Compare commits
1277 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0e88c5754f | ||
|
|
3fff875f99 | ||
|
|
e2d9ab3591 | ||
|
|
3db5cf44ea | ||
|
|
994b9089e9 | ||
|
|
4c1513a845 | ||
|
|
86e009b504 | ||
|
|
c1e1918db1 | ||
|
|
341225a405 | ||
|
|
8c93921952 | ||
|
|
45367105fc | ||
|
|
df71359069 | ||
|
|
a03d14a9a6 | ||
|
|
41d7ca395e | ||
|
|
757573bec1 | ||
|
|
16d655b119 | ||
|
|
f6483de197 | ||
|
|
da34411bf2 | ||
|
|
1891b64072 | ||
|
|
a14069acf8 | ||
|
|
0ea708c226 | ||
|
|
cb474c7b11 | ||
|
|
e4d11a117b | ||
|
|
68365045b4 | ||
|
|
502555b65d | ||
|
|
0bc52c0aae | ||
|
|
6bf2663b8e | ||
|
|
d337de668e | ||
|
|
ec372f91e9 | ||
|
|
20b1bd8c54 | ||
|
|
ee17741591 | ||
|
|
93a6925ec5 | ||
|
|
47405a8e8a | ||
|
|
54ba30c47f | ||
|
|
b92214f78b | ||
|
|
71e4404c0d | ||
|
|
5ab997d484 | ||
|
|
6e7048831b | ||
|
|
97cd932c19 | ||
|
|
dfc7a7d5cd | ||
|
|
27e13a8371 | ||
|
|
bf6ad1fbed | ||
|
|
bc71380b59 | ||
|
|
137c87ff60 | ||
|
|
485b8dc18b | ||
|
|
875f9078d1 | ||
|
|
d3bfcbd3af | ||
|
|
e36db692e7 | ||
|
|
460a40756c | ||
|
|
18057e14ef | ||
|
|
025c8fe302 | ||
|
|
446129ca7a | ||
|
|
834c4e8ad9 | ||
|
|
11d961cf3c | ||
|
|
00b93d8b2f | ||
|
|
281fd5bb89 | ||
|
|
cb10050cb9 | ||
|
|
2935c4cddb | ||
|
|
0d6ec70c6f | ||
|
|
74777b4ded | ||
|
|
5f2bd04799 | ||
|
|
9a1a5f9778 | ||
|
|
edc8aefa59 | ||
|
|
ee1c786a12 | ||
|
|
a3e4f2b716 | ||
|
|
6685f1fb9e | ||
|
|
c89ff328f6 | ||
|
|
c6f1bc65c0 | ||
|
|
0f43c61229 | ||
|
|
8567dab167 | ||
|
|
0517d7bee5 | ||
|
|
5bc0b9b31c | ||
|
|
3d219b91b9 | ||
|
|
a90c6306f8 | ||
|
|
60558388ec | ||
|
|
b29a7f8cd6 | ||
|
|
a1501591e8 | ||
|
|
1408aa078d | ||
|
|
5acaa476d6 | ||
|
|
8ac4f87c91 | ||
|
|
14d3001824 | ||
|
|
1ac9389ddc | ||
|
|
0b0e27c2f1 | ||
|
|
fd1199cce4 | ||
|
|
3c9eda8265 | ||
|
|
6622cdb43f | ||
|
|
49c28a7dab | ||
|
|
a42671c2d7 | ||
|
|
f17ab6ad92 | ||
|
|
ca548af2a2 | ||
|
|
579997688f | ||
|
|
e6ba7ef3e6 | ||
|
|
20fdf177e8 | ||
|
|
f0b01803ea | ||
|
|
f5c4841ff2 | ||
|
|
1e01283d81 | ||
|
|
2196448c21 | ||
|
|
96a81ce89d | ||
|
|
a715490c2a | ||
|
|
973cf8e980 | ||
|
|
4357e42391 | ||
|
|
884b49e662 | ||
|
|
38c94d2e9c | ||
|
|
67d2eb6b2a | ||
|
|
b670fb57db | ||
|
|
188b4be64d | ||
|
|
889c042ecd | ||
|
|
3c4f8eaa55 | ||
|
|
6a75d57060 | ||
|
|
fda2cf677b | ||
|
|
cfdf5a5a78 | ||
|
|
a1437c15f7 | ||
|
|
42e7489713 | ||
|
|
024760f866 | ||
|
|
46f0189e88 | ||
|
|
edc7498111 | ||
|
|
9103fdf866 | ||
|
|
95bf795de4 | ||
|
|
bf99223a80 | ||
|
|
9caf9b6f91 | ||
|
|
727c7b0dc6 | ||
|
|
13d184b280 | ||
|
|
12a91774b0 | ||
|
|
88018000ac | ||
|
|
f6eda1c35d | ||
|
|
a2ebdbc112 | ||
|
|
e930a42083 | ||
|
|
4b123f49cb | ||
|
|
556eca918d | ||
|
|
31fcd03f3c | ||
|
|
89d9dd5aa5 | ||
|
|
d1aad72826 | ||
|
|
8e5b4bddf4 | ||
|
|
5a7cb9af4e | ||
|
|
d1cda4ec68 | ||
|
|
8aaf1185a5 | ||
|
|
b46bd07119 | ||
|
|
08fa707085 | ||
|
|
72ba29d81a | ||
|
|
cf2dc4c444 | ||
|
|
d82d86e16d | ||
|
|
bde31d8600 | ||
|
|
e115d55585 | ||
|
|
daea86e047 | ||
|
|
a4f69d8914 | ||
|
|
98f382fda3 | ||
|
|
cd899734f3 | ||
|
|
f51b435bcf | ||
|
|
0f82a55305 | ||
|
|
9fd7a410bb | ||
|
|
98fb3d015a | ||
|
|
bfb2ad7c79 | ||
|
|
135bfbf7c1 | ||
|
|
c6b17ebc20 | ||
|
|
b55eb30474 | ||
|
|
cec2f1fc00 | ||
|
|
8367ec03a7 | ||
|
|
37013f8068 | ||
|
|
8360544d65 | ||
|
|
b5cdef43a1 | ||
|
|
2e5d521ed8 | ||
|
|
dbe35d52d1 | ||
|
|
8bcdb6f52c | ||
|
|
5cfcb8262e | ||
|
|
0b331a318b | ||
|
|
5d6cf55208 | ||
|
|
9a1ec19845 | ||
|
|
a79e93f335 | ||
|
|
abcb94a738 | ||
|
|
a4f2d5aa6f | ||
|
|
6b738d1c89 | ||
|
|
f4c518b370 | ||
|
|
d475dd3809 | ||
|
|
5675c47a01 | ||
|
|
16e950454e | ||
|
|
2926265a14 | ||
|
|
af2607de1a | ||
|
|
826d7808b4 | ||
|
|
4c89aca243 | ||
|
|
43a065bb07 | ||
|
|
4513a2cc75 | ||
|
|
f29c1ac6e5 | ||
|
|
05abe47c8b | ||
|
|
6c185a2c57 | ||
|
|
af2cb33bb2 | ||
|
|
f16a4a8264 | ||
|
|
b232552d42 | ||
|
|
0edccc11a5 | ||
|
|
b2f5c0e0db | ||
|
|
5f5d4c1923 | ||
|
|
a7d7f79855 | ||
|
|
f0bff18324 | ||
|
|
b631bdc5b7 | ||
|
|
c65f7e9bd5 | ||
|
|
3e0fa4a8da | ||
|
|
fa3150548e | ||
|
|
235ed85b0f | ||
|
|
1ca639a777 | ||
|
|
e36a994fe6 | ||
|
|
19ffcfea76 | ||
|
|
85f3a09c83 | ||
|
|
60b9a9c1fa | ||
|
|
984e38575c | ||
|
|
665df5d733 | ||
|
|
4bc0bea0e9 | ||
|
|
5cfa342f01 | ||
|
|
c106cc24e4 | ||
|
|
372da52d4a | ||
|
|
c7479751e8 | ||
|
|
870a54ac84 | ||
|
|
12fcfc2b72 | ||
|
|
875270b851 | ||
|
|
43fab306b6 | ||
|
|
77242f4169 | ||
|
|
95ae30f678 | ||
|
|
7408e778ca | ||
|
|
ba303fd1aa | ||
|
|
60d9896a70 | ||
|
|
485a80d294 | ||
|
|
63bfe9967e | ||
|
|
a720b82e63 | ||
|
|
d3b0048d8c | ||
|
|
9a0aca42a5 | ||
|
|
5e802b0645 | ||
|
|
dd7a1dbfae | ||
|
|
ca67b7a568 | ||
|
|
76cd879c84 | ||
|
|
e0c049e590 | ||
|
|
727943f078 | ||
|
|
8393b08666 | ||
|
|
9049f72d2f | ||
|
|
32f45c9e91 | ||
|
|
05f3a3c944 | ||
|
|
f91fe10985 | ||
|
|
14f7bfc545 | ||
|
|
7f90b0cd20 | ||
|
|
308abfec6c | ||
|
|
bb88536166 | ||
|
|
d2df3f2d6e | ||
|
|
2abfad9c1f | ||
|
|
2af932d969 | ||
|
|
c29fa61a9c | ||
|
|
a30931fe0f | ||
|
|
3ff9b87012 | ||
|
|
f4f315fd11 | ||
|
|
530165d9a5 | ||
|
|
dbd1458adf | ||
|
|
dedefecd2b | ||
|
|
46f441dd37 | ||
|
|
49b58fd6af | ||
|
|
103a507b39 | ||
|
|
0a75224f62 | ||
|
|
04d7629abf | ||
|
|
1b6786a21f | ||
|
|
5080f2314c | ||
|
|
41beb7f0a3 | ||
|
|
799873aa14 | ||
|
|
fe2c7eaa93 | ||
|
|
6392d45ea7 | ||
|
|
c60ea675d7 | ||
|
|
16c7c92396 | ||
|
|
c7ab302c69 | ||
|
|
7598b37543 | ||
|
|
cc9717e2f2 | ||
|
|
08f2f99f4b | ||
|
|
77bf3d66c7 | ||
|
|
f14f67f803 | ||
|
|
820b6e7b32 | ||
|
|
27aece94cf | ||
|
|
3f2508be92 | ||
|
|
fce11bb386 | ||
|
|
2723438531 | ||
|
|
f330b73682 | ||
|
|
0f1e592326 | ||
|
|
4d7dd0330d | ||
|
|
ea2ca2777f | ||
|
|
4b2b92fd9a | ||
|
|
784088db3f | ||
|
|
0ecf0d51e3 | ||
|
|
bc04ca464a | ||
|
|
44829df762 | ||
|
|
94ddfa66c0 | ||
|
|
8db8ed5a41 | ||
|
|
041ecd0de1 | ||
|
|
d812249db7 | ||
|
|
88528f1a87 | ||
|
|
82533114a7 | ||
|
|
6d9fbb3fa9 | ||
|
|
9953ae3d03 | ||
|
|
c0c387e4db | ||
|
|
ae60ea15da | ||
|
|
72cd1123a8 | ||
|
|
1364190a66 | ||
|
|
6d17c59090 | ||
|
|
e0f2c0b5dc | ||
|
|
073e34855d | ||
|
|
ff9ba70bb8 | ||
|
|
adbebb0e3f | ||
|
|
3f6b3eed98 | ||
|
|
f45e81e186 | ||
|
|
ba648fd003 | ||
|
|
b0e5a76f4c | ||
|
|
8692796c9b | ||
|
|
d0edcde4ea | ||
|
|
8c4c2e580c | ||
|
|
07f33e7641 | ||
|
|
1998c641af | ||
|
|
be1e5f9d62 | ||
|
|
fdeec6db52 | ||
|
|
a4d335b42f | ||
|
|
fcb134e144 | ||
|
|
a47e24222a | ||
|
|
b96b995620 | ||
|
|
c231706aa5 | ||
|
|
35b5117a59 | ||
|
|
80f716bc10 | ||
|
|
ca95e98ca0 | ||
|
|
d5559461c1 | ||
|
|
f4acd81e2f | ||
|
|
31feb6e26c | ||
|
|
7d5c0a069c | ||
|
|
937f49ec3d | ||
|
|
abc2a73a33 | ||
|
|
5e1bf7572c | ||
|
|
8fdb32d0a3 | ||
|
|
c709d5f7db | ||
|
|
f5b2749ec2 | ||
|
|
ee5853c565 | ||
|
|
6ec6df8a5f | ||
|
|
fc95800840 | ||
|
|
765715af21 | ||
|
|
639a7f6796 | ||
|
|
35379c7c0e | ||
|
|
d992f5353f | ||
|
|
875eef45f3 | ||
|
|
556a4aa972 | ||
|
|
8dc1969111 | ||
|
|
b74c229498 | ||
|
|
3dbca466fd | ||
|
|
ce6f7fdb82 | ||
|
|
7528bc1bc0 | ||
|
|
9dd5f7d642 | ||
|
|
99ecb0daaf | ||
|
|
39d8d7995a | ||
|
|
2ac2cde03e | ||
|
|
aa6c3766de | ||
|
|
f4f5d7e3ce | ||
|
|
efbf6018d3 | ||
|
|
1090bb8bf3 | ||
|
|
26bc79f971 | ||
|
|
4c1f015eca | ||
|
|
0655a183d3 | ||
|
|
7754024e9b | ||
|
|
b4913569a8 | ||
|
|
eae9f09ca8 | ||
|
|
8264e5ceaa | ||
|
|
b76f319e45 | ||
|
|
82d744716a | ||
|
|
1a3764ab8f | ||
|
|
d2ede9d393 | ||
|
|
5690f513fc | ||
|
|
123a845209 | ||
|
|
b1b7d735b3 | ||
|
|
230c69f7ce | ||
|
|
bfc43558ef | ||
|
|
f2ae2cc04d | ||
|
|
6e9c03f958 | ||
|
|
2696f614a7 | ||
|
|
