p=get("eval.top_p"),
temperature=get("eval.temperature"), temperature=get("eval.temperature"),

View File

@@ -47,7 +47,7 @@ def gen_cmd(args: Dict[str, Any]) -> str:
current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0") current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)] cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)]
for k, v in args.items(): for k, v in args.items():
if v is not None and v != "": if v is not None and v is not False and v != "":
cmd_lines.append(" --{} {} ".format(k, str(v))) cmd_lines.append(" --{} {} ".format(k, str(v)))
cmd_text = "\\\n".join(cmd_lines) cmd_text = "\\\n".join(cmd_lines)
cmd_text = "```bash\n{}\n```".format(cmd_text) cmd_text = "```bash\n{}\n```".format(cmd_text)

View File

@@ -4,7 +4,7 @@ from llmtuner import create_ui
def main(): def main():
demo = create_ui() demo = create_ui()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -4,7 +4,7 @@ from llmtuner import create_web_demo
def main(): def main():
demo = create_web_demo() demo = create_web_demo()
demo.queue() demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True) demo.launch(server_name="0.0.0.0", share=False, inbrowser=True)
if __name__ == "__main__": if __name__ == "__main__":

View File

@@ -26,7 +26,7 @@ def calculate_lr(
cutoff_len: int, # i.e. maximum input length during training cutoff_len: int, # i.e. maximum input length during training
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size) batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
is_mistral: bool, # mistral model uses a smaller learning rate, is_mistral: bool, # mistral model uses a smaller learning rate,
dataset_dir: Optional[str] = "data" dataset_dir: Optional[str] = "../data"
): ):
model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict( model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict(
stage="sft", stage="sft",
@@ -38,7 +38,7 @@ def calculate_lr(
output_dir="dummy_dir" output_dir="dummy_dir"
)) ))
trainset = get_dataset(model_args, data_args) trainset = get_dataset(model_args, data_args)
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft") _, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft") trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft")
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX) data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
dataloader = DataLoader( dataloader = DataLoader(

77
tests/loftq_init.py Normal file
View File

@@ -0,0 +1,77 @@
# coding=utf-8
# Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
# Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir
# Inspired by: https://github.com/huggingface/peft/blob/main/examples/loftq_finetuning/quantize_save_load.py
import os
import fire
import torch
import torch.nn as nn
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
class Shell(nn.Module):
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
super().__init__()
self.weight = nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = nn.Parameter(bias, requires_grad=False)
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
for name in set([k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k]):
parent_name = ".".join(name.split(".")[:-1])
child_name = name.split(".")[-1]
parent_module = model.get_submodule(parent_name)
child_module = getattr(parent_module, child_name)
base_layer = getattr(child_module, "base_layer")
weight = getattr(base_layer, "weight", None)
bias = getattr(base_layer, "bias", None)
setattr(parent_module, child_name, Shell(weight, bias))
print("Model unwrapped.")
def quantize_loftq(
model_name_or_path: str,
save_dir: str,
loftq_bits: Optional[int] = 4,
loftq_iter: Optional[int] = 1,
lora_alpha: Optional[int] = None,
lora_rank: Optional[int] = 16,
lora_target: Optional[str] = "q_proj,v_proj"
):
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=True,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=0.1,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="loftq",
loftq_config=loftq_config
)
# Init LoftQ model
lora_model = get_peft_model(model, lora_config)
base_model = lora_model.get_base_model()
# Save LoftQ model
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir)
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True)
lora_model.save_pretrained(os.path.join(save_dir, "adapters"))
# Save base model
unwrap_model(base_model)
base_model.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
fire.Fire(quantize_loftq)