070b944895 | ||
|
|
f5f091d390 | ||
|
|
14ab14a0e6 | ||
|
|
4f7c850115 | ||
|
|
391eca66cf | ||
|
|
a67199246d | ||
|
|
5f67fdaac9 | ||
|
|
05e6fe4287 | ||
|
|
91cc571e6e | ||
|
|
890926e60c | ||
|
|
87aa332583 | ||
|
|
f90c4ca672 | ||
|
|
a922e85a5c | ||
|
|
9a65820592 | ||
|
|
f4e16ae373 | ||
|
|
e2cfd34da0 | ||
|
|
668dea9706 | ||
|
|
084be442f2 | ||
|
|
29cb4a1327 | ||
|
|
81a61134b8 | ||
|
|
cb1a49aa02 | ||
|
|
351b4efc6c | ||
|
|
9b551309de | ||
|
|
9fed4a2ef4 | ||
|
|
bceac4f554 | ||
|
|
ae3a88d3a7 | ||
|
|
9138a7a5ba | ||
|
|
9912b43fcc | ||
|
|
5ac37555a4 | ||
|
|
34bdc730a6 | ||
|
|
e45a9d70fc | ||
|
|
232b36059c | ||
|
|
d9fbd675d5 | ||
|
|
0206e7b9de | ||
|
|
a886544d3d | ||
|
|
8c9b929bb0 | ||
|
|
1bb1ae834e | ||
|
|
0d9e364a90 | ||
|
|
3b28c003dd | ||
|
|
48ff9fb150 | ||
|
|
c43bc74fe6 | ||
|
|
eaf9cc2195 | ||
|
|
4bd276f58f | ||
|
|
f8cf0d5e5d | ||
|
|
79bc60db33 | ||
|
|
dc7c54067e | ||
|
|
932f0d5c20 | ||
|
|
9670f5e41a | ||
|
|
97a23e1cbe | ||
|
|
11fcd055ec | ||
|
|
b0d9966663 | ||
|
|
5c51ab7e1f | ||
|
|
26f293d587 | ||
|
|
a3b52fd380 | ||
|
|
27d8706d6d | ||
|
|
bf59383783 | ||
|
|
1078611259 | ||
|
|
e6fc0ac8fe | ||
|
|
554ca3d8dc | ||
|
|
86dfdf956d | ||
|
|
c0e4475485 | ||
|
|
2b65f8bd5c | ||
|
|
09e78272c2 | ||
|
|
cccce564bd | ||
|
|
4adec327de | ||
|
|
1f093334d1 | ||
|
|
e0e8507108 | ||
|
|
f5962f8128 | ||
|
|
b31d808655 | ||
|
|
247cda4b68 | ||
|
|
e30975e9a2 | ||
|
|
de9f1583c2 | ||
|
|
ab48653e63 | ||
|
|
6d7a1e3f8f | ||
|
|
e093dad7cb | ||
|
|
b103a121f0 | ||
|
|
3578abc7a4 | ||
|
|
17d398f419 | ||
|
|
3453a8eebb | ||
|
|
77a089c35c | ||
|
|
516d83c946 | ||
|
|
fd02c9f973 | ||
|
|
351e80a656 | ||
|
|
4f04e2ed93 | ||
|
|
a810d1b98e | ||
|
|
fbe963a96a | ||
|
|
d13b8bee8a | ||
|
|
0aa072a155 | ||
|
|
57dde7c3bc | ||
|
|
6b9003f781 | ||
|
|
9c1c59e481 | ||
|
|
31daec2749 | ||
|
|
2bff90719b | ||
|
|
e4570e28a8 | ||
|
|
d84a730daa | ||
|
|
0fd1a05cec | ||
|
|
6373d307ec | ||
|
|
a32c3a50fc | ||
|
|
66b5634ebf | ||
|
|
92b3697e2c | ||
|
|
969e605c7e | ||
|
|
a3320f26cf | ||
|
|
45329d9e3c | ||
|
|
6481321470 | ||
|
|
efcf5e050d | ||
|
|
dfa686b617 | ||
|
|
fe638cf11f | ||
|
|
b2949b88e9 | ||
|
|
538c79fd8f | ||
|
|
437cc20be6 | ||
|
|
2ac972d6e7 | ||
|
|
4d7f0fbb7a | ||
|
|
40e3d3fbdd | ||
|
|
096677b989 | ||
|
|
7940b968ae | ||
|
|
36a4224bf5 | ||
|
|
d4d36e157c | ||
|
|
c4f5e49d0d | ||
|
|
8e518d6c62 | ||
|
|
79165100e5 | ||
|
|
fc82acbbd8 | ||
|
|
aead3ca8e5 | ||
|
|
b12679ad59 | ||
|
|
8061cb5671 | ||
|
|
0a7e5f2f57 | ||
|
|
812d2c25a7 | ||
|
|
51795e8db1 | ||
|
|
2c011060b1 | ||
|
|
a8c7531250 | ||
|
|
88c34d26a8 | ||
|
|
12d666a63c | ||
|
|
304a2efec8 | ||
|
|
322331df51 | ||
|
|
ba0da83031 | ||
|
|
0a82e15e7c | ||
|
|
6670b36c49 | ||
|
|
7a1d13aae2 | ||
|
|
86a048128b | ||
|
|
fe1a3b1367 | ||
|
|
84ff56c3a0 | ||
|
|
483ed64b43 | ||
|
|
dd4619e9f3 | ||
|
|
905815d878 | ||
|
|
ba72e08901 | ||
|
|
e4972c8fc4 | ||
|
|
5f5f948806 | ||
|
|
2892e5d42a | ||
|
|
542a5d15ef | ||
|
|
b1c791fb0d | ||
|
|
7589123465 | ||
|
|
f94b54b776 | ||
|
|
1e1b8899f5 | ||
|
|
7b02c83399 | ||
|
|
8f1ba07b30 | ||
|
|
1ce400bddf | ||
|
|
6bc0ec63c7 | ||
|
|
25d316b1a0 | ||
|
|
2bcd5b2b73 | ||
|
|
436afcba57 | ||
|
|
db47c53486 | ||
|
|
4efe56fd68 | ||
|
|
d54313fcf9 | ||
|
|
382f096475 | ||
|
|
0ccc76392e | ||
|
|
e2cfcb0a5f | ||
|
|
b530a798c1 | ||
|
|
fdf38b70a0 | ||
|
|
1a78b675be | ||
|
|
9b1008912c | ||
|
|
18241f4ed8 | ||
|
|
223bbd9930 | ||
|
|
9dadff90bb | ||
|
|
827a929f1d | ||
|
|
e508519e0a | ||
|
|
47892418ad | ||
|
|
2aeae4b88b | ||
|
|
c213f2a9a9 | ||
|
|
333f4a69bb | ||
|
|
172600d432 | ||
|
|
4ce4172c87 | ||
|
|
400ae144a4 | ||
|
|
0a1b6ca5a7 | ||
|
|
05ef89cfcc | ||
|
|
6d9d8b92ca | ||
|
|
3f7f1daa33 | ||
|
|
8061e92d07 | ||
|
|
0c811a7653 | ||
|
|
f6ac3796ca | ||
|
|
c1394e7dfc | ||
|
|
ebab655683 | ||
|
|
3d74f21738 | ||
|
|
8493753fab | ||
|
|
0f626a2145 | ||
|
|
5100c290c4 | ||
|
|
4bde37e7c8 | ||
|
|
e3b3a722de | ||
|
|
b9e167e6ca | ||
|
|
1ebd1e50e7 | ||
|
|
14316f6583 | ||
|
|
8e4ab2f7d0 | ||
|
|
196068fa19 | ||
|
|
da2295f8c8 | ||
|
|
ab0741b5a6 | ||
|
|
6aec446940 | ||
|
|
50c71dd29f | ||
|
|
5c9da798b5 | ||
|
|
3d1b0e1864 | ||
|
|
45becd2a45 | ||
|
|
8f1197de7e | ||
|
|
25de4ce56a | ||
|
|
d0597897bf | ||
|
|
4674f3baa7 | ||
|
|
2f5f6722cf | ||
|
|
7ef3788ff4 | ||
|
|
f9aa74715a | ||
|
|
9b187b274c | ||
|
|
68ed89f351 | ||
|
|
342d7da8d7 | ||
|
|
6eda42eb7c | ||
|
|
e9fe8815be | ||
|
|
9381fecca7 | ||
|
|
efa9140577 | ||
|
|
b1b18b2c5a | ||
|
|
37bcbf72b4 | ||
|
|
99125c8825 | ||
|
|
182b974786 | ||
|
|
7a4a6a5522 | ||
|
|
2383e5440c | ||
|
|
1fea91736a | ||
|
|
09d9fb28f9 | ||
|
|
57c6eabf83 | ||
|
|
33d440b577 | ||
|
|
ce8200ad98 | ||
|
|
2cedb59bee | ||
|
|
dd0b85580e | ||
|
|
cd4dad846b | ||
|
|
a11a04a24f | ||
|
|
eb99999ca8 | ||
|
|
ea58cf111e | ||
|
|
2d95127c33 | ||
|
|
57fcdca336 | ||
|
|
3d88589c0f | ||
|
|
dfd153cc81 | ||
|
|
7641a214d8 | ||
|
|
3cef844079 | ||
|
|
4dcd47100d | ||
|
|
a412b4ed4a | ||
|
|
544a6259b6 | ||
|
|
c501f377dd | ||
|
|
cb8b8f40cd | ||
|
|
70bed8ad8f | ||
|
|
51f776ae2a | ||
|
|
697bc20941 | ||
|
|
1480e3a88f | ||
|
|
19029d5b0f | ||
|
|
7773ac0ead | ||
|
|
23b881bff1 | ||
|
|
10a6c395bb | ||
|
|
f9a7732a1f | ||
|
|
c37582af02 | ||
|
|
ece67f8c7f | ||
|
|
e1838e76fe | ||
|
|
2eede9ffd6 | ||
|
|
a6f6b406b3 | ||
|
|
279439abbe | ||
|
|
13117b69d7 | ||
|
|
5d03ac642d | ||
|
|
5062ee547e | ||
|
|
59817c27e3 | ||
|
|
759bee48d2 | ||
|
|
514ffafc12 | ||
|
|
8b2a735c14 | ||
|
|
10d59e9e4a | ||
|
|
058ed5e607 | ||
|
|
110c2ce2a5 | ||
|
|
c425436676 | ||
|
|
266fe908e3 | ||
|
|
dbd905438b | ||
|
|
d64c87f928 | ||
|
|
29eebef696 | ||
|
|
7bfbcb1fe3 | ||
|
|
9b210cf4b3 | ||
|
|
f74e640565 | ||
|
|
d1d08d066a | ||
|
|
6be321b5da | ||
|
|
3c792174db | ||
|
|
9aeb88c426 | ||
|
|
00e2a272ef | ||
|
|
5142349661 | ||
|
|
0e3cc52327 | ||
|
|
6c1db2d012 | ||
|
|
12c51655ce | ||
|
|
36be12a3b7 | ||
|
|
21fac4c98c | ||
|
|
83404c4fa9 | ||
|
|
12f852b8d4 | ||
|
|
a88873116a | ||
|
|
7cfcd69c64 | ||
|
|
a5eabbe933 | ||
|
|
aa25716a5d | ||
|
|
94c8219575 | ||
|
|
ad24a2a0c9 | ||
|
|
c05027d14a | ||
|
|
5420905a2e | ||
|
|
03f2e3284a | ||
|
|
d2bb1b3a6b | ||
|
|
35c4a2c212 | ||
|
|
1e4010a1fb | ||
|
|
1451297c78 | ||
|
|
0b99b13786 | ||
|
|
f5edbf2b49 | ||
|
|
ab6dc0ea30 | ||
|
|
79d34ce0f3 | ||
|
|
1d2e372a8e | ||
|
|
f6a53d83c8 | ||
|
|
4ec56dd958 | ||
|
|
ba06eb65ca | ||
|
|
be716972fe | ||
|
|
719585a128 | ||
|
|
348f29aa50 | ||
|
|
c8fe3f544b | ||
|
|
0f1ad7140f | ||
|
|
233e167f68 | ||
|
|
1d341dcd83 | ||
|
|
d16561e7a4 | ||
|
|
f8e219dc81 | ||
|
|
3365cc8cf0 | ||
|
|
3a5e68b7d9 | ||
|
|
0cb596fee1 | ||
|
|
b3b5b530d1 | ||
|
|
9225c15c88 | ||
|
|
abd9fed445 | ||
|
|
44cda2eece | ||
|
|
8397808d1d | ||
|
|
9e1bd6420d | ||
|
|
619264c854 | ||
|
|
1ebac62e3d | ||
|
|
ce9bdb3509 | ||
|
|
0c8d6369ac | ||
|
|
bee796f6b5 | ||
|
|
9f6349a333 | ||
|
|
171a029c5e | ||
|
|
eaefaa0fe0 | ||
|
|
d301f0a64b | ||
|
|
0a1578e4e3 | ||
|
|
a4167fd925 | ||
|
|
42084e08ae | ||
|
|
9d23f5dc89 | ||
|
|
5978427ae0 | ||
|
|
c7c216069c | ||
|
|
cde9d1b917 | ||
|
|
96213f04b0 | ||
|
|
7ecea08b9b | ||
|
|
191971865d | ||
|
|
ff4f587dd9 | ||
|
|
de728d0371 | ||
|
|
d08e09642d | ||
|
|
351493b183 | ||
|
|
86ab47e121 | ||
|
|
6dd6b3e396 | ||
|
|
5f1418a68b | ||
|
|
7b97a79efc | ||
|
|
ce4f653121 | ||
|
|
b053c6454e | ||
|
|
ebf0f4a77c | ||
|
|
efa808069a | ||
|
|
b5c5283dd6 | ||
|
|
b638c65519 | ||
|
|
d4d471450f | ||
|
|
3144bdec2c | ||
|
|
c6d6c4c209 | ||
|
|
f5f1589662 | ||
|
|
276f2cb24e | ||
|
|
952b785bb3 | ||
|
|
72dd676208 | ||
|
|
dfaa31e991 | ||
|
|
86556b1c74 | ||
|
|
0c80751e87 | ||
|
|
9338f878a3 | ||
|
|
fde3d91242 | ||
|
|
19adfb88a9 | ||
|
|
daaafa900a | ||
|
|
0dcc9e0bca | ||
|
|
aeec78b35c | ||
|
|
c991654cb4 | ||
|
|
f328413646 | ||
|
|
106a0104da | ||
|
|
5486ea09e3 | ||
|
|
31bbbb6d13 | ||
|
|
1a77de82fa | ||
|
|
7468f2535c | ||
|
|
38e4f22605 | ||
|
|
2bc2fe7b5e | ||
|
|
6d0140d8a0 | ||
|
|
7856f98965 | ||
|
|
e25ddef08c | ||
|
|
95a4589bbf | ||
|
|
566d71b7a9 | ||
|
|
6030a4a720 | ||
|
|
5dc0cb94d4 | ||
|
|
325dafcbb0 | ||
|
|
1a8a8b8651 | ||
|
|
61a495cb1e | ||
|
|
75866aa020 | ||
|
|
9e4fda326d | ||
|
|
1131ddfaff | ||
|
|
9f437b5c43 | ||
|
|
0cc03d3f05 | ||
|
|
04fc2f78bf | ||
|
|
3ac333fc6a | ||
|
|
a246ac1914 | ||
|
|
48ceac845c | ||
|
|
b1986a06b9 | ||
|
|
43d134ba29 | ||
|
|
1348f7d860 | ||
|
|
f6530222f7 | ||
|
|
a74a7585e0 | ||
|
|
5bf0cca2b8 | ||
|
|
755b6511ff | ||
|
|
35621c6089 | ||
|
|
38b59664e6 | ||
|
|
933a084999 | ||
|
|
c1510d19c7 | ||
|
|
2074cf99fb | ||
|
|
b12176d818 | ||
|
|
117b67ea30 | ||
|
|
03e20bb5c6 | ||
|
|
0c4a1381a4 | ||
|
|
9e14501edb | ||
|
|
1dc963caa6 | ||
|
|
85726c91ce | ||
|
|
40211db275 | ||
|
|
e7f13098c6 | ||
|
|
61eb3a3d46 | ||
|
|
be0a807e8c | ||
|
|
52d402e2a9 | ||
|
|
c5a46f9113 | ||
|
|
00e17a377c | ||
|
|
9abd83adb1 | ||
|
|
f0d2afcf90 | ||
|
|
1aba442bcd | ||
|
|
d764cd8736 | ||
|
|
526111a303 | ||
|
|
b8364046df | ||
|
|
1f617c6e08 | ||
|
|
a6858a36c0 | ||
|
|
6198121923 | ||
|
|
b0efebf853 | ||
|
|
fbd0584391 | ||
|
|
50224b09cc | ||
|
|
32dcc5a491 | ||
|
|
9408366a36 | ||
|
|
f0e564beaa | ||
|
|
14b75a0b93 | ||
|
|
59e6ebf039 | ||
|
|
7cdc16abdf | ||
|
|
dc540dfaa8 | ||
|
|
587e65e442 | ||
|
|
a916688723 | ||
|
|
3336422760 | ||
|
|
04423b916f | ||
|
|
bf8d2f8eda | ||
|
|
2a5d02fd0f | ||
|
|
ea550ed9e0 | ||
|
|
02665cd42b | ||
|
|
0c6a94e66d | ||
|
|
ebd6bc2604 | ||
|
|
daab85e3e6 | ||
|
|
769d81a83d | ||
|
|
ac2a401b1d | ||
|
|
bb53c18153 | ||
|
|
04e0fe9147 | ||
|
|
39f75c7001 | ||
|
|
7f99cb1817 | ||
|
|
c555b2cce3 | ||
|
|
2eba1c6851 | ||
|
|
edeed55664 | ||
|
|
92248f9cb2 | ||
|
|
c548ad5e69 | ||
|
|
a57d839e1d | ||
|
|
d88a34bc79 | ||
|
|
60cbc9d0e5 | ||
|
|
d5005e766f | ||
|
|
4d0753cffe | ||
|
|
1cf0f11840 | ||
|
|
052e8b2cc6 | ||
|
|
8963e89633 | ||
|
|
935ee0a023 | ||
|
|
5ed234ca63 | ||
|
|
04884a0911 | ||
|
|
c7af26a9e3 | ||
|
|
d8073488be | ||
|
|
6fc2d7e063 | ||
|
|
e93c7cdb80 | ||
|
|
c32d6c8250 | ||
|
|
757158da63 | ||
|
|
ffdacaa618 | ||
|
|
e194efab10 | ||
|
|
772fc2eac7 | ||
|
|
ed020579dc | ||
|
|
096869c7b6 | ||
|
|
c6873211e9 | ||
|
|
623ee1bd88 | ||
|
|
aabe90343e | ||
|
|
764cfb506d | ||
|
|
249ad56075 | ||
|
|
46f99ff277 | ||
|
|
73f4513c84 | ||
|
|
3c91e86268 | ||
|
|
42473ec150 | ||
|
|
6a4e4b9c5b | ||
|
|
9a784fb4f3 | ||
|
|
43fd80a1aa | ||
|
|
e6ab1a57ea | ||
|
|
282edb9161 | ||
|
|
dff77004f2 | ||
|
|
6c1b4aec75 | ||
|
|
7814db1b42 | ||
|
|
c9ed3fc3a4 | ||
|
|
9ee416a8fc | ||
|
|
4f9a47c026 | ||
|
|
3fcb1c6d09 | ||
|
|
7c492864e9 | ||
|
|
7ff8a064f3 | ||
|
|
c635bbe465 | ||
|
|
4881f4e631 | ||
|
|
c631799f5d | ||
|
|
48846676d8 | ||
|
|
f37d481c5d | ||
|
|
5d7d8bd55c | ||
|
|
8ed1463236 | ||
|
|
43b2ede0f8 | ||
|
|
2f095e2017 | ||
|
|
9b55bb964c | ||
|
|
9b97b23ce7 | ||
|
|
53ab28533e | ||
|
|
940c00e7ae | ||
|
|
18cfd5f349 | ||
|
|
6169df1c52 | ||
|
|
d46c2bbcba | ||
|
|
48d4364586 | ||
|
|
8042c66a76 | ||
|
|
3879d79b89 | ||
|
|
e416cecf62 | ||
|
|
81fcb80466 | ||
|
|
bf812fbe40 | ||
|
|
1e6fb6c8aa | ||
|
|
5d0c95bd02 | ||
|
|
7cd2417002 | ||
|
|
16851d66e5 | ||
|
|
056d2d956a | ||
|
|
9a69cadab3 | ||
|
|
3de642bffd | ||
|
|
286b9d9849 | ||
|
|
cef1ede826 | ||
|
|
5007566588 | ||
|
|
e93fb3cc6c | ||
|
|
7578209735 | ||
|
|
67f02f75d0 | ||
|
|
73d9dfc7ab | ||
|
|
6b407092d9 | ||
|
|
3168abc0a1 | ||
|
|
46ee267cfc | ||
|
|
a10bead9b5 | ||
|
|
3553e301dd | ||
|
|
02b838b9b0 | ||
|
|
b1de6d1025 | ||
|
|
bc67872218 | ||
|
|
0229fffde5 | ||
|
|
3555b87363 | ||
|
|
2dca53962e | ||
|
|
f4f71f2797 | ||
|
|
77ab9457ed | ||
|
|
4fa53b6282 | ||
|
|
790b73586b | ||
|
|
9c29c2a172 | ||
|
|
863960d33e | ||
|
|
330e5381b4 | ||
|
|
5bb411fdb8 | ||
|
|
59a9a5994e | ||
|
|
5306a71b42 | ||
|
|
3eafa2dd9e | ||
|
|
88fddb879d | ||
|
|
71491825bf | ||
|
|
30855b924a | ||
|
|
48d2e6d7fe | ||
|
|
041c83ea03 | ||
|
|
0e621c2dc9 | ||
|
|
544e7a491b | ||
|
|
a2c881fa08 | ||
|
|
c53c7af168 | ||
|
|
a2d93e5269 | ||
|
|
b392e6cfb9 | ||
|
|
13aa2d389a | ||
|
|
1e7962dfc4 | ||
|
|
1c9556c84c | ||
|
|
ca3ca7a5b5 | ||
|
|
0500befdb4 | ||
|
|
f618feab51 | ||
|
|
4b06aa134f | ||
|
|
9cde56d760 | ||
|
|
d0ea203694 | ||
|
|
c5eb3fba62 | ||
|
|
a8bc32553c | ||
|
|
88f3358320 | ||
|
|
a85bdcf2f6 | ||
|
|
caf56b313e | ||
|
|
75603c45fc | ||
|
|
89f86cc970 | ||
|
|
c09a0e4f08 | ||
|
|
7bac6c9460 | ||
|
|
0c7d0bf172 | ||
|
|
a274900188 | ||
|
|
67deefe527 | ||
|
|
823f618cba | ||
|
|
bc16c9a54a | ||
|
|
a3f30038a0 | ||
|
|
e237f618c2 | ||
|
|
688adad665 | ||
|
|
0158812afb | ||
|
|
e52e0d9b07 | ||
|
|
eb2aa2c073 | ||
|
|
debfd46749 | ||
|
|
5ccf8fcd6b | ||
|
|
7bd1991513 | ||
|
|
456e4ca569 | ||
|
|
6bf0fe4913 | ||
|
|
596b6828cb | ||
|
|
b403f8d8a8 | ||
|
|
590b6c2143 | ||
|
|
5537ef1e7d | ||
|
|
5f83860aa1 | ||
|
|
62b6a7971a | ||
|
|
1d16e87c5f | ||
|
|
1955a8ea5a | ||
|
|
a41fa6e730 | ||
|
|
b98a64448a | ||
|
|
1ce82f391a | ||
|
|
4d473894fd | ||
|
|
5788b7c7d0 | ||
|
|
04515f6b55 | ||
|
|
96f8ccf3d5 | ||
|
|
2c3ef480a6 | ||
|
|
fa6873122c | ||
|
|
34bc0c22b1 | ||
|
|
e5484b2729 | ||
|
|
f67f781fed | ||
|
|
b564b97b7e | ||
|
|
0dd68d1e06 | ||
|
|
73f40f1ca4 | ||
|
|
ea53bebac4 | ||
|
|
00418012bd | ||
|
|
5f3d8c514b | ||
|
|
cb39a3f1c4 | ||
|
|
4d78fe6ece | ||
|
|
a3e3ea9846 | ||
|
|
feba34e82d | ||
|
|
e134013e04 | ||
|
|
5589d0296a | ||
|
|
de0ebab464 | ||
|
|
f2e7122a96 | ||
|
|
996cc5d900 | ||
|
|
a2ae5bd867 | ||
|
|
5fa52e87cb | ||
|
|
bcd76d2c7a | ||
|
|
36fcbedc11 | ||
|
|
1dad01cc53 | ||
|
|
5fb21f6e54 | ||
|
|
08dfac8352 | ||
|
|
956751e419 | ||
|
|
fe2ae04c91 | ||
|
|
5b8712d061 | ||
|
|
dc7ff90c1e | ||
|
|
1ace676170 | ||
|
|
8947a87b95 | ||
|
|
786a2f1103 | ||
|
|
36ac14a566 | ||
|
|
7a048fc91d | ||
|
|
3f3756b113 | ||
|
|
b36c4b99cc | ||
|
|
9856a2276e | ||
|
|
b6dc3ed3ad | ||
|
|
75be329994 | ||
|
|
1fe1ca1c8b | ||
|
|
882a6a1d51 | ||
|
|
712ab4ae7a | ||
|
|
18ad259fb3 | ||
|
|
fe4d93c6db | ||
|
|
c6ba588e37 | ||
|
|
3fda60fca0 | ||
|
|
96531a0ef8 | ||
|
|
7abc3065fb | ||
|
|
013ded4bac | ||
|
|
010c3c7348 | ||
|
|
bf075c075c | ||
|
|
41b34e5f60 | ||
|
|
5a889398e7 | ||
|
|
054cae86d8 | ||
|
|
cd1cb8b83c | ||
|
|
a34779c027 | ||
|
|
d19cb77d74 | ||
|
|
ab67528e89 | ||
|
|
27f281480a | ||
|
|
50459a39f4 | ||
|
|
5c9815ef6f | ||
|
|
aed00a97b6 | ||
|
|
7543dc4a9d | ||
|
|
841fa0030f | ||
|
|
66e0e651b9 | ||
|
|
1750218057 | ||
|
|
80637fc06d | ||
|
|
8efc055511 | ||
|
|
be61bfda93 | ||
|
|
1a39f529c0 | ||
|
|
0868d5c550 | ||
|
|
384f0e7678 | ||
|
|
9b390c4bea | ||
|
|
42a13fec46 | ||
|
|
790acc4c17 | ||
|
|
b74cf27538 | ||
|
|
ffc874ec6f | ||
|
|
546d6bd0b2 | ||
|
|
8b68ca029e | ||
|
|
502f84b30c | ||
|
|
b7df920860 | ||
|
|
e4a424cb6a | ||
|
|
d8affd3967 | ||
|
|
a423274fd9 | ||
|
|
f7329b1a0e | ||
|
|
48eb07c956 | ||
|
|
636d8a886c | ||
|
|
97b52c7fdf | ||
|
|
344412e66e | ||
|
|
5cdea14cdf | ||
|
|
7b1a56b96f | ||
|
|
d1ec884e75 | ||
|
|
aa72a4349e | ||
|
|
5ab7fd0842 | ||
|
|
86d5e9802a | ||
|
|
18df39e3a1 | ||
|
|
cfe1e24471 | ||
|
|
2edbe87a8c | ||
|
|
880055bc90 | ||
|
|
ad99bd0a14 | ||
|
|
c5f099138d | ||
|
|
6e64e02f71 | ||
|
|
f95f6ec009 | ||
|
|
8aeecc20e1 | ||
|
|
38d0f6c63f | ||
|
|
ac8534a9e7 | ||
|
|
73cab9d9d4 | ||
|
|
64246d42d2 | ||
|
|
6fa6d4532e | ||
|
|
92b9956c06 | ||
|
|
4d6669c268 | ||
|
|
89f4ae51f9 | ||
|
|
af0659f573 | ||
|
|
45a10d501e | ||
|
|
e529ff1245 | ||
|
|
b29371dc87 | ||
|
|
0bef890000 | ||
|
|
75fe1404b1 | ||
|
|
b460c9372f | ||
|
|
c3e574ceaa | ||
|
|
04ae80a52e | ||
|
|
a7ff095399 | ||
|
|
a655dcebaf | ||
|
|
8c74851b70 | ||
|
|
7168392a51 | ||
|
|
ccc5b324fe | ||
|
|
e85c205a81 | ||
|
|
7e225be16e | ||
|
|
ebb32e85f8 | ||
|
|
90d279f39f | ||
|
|
af3f5b6e16 | ||
|
|
53d7c5109f | ||
|
|
bf381563ff | ||
|
|
de4b9334e1 | ||
|
|
c33fbea469 | ||
|
|
921f593632 | ||
|
|
940403720a | ||
|
|
f869e44fe5 | ||
|
|
bcc92919a0 | ||
|
|
306a70c7ba | ||
|
|
d358d955e5 | ||
|
|
0fdd6074c3 | ||
|
|
6faf9c35a9 | ||
|
|
1066898e32 | ||
|
|
d05febe5de | ||
|
|
67f7034a21 | ||
|
|
79f301a2c6 | ||
|
|
31cbc67986 | ||
|
|
fe66bf3663 | ||
|
|
4691d4b35d | ||
|
|
acf5241845 | ||
|
|
2bce99b82f | ||
|
|
3c330869ef | ||
|
|
dba1af4841 | ||
|
|
2b1e52dcc9 | ||
|
|
b5238e945a | ||
|
|
afc0f29704 | ||
|
|
de0bb1d2da | ||
|
|
cc16ece283 | ||
|
|
31ba802fc9 | ||
|
|
4b27cf5460 | ||
|
|
a53b2a643f | ||
|
|
d925ecae1b | ||
|
|
13fd751a78 | ||
|
|
74575f8922 | ||
|
|
5e7bb5fe73 | ||
|
|
790a31404a | ||
|
|
f927601702 | ||
|
|
c4654d54d7 | ||
|
|
df777c30d1 | ||
|
|
d81ad2d4bc | ||
|
|
9f77e8b025 | ||
|
|
04dc3f4614 | ||
|
|
7d1fe50977 | ||
|
|
c0e5e3c5d5 | ||
|
|
3a45cfb604 | ||
|
|
393e4b0f5a | ||
|
|
296711d502 | ||
|
|
9121722999 | ||
|
|
d8d74091f6 | ||
|
|
33521fb45e | ||
|
|
e5204e60ed | ||
|
|
0409428d87 | ||
|
|
f902b0d420 | ||
|
|
27ef5b1aa7 | ||
|
|
c32303fc7e | ||
|
|
45abe361ba | ||
|
|
3ae479faae | ||
|
|
5698038f49 | ||
|
|
020233f725 | ||
|
|
6f9d55b8eb | ||
|
|
2542b62d77 | ||
|
|
95678bb6b1 | ||
|
|
a78759e7ee | ||
|
|
cc5c523f58 | ||
|
|
e39bbdd287 | ||
|
|
d9a50bf93f | ||
|
|
934d00ea1e | ||
|
|
c27675f70d | ||
|
|
7c9f37c83d | ||
|
|
b9736c13e0 | ||
|
|
c47725ff34 | ||
|
|
3ee3fe0bbb | ||
|
|
e54dad75da | ||
|
|
39c2f03eab | ||
|
|
fb9e1c4087 | ||
|
|
ed26bb3d82 | ||
|
|
0baf32e219 | ||
|
|
79a376d1db | ||
|
|
b634e91c43 | ||
|
|
9e2cc21d04 | ||
|
|
6975124a57 | ||
|
|
9f69307db1 | ||
|
|
c3448a045c | ||
|
|
95c561983c | ||
|
|
7a03c8dab5 | ||
|
|
f3ffa8310f | ||
|
|
596f496f19 | ||
|
|
2e6ed731cf | ||
|
|
24ce319b6f | ||
|
|
7b7bfea37d | ||
|
|
3be461260a | ||
|
|
8dab8d9831 | ||
|
|
fb4c5f3c91 | ||
|
|
5fe3cce5a3 | ||
|
|
09f165d442 | ||
|
|
60aea7521b | ||
|
|
29545d0e5e | ||
|
|
4a14099cfd | ||
|
|
b052574ddf | ||
|
|
5ea6a7c6d6 | ||
|
|
8ca196d51f | ||
|
|
5f572cbd77 | ||
|
|
679bd3ab30 | ||
|
|
da3d59fada | ||
|
|
835d27151d | ||
|
|
f1d7228a74 | ||
|
|
72bbd5bdef | ||
|
|
ad9d866547 | ||
|
|
a1ec668b70 | ||
|
|
389687a56d | ||
|
|
97280c73b9 | ||
|
|
f3c622b665 | ||
|
|
d71e8d8dbf | ||
|
|
02c2089ac8 | ||
|
|
07ad28a053 | ||
|
|
d323ccc3ec | ||
|
|
4738d002c7 | ||
|
|
ec099b0586 | ||
|
|
a51253fea2 | ||
|
|
304ec9ec6a | ||
|
|
8547085615 | ||
|
|
14b139ecb5 | ||
|
|
7b45f5068f | ||
|
|
99ceee840e | ||
|
|
8ed68301e3 | ||
|
|
664267e050 | ||
|
|
7ef8f46591 | ||
|
|
6933c1fed2 | ||
|
|
9d125bf533 | ||
|
|
08d5340bd8 | ||
|
|
0e6f4f981e | ||
|
|
670ee3934f | ||
|
|
569860d7ac | ||
|
|
953a562ec1 |
13
.dockerignore
Normal file
13
.dockerignore
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
.vscode
|
||||||
|
.git
|
||||||
|
.github
|
||||||
|
.venv
|
||||||
|
cache
|
||||||
|
data
|
||||||
|
docker
|
||||||
|
saves
|
||||||
|
hf_cache
|
||||||
|
output
|
||||||
|
.dockerignore
|
||||||
|
.gitattributes
|
||||||
|
.gitignore
|
||||||
21
.github/CONTRIBUTING.md
vendored
Normal file
21
.github/CONTRIBUTING.md
vendored
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
# Contributing to LLaMA Factory
|
||||||
|
|
||||||
|
Everyone is welcome to contribute, and we value everybody's contribution. Code contributions are not the only way to help the community. Answering questions, helping others, and improving the documentation are also immensely valuable.
|
||||||
|
|
||||||
|
It also helps us if you spread the word! Reference the library in blog posts about the awesome projects it made possible, shout out on Twitter every time it has helped you, or simply ⭐️ the repository to say thank you.
|
||||||
|
|
||||||
|
However you choose to contribute, please be mindful and respect our [code of conduct](CODE_OF_CONDUCT.md).
|
||||||
|
|
||||||
|
**This guide was heavily inspired by [transformers guide to contributing](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md).**
|
||||||
|
|
||||||
|
## Ways to contribute
|
||||||
|
|
||||||
|
There are several ways you can contribute to LLaMA Factory:
|
||||||
|
|
||||||
|
* Fix outstanding issues with the existing code.
|
||||||
|
* Submit issues related to bugs or desired new features.
|
||||||
|
* Contribute to the examples or to the documentation.
|
||||||
|
|
||||||
|
### Style guide
|
||||||
|
|
||||||
|
LLaMA Factory follows the [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html), check it for details.
|
||||||
38
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
38
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,18 +1,36 @@
|
|||||||
name: "\U0001F41B Bug / Help"
|
name: "\U0001F41B Bug / Help"
|
||||||
description: Create a report to help us improve the LLaMA Factory
|
description: Create a report to help us improve the LLaMA Factory
|
||||||
body:
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Issues included in **FAQs** or those with **insufficient** information may be closed without a response.
|
||||||
|
包含在**常见问题**内或提供信息**不完整**的 issues 可能不会被回复。
|
||||||
|
|
||||||
- type: checkboxes
|
- type: checkboxes
|
||||||
id: reminder
|
id: reminder
|
||||||
attributes:
|
attributes:
|
||||||
label: Reminder
|
label: Reminder
|
||||||
description: |
|
description: |
|
||||||
Please ensure you have read the README carefully and searched the existing issues.
|
Please ensure you have read the README carefully and searched the existing issues (including FAQs).
|
||||||
请确保您已经认真阅读了 README 并且搜索过现有的 Issue。
|
请确保您已经认真阅读了 README 并且搜索过现有的 issues(包括常见问题)。
|
||||||
|
|
||||||
options:
|
options:
|
||||||
- label: I have read the README and searched the existing issues.
|
- label: I have read the README and searched the existing issues.
|
||||||
required: true
|
required: true
|
||||||
|
|
||||||
|
- type: textarea
|
||||||
|
id: system-info
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
attributes:
|
||||||
|
label: System Info
|
||||||
|
description: |
|
||||||
|
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
|
||||||
|
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
|
||||||
|
|
||||||
|
placeholder: llamafactory version, platform, python version, ...
|
||||||
|
|
||||||
- type: textarea
|
- type: textarea
|
||||||
id: reproduction
|
id: reproduction
|
||||||
validations:
|
validations:
|
||||||
@@ -26,7 +44,9 @@ body:
|
|||||||
请合理使用 Markdown 标签来格式化您的文本。
|
请合理使用 Markdown 标签来格式化您的文本。
|
||||||
|
|
||||||
placeholder: |
|
placeholder: |
|
||||||
python src/train_bash.py ...
|
```bash
|
||||||
|
llamafactory-cli train ...
|
||||||
|
```
|
||||||
|
|
||||||
- type: textarea
|
- type: textarea
|
||||||
id: expected-behavior
|
id: expected-behavior
|
||||||
@@ -38,18 +58,6 @@ body:
|
|||||||
Please provide a clear and concise description of what you would expect to happen.
|
Please provide a clear and concise description of what you would expect to happen.
|
||||||
请提供您原本的目的,即这段代码的期望行为。
|
请提供您原本的目的,即这段代码的期望行为。
|
||||||
|
|
||||||
- type: textarea
|
|
||||||
id: system-info
|
|
||||||
validations:
|
|
||||||
required: false
|
|
||||||
attributes:
|
|
||||||
label: System Info
|
|
||||||
description: |
|
|
||||||
Please share your system info with us. You can run the command **transformers-cli env** and copy-paste its output below.
|
|
||||||
请提供您的系统信息。您可以在命令行运行 **transformers-cli env** 并将其输出复制到该文本框中。
|
|
||||||
|
|
||||||
placeholder: transformers version, platform, python version, ...
|
|
||||||
|
|
||||||
- type: textarea
|
- type: textarea
|
||||||
id: others
|
id: others
|
||||||
validations:
|
validations:
|
||||||
|
|||||||
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
8
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
# What does this PR do?
|
||||||
|
|
||||||
|
Fixes # (issue)
|
||||||
|
|
||||||
|
## Before submitting
|
||||||
|
|
||||||
|
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
|
||||||
|
- [ ] Did you write any new necessary tests?
|
||||||
7
.github/SECURITY.md
vendored
Normal file
7
.github/SECURITY.md
vendored
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
# Reporting Security Issues
|
||||||
|
|
||||||
|
To report a security issue, please use the GitHub Security Advisory ["Report a Vulnerability"](https://github.com/hiyouga/LLaMA-Factory/security/advisories/new) tab.
|
||||||
|
|
||||||
|
We will send a response indicating the next steps in handling your report. After the initial reply to your report, the security team will keep you informed of the progress towards a fix and full announcement, and may ask for additional information or guidance.
|
||||||
|
|
||||||
|
Report security bugs in third-party modules to the person or team maintaining the module.
|
||||||
30
.github/workflows/label_issue.yml
vendored
Normal file
30
.github/workflows/label_issue.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
name: label_issue
|
||||||
|
|
||||||
|
on:
|
||||||
|
issues:
|
||||||
|
types:
|
||||||
|
- opened
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
label_issue:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
issues: write
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- env:
|
||||||
|
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
ISSUE_URL: ${{ github.event.issue.html_url }}
|
||||||
|
ISSUE_TITLE: ${{ github.event.issue.title }}
|
||||||
|
run: |
|
||||||
|
LABEL=pending
|
||||||
|
NPU_KEYWORDS=(npu huawei ascend 华为 昇腾)
|
||||||
|
ISSUE_TITLE_LOWER=$(echo $ISSUE_TITLE | tr '[:upper:]' '[:lower:]')
|
||||||
|
for KEYWORD in ${NPU_KEYWORDS[@]}; do
|
||||||
|
if [[ $ISSUE_TITLE_LOWER == *$KEYWORD* ]] && [[ $ISSUE_TITLE_LOWER != *input* ]]; then
|
||||||
|
LABEL=pending,npu
|
||||||
|
break
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
gh issue edit $ISSUE_URL --add-label $LABEL
|
||||||
40
.github/workflows/publish.yml
vendored
Normal file
40
.github/workflows/publish.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
name: publish
|
||||||
|
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types:
|
||||||
|
- published
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
publish:
|
||||||
|
name: Upload release to PyPI
|
||||||
|
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
environment:
|
||||||
|
name: release
|
||||||
|
url: https://pypi.org/p/llamafactory
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
id-token: write
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.8"
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
python -m pip install build
|
||||||
|
|
||||||
|
- name: Build package
|
||||||
|
run: |
|
||||||
|
python -m build
|
||||||
|
|
||||||
|
- name: Publish package
|
||||||
|
uses: pypa/gh-action-pypi-publish@release/v1
|
||||||
51
.github/workflows/tests.yml
vendored
Normal file
51
.github/workflows/tests.yml
vendored
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
name: tests
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
paths:
|
||||||
|
- "**.py"
|
||||||
|
- "requirements.txt"
|
||||||
|
- ".github/workflows/*.yml"
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
paths:
|
||||||
|
- "**.py"
|
||||||
|
- "requirements.txt"
|
||||||
|
- ".github/workflows/*.yml"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
tests:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
environment:
|
||||||
|
name: tests
|
||||||
|
|
||||||
|
env:
|
||||||
|
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.8"
|
||||||
|
cache: "pip"
|
||||||
|
cache-dependency-path: "setup.py"
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
python -m pip install ".[torch,dev]"
|
||||||
|
|
||||||
|
- name: Check quality
|
||||||
|
run: |
|
||||||
|
make style && make quality
|
||||||
|
|
||||||
|
- name: Test with pytest
|
||||||
|
run: |
|
||||||
|
make test
|
||||||
9
.gitignore
vendored
9
.gitignore
vendored
@@ -157,4 +157,11 @@ cython_debug/
|
|||||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
#.idea/
|
.idea/
|
||||||
|
|
||||||
|
# custom .gitignore
|
||||||
|
cache/
|
||||||
|
config/
|
||||||
|
saves/
|
||||||
|
output/
|
||||||
|
wandb/
|
||||||
|
|||||||
44
CITATION.cff
Normal file
44
CITATION.cff
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
cff-version: 1.2.0
|
||||||
|
date-released: 2024-03
|
||||||
|
message: "If you use this software, please cite it as below."
|
||||||
|
authors:
|
||||||
|
- family-names: "Zheng"
|
||||||
|
given-names: "Yaowei"
|
||||||
|
- family-names: "Zhang"
|
||||||
|
given-names: "Richong"
|
||||||
|
- family-names: "Zhang"
|
||||||
|
given-names: "Junhao"
|
||||||
|
- family-names: "Ye"
|
||||||
|
given-names: "Yanhan"
|
||||||
|
- family-names: "Luo"
|
||||||
|
given-names: "Zheyan"
|
||||||
|
- family-names: "Feng"
|
||||||
|
given-names: "Zhangchi"
|
||||||
|
- family-names: "Ma"
|
||||||
|
given-names: "Yongqiang"
|
||||||
|
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||||
|
url: "https://arxiv.org/abs/2403.13372"
|
||||||
|
preferred-citation:
|
||||||
|
type: conference-paper
|
||||||
|
conference:
|
||||||
|
name: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
|
||||||
|
authors:
|
||||||
|
- family-names: "Zheng"
|
||||||
|
given-names: "Yaowei"
|
||||||
|
- family-names: "Zhang"
|
||||||
|
given-names: "Richong"
|
||||||
|
- family-names: "Zhang"
|
||||||
|
given-names: "Junhao"
|
||||||
|
- family-names: "Ye"
|
||||||
|
given-names: "Yanhan"
|
||||||
|
- family-names: "Luo"
|
||||||
|
given-names: "Zheyan"
|
||||||
|
- family-names: "Feng"
|
||||||
|
given-names: "Zhangchi"
|
||||||
|
- family-names: "Ma"
|
||||||
|
given-names: "Yongqiang"
|
||||||
|
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||||
|
url: "https://arxiv.org/abs/2403.13372"
|
||||||
|
year: 2024
|
||||||
|
publisher: "Association for Computational Linguistics"
|
||||||
|
address: "Bangkok, Thailand"
|
||||||
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@@ -0,0 +1 @@
|
|||||||
|
include LICENSE requirements.txt
|
||||||
14
Makefile
Normal file
14
Makefile
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
.PHONY: quality style test
|
||||||
|
|
||||||
|
check_dirs := scripts src tests
|
||||||
|
|
||||||
|
quality:
|
||||||
|
ruff check $(check_dirs)
|
||||||
|
ruff format --check $(check_dirs)
|
||||||
|
|
||||||
|
style:
|
||||||
|
ruff check $(check_dirs) --fix
|
||||||
|
ruff format $(check_dirs)
|
||||||
|
|
||||||
|
test:
|
||||||
|
CUDA_VISIBLE_DEVICES= pytest tests/
|
||||||
806
README.md
806
README.md
@@ -1,31 +1,37 @@
|
|||||||
# LLaMA Factory: Training and Evaluating Large Language Models with Minimal Effort
|

|
||||||
|
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
||||||
[](LICENSE)
|
[](LICENSE)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llamafactory/)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](#projects-using-llama-factory)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||||
[](https://discord.gg/c2EPEt5NU)
|
[](https://discord.gg/rKfvV9r9FK)
|
||||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
[](https://twitter.com/llamafactory_ai)
|
||||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
[](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
|
||||||
|
[](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
|
||||||
|
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||||
|
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||||
|
|
||||||
👋 Join our [WeChat](assets/wechat.jpg).
|
[](https://trendshift.io/repositories/4535)
|
||||||
|
|
||||||
|
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
|
||||||
|
|
||||||
\[ English | [中文](README_zh.md) \]
|
\[ English | [中文](README_zh.md) \]
|
||||||
|
|
||||||
## LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
|
**Fine-tuning a large language model can be easy as...**
|
||||||
|
|
||||||
Preview LLaMA Board at **[🤗 Spaces](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** or **[ModelScope](https://modelscope.cn/studios/hiyouga/LLaMA-Board)**.
|
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89-7ace5698baf6
|
||||||
|
|
||||||
Launch LLaMA Board via `CUDA_VISIBLE_DEVICES=0 python src/train_web.py`. (multiple GPUs are not supported yet in this mode)
|
Choose your path:
|
||||||
|
|
||||||
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
|
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
|
||||||
|
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
|
||||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
|
- **Local machine**: Please refer to [usage](#getting-started)
|
||||||
|
|
||||||
## Table of Contents
|
## Table of Contents
|
||||||
|
|
||||||
|
- [Features](#features)
|
||||||
- [Benchmark](#benchmark)
|
- [Benchmark](#benchmark)
|
||||||
- [Changelog](#changelog)
|
- [Changelog](#changelog)
|
||||||
- [Supported Models](#supported-models)
|
- [Supported Models](#supported-models)
|
||||||
@@ -38,32 +44,96 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
- [Citation](#citation)
|
- [Citation](#citation)
|
||||||
- [Acknowledgement](#acknowledgement)
|
- [Acknowledgement](#acknowledgement)
|
||||||
|
|
||||||
|
## Features
|
||||||
|
|
||||||
|
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
|
||||||
|
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
|
||||||
|
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
|
||||||
|
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
|
||||||
|
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
|
||||||
|
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
|
||||||
|
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
|
||||||
|
|
||||||
## Benchmark
|
## Benchmark
|
||||||
|
|
||||||
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA-Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA-Factory's QLoRA further improves the efficiency regarding the GPU memory.
|
Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning), LLaMA Factory's LoRA tuning offers up to **3.7 times faster** training speed with a better Rouge score on the advertising text generation task. By leveraging 4-bit quantization technique, LLaMA Factory's QLoRA further improves the efficiency regarding the GPU memory.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
<details><summary>Definitions</summary>
|
||||||
|
|
||||||
- **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
|
- **Training Speed**: the number of training samples processed per second during the training. (bs=4, cutoff_len=1024)
|
||||||
- **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024)
|
- **Rouge Score**: Rouge-2 score on the development set of the [advertising text generation](https://aclanthology.org/D19-1321.pdf) task. (bs=4, cutoff_len=1024)
|
||||||
- **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
|
- **GPU Memory**: Peak GPU memory usage in 4-bit quantized training. (bs=1, cutoff_len=1024)
|
||||||
- We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA-Factory's LoRA tuning.
|
- We adopt `pre_seq_len=128` for ChatGLM's P-Tuning and `lora_rank=32` for LLaMA Factory's LoRA tuning.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`.
|
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
|
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
|
||||||
|
|
||||||
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
|
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
<details><summary>Full Changelog</summary>
|
||||||
|
|
||||||
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
|
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
|
||||||
|
|
||||||
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
|
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
|
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
|
||||||
|
|
||||||
|
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
||||||
|
|
||||||
|
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
|
||||||
|
|
||||||
|
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
|
||||||
|
|
||||||
|
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
|
||||||
|
|
||||||
|
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `use_dora: true` to activate DoRA training.
|
||||||
|
|
||||||
|
[24/02/15] We supported **block expansion** proposed by [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[24/02/05] Qwen1.5 (Qwen2 beta version) series models are supported in LLaMA-Factory. Check this [blog post](https://qwenlm.github.io/blog/qwen1.5/) for details.
|
||||||
|
|
||||||
|
[24/01/18] We supported **agent tuning** for most models, equipping model with tool using abilities by fine-tuning with `dataset: glaive_toolcall_en`.
|
||||||
|
|
||||||
|
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `use_unsloth: true` argument to activate unsloth patch. It achieves **170%** speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
|
||||||
|
|
||||||
|
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).
|
||||||
|
|
||||||
|
[23/12/01] We supported downloading pre-trained models and datasets from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#download-from-modelscope-hub) for usage.
|
||||||
|
|
||||||
|
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `neftune_noise_alpha: 5` argument to activate NEFTune.
|
||||||
|
|
||||||
|
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `shift_attn: true` argument to enable shift short attention.
|
||||||
|
|
||||||
|
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[23/09/10] We supported **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**. Try `flash_attn: fa2` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||||
|
|
||||||
|
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `rope_scaling: linear` argument in training and `rope_scaling: dynamic` argument at inference to extrapolate the position embeddings.
|
||||||
|
|
||||||
|
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
[23/07/31] We supported **dataset streaming**. Try `streaming: true` and `max_steps: 10000` arguments to load your dataset in streaming mode.
|
||||||
|
|
||||||
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
|
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
|
||||||
|
|
||||||
@@ -75,45 +145,60 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||||||
|
|
||||||
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
|
||||||
|
|
||||||
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
|
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). See [examples](examples/README.md) for usage.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## Supported Models
|
## Supported Models
|
||||||
|
|
||||||
| Model | Model size | Default module | Template |
|
| Model | Model size | Template |
|
||||||
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
|
| ------------------------------------------------------------ | -------------------------------- | --------- |
|
||||||
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
|
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||||
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
|
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||||
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||||
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||||
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
|
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||||
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
|
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||||
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
|
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
|
||||||
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
|
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||||
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
|
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||||
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
|
| [Llama 3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
|
||||||
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
|
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
|
||||||
|
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||||
|
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||||
|
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
|
||||||
|
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||||
|
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
|
||||||
|
| [Qwen/Qwen1.5/Qwen2 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
|
||||||
|
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||||
|
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||||
|
| [Yi/Yi-1.5](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
|
||||||
|
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||||
|
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
|
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
|
||||||
>
|
>
|
||||||
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
|
> Remember to use the **SAME** template in training and inference.
|
||||||
|
|
||||||
Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list of models we supported.
|
Please refer to [constants.py](src/llamafactory/extras/constants.py) for a full list of models we supported.
|
||||||
|
|
||||||
|
You also can add a custom chat template to [template.py](src/llamafactory/data/template.py).
|
||||||
|
|
||||||
## Supported Training Approaches
|
## Supported Training Approaches
|
||||||
|
|
||||||
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
|
| Approach | Full-tuning | Freeze-tuning | LoRA | QLoRA |
|
||||||
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
|
||||||
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
|
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
> [!NOTE]
|
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
> Use `--quantization_bit 4/8` argument to enable QLoRA.
|
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
|
|
||||||
## Provided Datasets
|
## Provided Datasets
|
||||||
|
|
||||||
@@ -126,6 +211,8 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
|||||||
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
||||||
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
|
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
|
||||||
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
|
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
|
||||||
|
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
|
||||||
|
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
|
||||||
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
|
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
|
||||||
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
||||||
|
|
||||||
@@ -133,12 +220,12 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
|||||||
|
|
||||||
<details><summary>Supervised fine-tuning datasets</summary>
|
<details><summary>Supervised fine-tuning datasets</summary>
|
||||||
|
|
||||||
|
- [Identity (en&zh)](data/identity.json)
|
||||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Self-cognition (zh)](data/self_cognition.json)
|
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
||||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
|
||||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||||
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
||||||
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
||||||
@@ -147,35 +234,56 @@ Please refer to [constants.py](src/llmtuner/extras/constants.py) for a full list
|
|||||||
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
||||||
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
||||||
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
||||||
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
|
||||||
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
|
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
|
||||||
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
||||||
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
||||||
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
||||||
|
- [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
|
||||||
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
||||||
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
||||||
|
- [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
|
||||||
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
||||||
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
||||||
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
|
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
|
||||||
|
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
|
||||||
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
|
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
|
||||||
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
|
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
|
||||||
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
|
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
|
||||||
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
|
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
|
||||||
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
||||||
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
||||||
|
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
|
||||||
|
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
|
||||||
|
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
|
||||||
|
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
|
||||||
|
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||||
|
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
|
||||||
|
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||||
|
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||||
|
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
|
||||||
|
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
|
||||||
|
- [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
|
||||||
|
- [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
|
||||||
|
- [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
|
||||||
|
- [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
|
||||||
|
- [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
|
||||||
|
- [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary>Preference datasets</summary>
|
<details><summary>Preference datasets</summary>
|
||||||
|
|
||||||
|
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||||
|
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
||||||
|
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||||
|
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
Please refer to [data/README.md](data/README.md) for details.
|
|
||||||
|
|
||||||
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
|
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
@@ -185,358 +293,352 @@ huggingface-cli login
|
|||||||
|
|
||||||
## Requirement
|
## Requirement
|
||||||
|
|
||||||
- Python 3.8+ and PyTorch 1.13.1+
|
| Mandatory | Minimum | Recommend |
|
||||||
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
| ------------ | ------- | --------- |
|
||||||
- sentencepiece, protobuf and tiktoken
|
| python | 3.8 | 3.11 |
|
||||||
- jieba, rouge-chinese and nltk (used at evaluation and predict)
|
| torch | 1.13.1 | 2.3.0 |
|
||||||
- gradio and matplotlib (used in web UI)
|
| transformers | 4.41.2 | 4.41.2 |
|
||||||
- uvicorn, fastapi and sse-starlette (used in API)
|
| datasets | 2.16.0 | 2.19.2 |
|
||||||
|
| accelerate | 0.30.1 | 0.30.1 |
|
||||||
|
| peft | 0.11.1 | 0.11.1 |
|
||||||
|
| trl | 0.8.6 | 0.9.4 |
|
||||||
|
|
||||||
And **powerful GPUs**!
|
| Optional | Minimum | Recommend |
|
||||||
|
| ------------ | ------- | --------- |
|
||||||
|
| CUDA | 11.6 | 12.2 |
|
||||||
|
| deepspeed | 0.10.0 | 0.14.0 |
|
||||||
|
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||||
|
| vllm | 0.4.3 | 0.4.3 |
|
||||||
|
| flash-attn | 2.3.0 | 2.5.9 |
|
||||||
|
|
||||||
|
### Hardware Requirement
|
||||||
|
|
||||||
|
\* *estimated*
|
||||||
|
|
||||||
|
| Method | Bits | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||||
|
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||||
|
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||||
|
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||||
|
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||||
|
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||||
|
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||||
|
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||||
|
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||||
|
|
||||||
## Getting Started
|
## Getting Started
|
||||||
|
|
||||||
### Data Preparation (optional)
|
### Installation
|
||||||
|
|
||||||
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
|
||||||
|
|
||||||
> [!NOTE]
|
|
||||||
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
|
||||||
|
|
||||||
### Dependence Installation (optional)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
|
||||||
conda create -n llama_factory python=3.10
|
|
||||||
conda activate llama_factory
|
|
||||||
cd LLaMA-Factory
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.1.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
|
||||||
```
|
|
||||||
|
|
||||||
### Train on a single GPU
|
|
||||||
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
|
> Installation is mandatory.
|
||||||
|
|
||||||
#### Pre-Training
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
|
||||||
--stage pt \
|
cd LLaMA-Factory
|
||||||
--model_name_or_path path_to_llama_model \
|
pip install -e ".[torch,metrics]"
|
||||||
--do_train \
|
|
||||||
--dataset wiki_demo \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir path_to_pt_checkpoint \
|
|
||||||
--overwrite_cache \
|
|
||||||
--per_device_train_batch_size 4 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Supervised Fine-Tuning
|
Extra dependencies available: torch, torch-npu, metrics, deepspeed, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, qwen, modelscope, quality
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||||
|
|
||||||
|
<details><summary>For Windows users</summary>
|
||||||
|
|
||||||
|
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||||
--stage sft \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_train \
|
|
||||||
--dataset alpaca_gpt4_en \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir path_to_sft_checkpoint \
|
|
||||||
--overwrite_cache \
|
|
||||||
--per_device_train_batch_size 4 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Reward Modeling
|
To enable FlashAttention-2 on the Windows platform, you need to install the precompiled `flash-attn` library, which supports CUDA 12.1 to 12.2. Please download the corresponding version from [flash-attention](https://github.com/bdashore3/flash-attention/releases) based on your requirements.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details><summary>For Ascend NPU users</summary>
|
||||||
|
|
||||||
|
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e ".[torch-npu,metrics]"`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
# replace the url according to your CANN version and devices
|
||||||
--stage rm \
|
# install CANN Toolkit
|
||||||
--model_name_or_path path_to_llama_model \
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
||||||
--do_train \
|
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
||||||
--dataset comparison_gpt4_en \
|
|
||||||
--template default \
|
# install CANN Kernels
|
||||||
--finetuning_type lora \
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
||||||
--lora_target q_proj,v_proj \
|
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
# set env variables
|
||||||
--output_dir path_to_rm_checkpoint \
|
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-6 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### PPO Training
|
| Requirement | Minimum | Recommend |
|
||||||
|
| ------------ | ------- | ----------- |
|
||||||
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
|
| torch | 2.1.0 | 2.1.0 |
|
||||||
|
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||||
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
|
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
|
||||||
|
|
||||||
|
If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
|
||||||
|
|
||||||
|
Download the pre-built Docker images: [32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Data Preparation
|
||||||
|
|
||||||
|
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Please update `data/dataset_info.json` to use your custom dataset.
|
||||||
|
|
||||||
|
### Quickstart
|
||||||
|
|
||||||
|
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
--stage ppo \
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
--model_name_or_path path_to_llama_model \
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
--do_train \
|
|
||||||
--dataset alpaca_gpt4_en \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
|
||||||
--reward_model path_to_rm_checkpoint \
|
|
||||||
--output_dir path_to_ppo_checkpoint \
|
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--top_k 0 \
|
|
||||||
--top_p 0.9 \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
> [!WARNING]
|
See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
|
||||||
> Use `--per_device_train_batch_size=1` for LLaMA-2 models in fp16 PPO training.
|
|
||||||
|
|
||||||
#### DPO Training
|
> [!TIP]
|
||||||
|
> Use `llamafactory-cli help` to show help information.
|
||||||
|
|
||||||
|
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
llamafactory-cli webui
|
||||||
--stage dpo \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_train \
|
|
||||||
--dataset comparison_gpt4_en \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
|
||||||
--output_dir path_to_dpo_checkpoint \
|
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Distributed Training
|
### Build Docker
|
||||||
|
|
||||||
#### Use Huggingface Accelerate
|
For CUDA users:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
accelerate config # configure the environment
|
cd docker/docker-cuda/
|
||||||
accelerate launch src/train_bash.py # arguments (same as above)
|
docker-compose up -d
|
||||||
|
docker-compose exec llamafactory bash
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>Example config for LoRA training</summary>
|
For Ascend NPU users:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd docker/docker-npu/
|
||||||
|
docker-compose up -d
|
||||||
|
docker-compose exec llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
<details><summary>Build without Docker Compose</summary>
|
||||||
|
|
||||||
|
For CUDA users:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker build -f ./docker/docker-cuda/Dockerfile \
|
||||||
|
--build-arg INSTALL_BNB=false \
|
||||||
|
--build-arg INSTALL_VLLM=false \
|
||||||
|
--build-arg INSTALL_DEEPSPEED=false \
|
||||||
|
--build-arg INSTALL_FLASHATTN=false \
|
||||||
|
--build-arg PIP_INDEX=https://pypi.org/simple \
|
||||||
|
-t llamafactory:latest .
|
||||||
|
|
||||||
|
docker run -dit --gpus=all \
|
||||||
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./data:/app/data \
|
||||||
|
-v ./output:/app/output \
|
||||||
|
-p 7860:7860 \
|
||||||
|
-p 8000:8000 \
|
||||||
|
--shm-size 16G \
|
||||||
|
--name llamafactory \
|
||||||
|
llamafactory:latest
|
||||||
|
|
||||||
|
docker exec -it llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
For Ascend NPU users:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Choose docker image upon your environment
|
||||||
|
docker build -f ./docker/docker-npu/Dockerfile \
|
||||||
|
--build-arg INSTALL_DEEPSPEED=false \
|
||||||
|
--build-arg PIP_INDEX=https://pypi.org/simple \
|
||||||
|
-t llamafactory:latest .
|
||||||
|
|
||||||
|
# Change `device` upon your resources
|
||||||
|
docker run -dit \
|
||||||
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./data:/app/data \
|
||||||
|
-v ./output:/app/output \
|
||||||
|
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||||
|
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
||||||
|
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
|
||||||
|
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
||||||
|
-p 7860:7860 \
|
||||||
|
-p 8000:8000 \
|
||||||
|
--device /dev/davinci0 \
|
||||||
|
--device /dev/davinci_manager \
|
||||||
|
--device /dev/devmm_svm \
|
||||||
|
--device /dev/hisi_hdc \
|
||||||
|
--shm-size 16G \
|
||||||
|
--name llamafactory \
|
||||||
|
llamafactory:latest
|
||||||
|
|
||||||
|
docker exec -it llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details><summary>Details about volume</summary>
|
||||||
|
|
||||||
|
- hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
|
||||||
|
- data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
|
||||||
|
- output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Deploy with OpenAI-style API and vLLM
|
||||||
|
|
||||||
|
```bash
|
||||||
|
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
|
||||||
|
|
||||||
|
### Download from ModelScope Hub
|
||||||
|
|
||||||
|
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
|
||||||
|
```
|
||||||
|
|
||||||
|
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
|
||||||
|
|
||||||
|
### Use W&B Logger
|
||||||
|
|
||||||
|
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments to yaml files.
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
compute_environment: LOCAL_MACHINE
|
report_to: wandb
|
||||||
distributed_type: MULTI_GPU
|
run_name: test_run # optional
|
||||||
downcast_bf16: 'no'
|
|
||||||
gpu_ids: all
|
|
||||||
machine_rank: 0
|
|
||||||
main_training_function: main
|
|
||||||
mixed_precision: fp16
|
|
||||||
num_machines: 1
|
|
||||||
num_processes: 4
|
|
||||||
rdzv_backend: static
|
|
||||||
same_network: true
|
|
||||||
tpu_env: []
|
|
||||||
tpu_use_cluster: false
|
|
||||||
tpu_use_sudo: false
|
|
||||||
use_cpu: false
|
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
|
||||||
|
|
||||||
#### Use DeepSpeed
|
|
||||||
|
|
||||||
```bash
|
|
||||||
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|
||||||
--deepspeed ds_config.json \
|
|
||||||
... # arguments (same as above)
|
|
||||||
```
|
|
||||||
|
|
||||||
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"train_batch_size": "auto",
|
|
||||||
"train_micro_batch_size_per_gpu": "auto",
|
|
||||||
"gradient_accumulation_steps": "auto",
|
|
||||||
"gradient_clipping": "auto",
|
|
||||||
"zero_allow_untested_optimizer": true,
|
|
||||||
"fp16": {
|
|
||||||
"enabled": "auto",
|
|
||||||
"loss_scale": 0,
|
|
||||||
"initial_scale_power": 16,
|
|
||||||
"loss_scale_window": 1000,
|
|
||||||
"hysteresis": 2,
|
|
||||||
"min_loss_scale": 1
|
|
||||||
},
|
|
||||||
"zero_optimization": {
|
|
||||||
"stage": 2,
|
|
||||||
"allgather_partitions": true,
|
|
||||||
"allgather_bucket_size": 5e8,
|
|
||||||
"reduce_scatter": true,
|
|
||||||
"reduce_bucket_size": 5e8,
|
|
||||||
"overlap_comm": false,
|
|
||||||
"contiguous_gradients": true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
### Merge LoRA weights and export model
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/export_model.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--export_dir path_to_export
|
|
||||||
```
|
|
||||||
|
|
||||||
### API Demo
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/api_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
> [!TIP]
|
|
||||||
> Visit `http://localhost:8000/docs` for API documentation.
|
|
||||||
|
|
||||||
### CLI Demo
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/cli_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
### Web Demo
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/web_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
### Evaluation
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--template vanilla \
|
|
||||||
--task mmlu \
|
|
||||||
--split test \
|
|
||||||
--lang en \
|
|
||||||
--n_shot 5 \
|
|
||||||
--batch_size 4
|
|
||||||
```
|
|
||||||
|
|
||||||
### Predict
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_predict \
|
|
||||||
--dataset alpaca_gpt4_en \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--output_dir path_to_predict_result \
|
|
||||||
--per_device_eval_batch_size 8 \
|
|
||||||
--max_samples 100 \
|
|
||||||
--predict_with_generate \
|
|
||||||
--fp16
|
|
||||||
```
|
|
||||||
|
|
||||||
> [!WARNING]
|
|
||||||
> Use `--per_device_train_batch_size=1` for LLaMA-2 models in fp16 predict.
|
|
||||||
|
|
||||||
> [!TIP]
|
|
||||||
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
|
|
||||||
|
|
||||||
## Projects using LLaMA Factory
|
## Projects using LLaMA Factory
|
||||||
|
|
||||||
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
If you have a project that should be incorporated, please contact via email or create a pull request.
|
||||||
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
|
||||||
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
|
||||||
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
|
||||||
|
|
||||||
> [!TIP]
|
<details><summary>Click to show</summary>
|
||||||
> If you have a project that should be incorporated, please contact via email or create a pull request.
|
|
||||||
|
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
|
||||||
|
1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
|
||||||
|
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||||
|
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||||
|
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||||
|
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||||
|
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||||
|
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||||
|
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||||
|
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||||
|
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||||
|
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||||
|
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||||
|
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||||
|
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||||
|
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||||
|
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||||
|
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||||
|
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||||
|
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||||
|
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||||
|
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||||
|
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||||
|
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||||
|
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||||
|
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||||
|
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||||
|
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||||
|
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||||
|
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||||
|
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||||
|
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||||
|
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||||
|
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||||
|
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||||
|
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||||
|
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||||
|
1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
|
||||||
|
1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
|
||||||
|
1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
|
||||||
|
1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
|
||||||
|
1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
|
||||||
|
1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
|
||||||
|
1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
|
||||||
|
1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
|
||||||
|
1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
|
||||||
|
1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
|
||||||
|
1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
|
||||||
|
1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
|
||||||
|
1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
|
||||||
|
1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
|
||||||
|
1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
|
||||||
|
1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
|
||||||
|
1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
|
||||||
|
1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
|
||||||
|
1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
|
||||||
|
1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
|
||||||
|
1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
|
||||||
|
1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
|
||||||
|
1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
|
||||||
|
1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
|
||||||
|
1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
|
||||||
|
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
||||||
|
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
||||||
|
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
||||||
|
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
|
||||||
|
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
||||||
|
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||||
|
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
|
||||||
|
1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
|
||||||
|
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
|
||||||
|
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**: An easy and lazy way for building multi-agent LLMs applications and supports model fine-tuning via LLaMA Factory.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## License
|
## License
|
||||||
|
|
||||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||||
|
|
||||||
Please follow the model licenses to use the corresponding model weights: [Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
|
Please follow the model licenses to use the corresponding model weights: [Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||||
|
|
||||||
## Citation
|
## Citation
|
||||||
|
|
||||||
If this work is helpful, please kindly cite as:
|
If this work is helpful, please kindly cite as:
|
||||||
|
|
||||||
```bibtex
|
```bibtex
|
||||||
@Misc{llama-factory,
|
@inproceedings{zheng2024llamafactory,
|
||||||
title = {LLaMA Factory},
|
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||||
author = {hiyouga},
|
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
||||||
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
|
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
||||||
year = {2023}
|
address={Bangkok, Thailand},
|
||||||
|
publisher={Association for Computational Linguistics},
|
||||||
|
year={2024},
|
||||||
|
url={http://arxiv.org/abs/2403.13372}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Acknowledgement
|
## Acknowledgement
|
||||||
|
|
||||||
This repo benefits from [PEFT](https://github.com/huggingface/peft), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
|
This repo benefits from [PEFT](https://github.com/huggingface/peft), [TRL](https://github.com/huggingface/trl), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
|
||||||
|
|
||||||
## Star History
|
## Star History
|
||||||
|
|
||||||
|
|||||||
808
README_zh.md
808
README_zh.md
@@ -1,69 +1,139 @@
|
|||||||
# LLaMA Factory: 轻松的大模型训练与评估
|

|
||||||
|
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
[](https://github.com/hiyouga/LLaMA-Factory/stargazers)
|
||||||
[](LICENSE)
|
[](LICENSE)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](https://pypi.org/project/llamafactory/)
|
||||||
[](https://pypi.org/project/llmtuner/)
|
[](#使用了-llama-factory-的项目)
|
||||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||||
[](https://discord.gg/c2EPEt5NU)
|
[](https://discord.gg/rKfvV9r9FK)
|
||||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
[](https://twitter.com/llamafactory_ai)
|
||||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
[](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
|
||||||
|
[](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
|
||||||
|
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||||
|
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||||
|
|
||||||
👋 加入我们的[微信群](assets/wechat.jpg)。
|
[](https://trendshift.io/repositories/4535)
|
||||||
|
|
||||||
|
👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。
|
||||||
|
|
||||||
\[ [English](README.md) | 中文 \]
|
\[ [English](README.md) | 中文 \]
|
||||||
|
|
||||||
## LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory
|
**微调大模型可以像这样轻松…**
|
||||||
|
|
||||||
通过 **[🤗 Spaces](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** 或 **[ModelScope](https://modelscope.cn/studios/hiyouga/LLaMA-Board)** 预览 LLaMA Board。
|
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594
|
||||||
|
|
||||||
使用 `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` 启动 LLaMA Board。(该模式目前仅支持单卡训练)
|
选择你的打开方式:
|
||||||
|
|
||||||
下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。
|
- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
|
||||||
|
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
|
||||||
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
|
- **本地机器**:请见[如何使用](#如何使用)
|
||||||
|
|
||||||
## 目录
|
## 目录
|
||||||
|
|
||||||
|
- [项目特色](#项目特色)
|
||||||
- [性能指标](#性能指标)
|
- [性能指标](#性能指标)
|
||||||
- [更新日志](#更新日志)
|
- [更新日志](#更新日志)
|
||||||
- [模型](#模型)
|
- [模型](#模型)
|
||||||
- [训练方法](#训练方法)
|
- [训练方法](#训练方法)
|
||||||
- [数据集](#数据集)
|
- [数据集](#数据集)
|
||||||
- [软件依赖](#软件依赖)
|
- [软硬件依赖](#软硬件依赖)
|
||||||
- [如何使用](#如何使用)
|
- [如何使用](#如何使用)
|
||||||
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
|
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
|
||||||
- [协议](#协议)
|
- [协议](#协议)
|
||||||
- [引用](#引用)
|
- [引用](#引用)
|
||||||
- [致谢](#致谢)
|
- [致谢](#致谢)
|
||||||
|
|
||||||
|
## 项目特色
|
||||||
|
|
||||||
|
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||||
|
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
|
||||||
|
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
|
||||||
|
- **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
|
||||||
|
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
|
||||||
|
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||||
|
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||||
|
|
||||||
## 性能指标
|
## 性能指标
|
||||||
|
|
||||||
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA-Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA-Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
|
与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
<details><summary>变量定义</summary>
|
||||||
|
|
||||||
- **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
|
- **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
|
||||||
- **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
|
- **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
|
||||||
- **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
|
- **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
|
||||||
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA-Factory 的 LoRA 微调中采用 `lora_rank=32`。
|
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA Factory 的 LoRA 微调中采用 `lora_rank=32`。
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## 更新日志
|
## 更新日志
|
||||||
|
|
||||||
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune,例如 `--neft_alpha 5`。
|
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
|
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
|
||||||
|
|
||||||
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
|
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2。
|
<details><summary>展开日志</summary>
|
||||||
|
|
||||||
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
|
||||||
|
|
||||||
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
|
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。
|
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
|
||||||
|
|
||||||
|
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
||||||
|
|
||||||
|
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||||
|
|
||||||
|
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
|
||||||
|
|
||||||
|
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
|
||||||
|
|
||||||
|
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。
|
||||||
|
|
||||||
|
[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。
|
||||||
|
|
||||||
|
[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall_zh` 即可使模型获得工具调用能力。
|
||||||
|
|
||||||
|
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||||
|
|
||||||
|
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。
|
||||||
|
|
||||||
|
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔搭社区下载)。
|
||||||
|
|
||||||
|
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。
|
||||||
|
|
||||||
|
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。
|
||||||
|
|
||||||
|
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。
|
||||||
|
|
||||||
|
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。
|
||||||
|
|
||||||
|
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
[23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true` 和 `max_steps: 10000` 参数来流式加载数据集。
|
||||||
|
|
||||||
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
|
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
|
||||||
|
|
||||||
@@ -75,32 +145,47 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
|
|
||||||
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
|
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
|
||||||
|
|
||||||
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
|
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)。
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## 模型
|
## 模型
|
||||||
|
|
||||||
| 模型名 | 模型大小 | 默认模块 | Template |
|
| 模型名 | 模型大小 | Template |
|
||||||
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
|
| ------------------------------------------------------------ | -------------------------------- | --------- |
|
||||||
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
|
| [Baichuan 2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
|
||||||
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
|
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
|
||||||
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
|
||||||
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
|
| [Command R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
|
||||||
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
|
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
|
||||||
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
|
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
|
||||||
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
|
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google) | 2B/7B/9B/27B | gemma |
|
||||||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
| [GLM-4](https://huggingface.co/THUDM) | 9B | glm4 |
|
||||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
|
||||||
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
|
| [Llama](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
|
||||||
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
|
| [Llama 2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
|
||||||
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
|
| [Llama 3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
|
||||||
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
|
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
|
||||||
|
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
|
||||||
|
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
|
||||||
|
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
|
||||||
|
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
|
||||||
|
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
|
||||||
|
| [Qwen/Qwen1.5/Qwen2 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen |
|
||||||
|
| [StarCoder 2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
|
||||||
|
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
|
||||||
|
| [Yi/Yi-1.5](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
|
||||||
|
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
|
||||||
|
| [Yuan 2](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
|
> 对于所有“基座”(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**。
|
||||||
>
|
>
|
||||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Chat)模型请务必使用**对应的模板**。
|
> 请务必在训练和推理时采用**完全一致**的模板。
|
||||||
|
|
||||||
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
|
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
|
||||||
|
|
||||||
|
您也可以在 [template.py](src/llamafactory/data/template.py) 中添加自己的对话模板。
|
||||||
|
|
||||||
## 训练方法
|
## 训练方法
|
||||||
|
|
||||||
@@ -111,9 +196,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
|
| KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
> [!NOTE]
|
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
|
| SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||||
|
|
||||||
## 数据集
|
## 数据集
|
||||||
|
|
||||||
@@ -126,6 +211,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
|
||||||
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
|
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
|
||||||
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
|
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
|
||||||
|
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
|
||||||
|
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
|
||||||
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
|
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
|
||||||
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
|
||||||
|
|
||||||
@@ -133,12 +220,12 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
|
|
||||||
<details><summary>指令微调数据集</summary>
|
<details><summary>指令微调数据集</summary>
|
||||||
|
|
||||||
|
- [Identity (en&zh)](data/identity.json)
|
||||||
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
||||||
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||||
- [Self-cognition (zh)](data/self_cognition.json)
|
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
||||||
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
|
|
||||||
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
||||||
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
||||||
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
||||||
@@ -147,35 +234,56 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
|
|||||||
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
||||||
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
||||||
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
|
||||||
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
|
||||||
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
|
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
|
||||||
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
||||||
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
||||||
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
||||||
|
- [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
|
||||||
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
|
||||||
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
||||||
|
- [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
|
||||||
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
|
||||||
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
|
||||||
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
|
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
|
||||||
|
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
|
||||||
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
|
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
|
||||||
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
|
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
|
||||||
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
|
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
|
||||||
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
|
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
|
||||||
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
|
||||||
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
||||||
|
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
|
||||||
|
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
|
||||||
|
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
|
||||||
|
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
|
||||||
|
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
|
||||||
|
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
|
||||||
|
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
|
||||||
|
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
|
||||||
|
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
|
||||||
|
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
|
||||||
|
- [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
|
||||||
|
- [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
|
||||||
|
- [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
|
||||||
|
- [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
|
||||||
|
- [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
|
||||||
|
- [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<details><summary>偏好数据集</summary>
|
<details><summary>偏好数据集</summary>
|
||||||
|
|
||||||
|
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||||
|
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
||||||
|
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||||
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
||||||
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||||
|
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
|
|
||||||
|
|
||||||
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
|
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
@@ -183,360 +291,354 @@ pip install --upgrade huggingface_hub
|
|||||||
huggingface-cli login
|
huggingface-cli login
|
||||||
```
|
```
|
||||||
|
|
||||||
## 软件依赖
|
## 软硬件依赖
|
||||||
|
|
||||||
- Python 3.8+ 和 PyTorch 1.13.1+
|
| 必需项 | 至少 | 推荐 |
|
||||||
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
|
| ------------ | ------- | --------- |
|
||||||
- sentencepiece, protobuf 和 tiktoken
|
| python | 3.8 | 3.11 |
|
||||||
- jieba, rouge-chinese 和 nltk (用于评估及预测)
|
| torch | 1.13.1 | 2.3.0 |
|
||||||
- gradio 和 matplotlib (用于网页端交互)
|
| transformers | 4.41.2 | 4.41.2 |
|
||||||
- uvicorn, fastapi 和 sse-starlette (用于 API)
|
| datasets | 2.16.0 | 2.19.2 |
|
||||||
|
| accelerate | 0.30.1 | 0.30.1 |
|
||||||
|
| peft | 0.11.1 | 0.11.1 |
|
||||||
|
| trl | 0.8.6 | 0.9.4 |
|
||||||
|
|
||||||
以及 **强而有力的 GPU**!
|
| 可选项 | 至少 | 推荐 |
|
||||||
|
| ------------ | ------- | --------- |
|
||||||
|
| CUDA | 11.6 | 12.2 |
|
||||||
|
| deepspeed | 0.10.0 | 0.14.0 |
|
||||||
|
| bitsandbytes | 0.39.0 | 0.43.1 |
|
||||||
|
| vllm | 0.4.3 | 0.4.3 |
|
||||||
|
| flash-attn | 2.3.0 | 2.5.9 |
|
||||||
|
|
||||||
|
### 硬件依赖
|
||||||
|
|
||||||
|
\* *估算值*
|
||||||
|
|
||||||
|
| 方法 | 精度 | 7B | 13B | 30B | 70B | 110B | 8x7B | 8x22B |
|
||||||
|
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
|
||||||
|
| Full | AMP | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
|
||||||
|
| Full | 16 | 60GB | 120GB | 300GB | 600GB | 900GB | 400GB | 1200GB |
|
||||||
|
| Freeze | 16 | 20GB | 40GB | 80GB | 200GB | 360GB | 160GB | 400GB |
|
||||||
|
| LoRA/GaLore/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 240GB | 120GB | 320GB |
|
||||||
|
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 140GB | 60GB | 160GB |
|
||||||
|
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 72GB | 30GB | 96GB |
|
||||||
|
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 48GB | 18GB | 48GB |
|
||||||
|
|
||||||
## 如何使用
|
## 如何使用
|
||||||
|
|
||||||
### 数据准备(可跳过)
|
### 安装 LLaMA Factory
|
||||||
|
|
||||||
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
|
|
||||||
|
|
||||||
> [!NOTE]
|
|
||||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README_zh.md`。
|
|
||||||
|
|
||||||
### 环境搭建(可跳过)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/hiyouga/LLaMA-Factory.git
|
|
||||||
conda create -n llama_factory python=3.10
|
|
||||||
conda activate llama_factory
|
|
||||||
cd LLaMA-Factory
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
|
|
||||||
```
|
|
||||||
|
|
||||||
### 单 GPU 训练
|
|
||||||
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
|
> 此步骤为必需。
|
||||||
|
|
||||||
#### 预训练
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
|
||||||
--stage pt \
|
cd LLaMA-Factory
|
||||||
--model_name_or_path path_to_llama_model \
|
pip install -e ".[torch,metrics]"
|
||||||
--do_train \
|
|
||||||
--dataset wiki_demo \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir path_to_pt_checkpoint \
|
|
||||||
--overwrite_cache \
|
|
||||||
--per_device_train_batch_size 4 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 指令监督微调
|
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、qwen、modelscope、quality
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||||
|
|
||||||
|
<details><summary>Windows 用户指南</summary>
|
||||||
|
|
||||||
|
如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
|
||||||
--stage sft \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_train \
|
|
||||||
--dataset alpaca_gpt4_zh \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--output_dir path_to_sft_checkpoint \
|
|
||||||
--overwrite_cache \
|
|
||||||
--per_device_train_batch_size 4 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 5e-5 \
|
|
||||||
--num_train_epochs 3.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 奖励模型训练
|
如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details><summary>昇腾 NPU 用户指南</summary>
|
||||||
|
|
||||||
|
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
|
||||||
--stage rm \
|
# 安装 CANN Toolkit
|
||||||
--model_name_or_path path_to_llama_model \
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
||||||
--do_train \
|
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
||||||
--dataset comparison_gpt4_zh \
|
|
||||||
--template default \
|
# 安装 CANN Kernels
|
||||||
--finetuning_type lora \
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
||||||
--lora_target q_proj,v_proj \
|
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
# 设置环境变量
|
||||||
--output_dir path_to_rm_checkpoint \
|
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-6 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### PPO 训练
|
| 依赖项 | 至少 | 推荐 |
|
||||||
|
| ------------ | ------- | ----------- |
|
||||||
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
|
| torch | 2.1.0 | 2.1.0 |
|
||||||
|
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||||
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
|
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
|
||||||
|
|
||||||
|
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。
|
||||||
|
|
||||||
|
下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 数据准备
|
||||||
|
|
||||||
|
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
|
||||||
|
|
||||||
|
### 快速开始
|
||||||
|
|
||||||
|
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
--stage ppo \
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
--model_name_or_path path_to_llama_model \
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
--do_train \
|
|
||||||
--dataset alpaca_gpt4_zh \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
|
||||||
--reward_model path_to_rm_checkpoint \
|
|
||||||
--output_dir path_to_ppo_checkpoint \
|
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--top_k 0 \
|
|
||||||
--top_p 0.9 \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
> [!WARNING]
|
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
|
||||||
> 如果使用 fp16 精度进行 LLaMA-2 模型的 PPO 训练,请使用 `--per_device_train_batch_size=1`。
|
|
||||||
|
|
||||||
#### DPO 训练
|
> [!TIP]
|
||||||
|
> 使用 `llamafactory-cli help` 显示帮助信息。
|
||||||
|
|
||||||
|
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
llamafactory-cli webui
|
||||||
--stage dpo \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_train \
|
|
||||||
--dataset comparison_gpt4_zh \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--lora_target q_proj,v_proj \
|
|
||||||
--resume_lora_training False \
|
|
||||||
--checkpoint_dir path_to_sft_checkpoint \
|
|
||||||
--output_dir path_to_dpo_checkpoint \
|
|
||||||
--per_device_train_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 4 \
|
|
||||||
--lr_scheduler_type cosine \
|
|
||||||
--logging_steps 10 \
|
|
||||||
--save_steps 1000 \
|
|
||||||
--learning_rate 1e-5 \
|
|
||||||
--num_train_epochs 1.0 \
|
|
||||||
--plot_loss \
|
|
||||||
--fp16
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### 多 GPU 分布式训练
|
### 构建 Docker
|
||||||
|
|
||||||
#### 使用 Huggingface Accelerate
|
CUDA 用户:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
accelerate config # 首先配置分布式环境
|
cd docker/docker-cuda/
|
||||||
accelerate launch src/train_bash.py # 参数同上
|
docker-compose up -d
|
||||||
|
docker-compose exec llamafactory bash
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
|
昇腾 NPU 用户:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd docker/docker-npu/
|
||||||
|
docker-compose up -d
|
||||||
|
docker-compose exec llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
<details><summary>不使用 Docker Compose 构建</summary>
|
||||||
|
|
||||||
|
CUDA 用户:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
docker build -f ./docker/docker-cuda/Dockerfile \
|
||||||
|
--build-arg INSTALL_BNB=false \
|
||||||
|
--build-arg INSTALL_VLLM=false \
|
||||||
|
--build-arg INSTALL_DEEPSPEED=false \
|
||||||
|
--build-arg INSTALL_FLASHATTN=false \
|
||||||
|
--build-arg PIP_INDEX=https://pypi.org/simple \
|
||||||
|
-t llamafactory:latest .
|
||||||
|
|
||||||
|
docker run -dit --gpus=all \
|
||||||
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./data:/app/data \
|
||||||
|
-v ./output:/app/output \
|
||||||
|
-p 7860:7860 \
|
||||||
|
-p 8000:8000 \
|
||||||
|
--shm-size 16G \
|
||||||
|
--name llamafactory \
|
||||||
|
llamafactory:latest
|
||||||
|
|
||||||
|
docker exec -it llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
昇腾 NPU 用户:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 根据您的环境选择镜像
|
||||||
|
docker build -f ./docker/docker-npu/Dockerfile \
|
||||||
|
--build-arg INSTALL_DEEPSPEED=false \
|
||||||
|
--build-arg PIP_INDEX=https://pypi.org/simple \
|
||||||
|
-t llamafactory:latest .
|
||||||
|
|
||||||
|
# 根据您的资源更改 `device`
|
||||||
|
docker run -dit \
|
||||||
|
-v ./hf_cache:/root/.cache/huggingface \
|
||||||
|
-v ./ms_cache:/root/.cache/modelscope \
|
||||||
|
-v ./data:/app/data \
|
||||||
|
-v ./output:/app/output \
|
||||||
|
-v /usr/local/dcmi:/usr/local/dcmi \
|
||||||
|
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
|
||||||
|
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
|
||||||
|
-v /etc/ascend_install.info:/etc/ascend_install.info \
|
||||||
|
-p 7860:7860 \
|
||||||
|
-p 8000:8000 \
|
||||||
|
--device /dev/davinci0 \
|
||||||
|
--device /dev/davinci_manager \
|
||||||
|
--device /dev/devmm_svm \
|
||||||
|
--device /dev/hisi_hdc \
|
||||||
|
--shm-size 16G \
|
||||||
|
--name llamafactory \
|
||||||
|
llamafactory:latest
|
||||||
|
|
||||||
|
docker exec -it llamafactory bash
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details><summary>数据卷详情</summary>
|
||||||
|
|
||||||
|
- hf_cache:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
|
||||||
|
- data:宿主机中存放数据集的文件夹路径。
|
||||||
|
- output:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### 利用 vLLM 部署 OpenAI API
|
||||||
|
|
||||||
|
```bash
|
||||||
|
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
> API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。
|
||||||
|
|
||||||
|
### 从魔搭社区下载
|
||||||
|
|
||||||
|
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
||||||
|
```
|
||||||
|
|
||||||
|
将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
|
||||||
|
|
||||||
|
### 使用 W&B 面板
|
||||||
|
|
||||||
|
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
compute_environment: LOCAL_MACHINE
|
report_to: wandb
|
||||||
distributed_type: MULTI_GPU
|
run_name: test_run # 可选
|
||||||
downcast_bf16: 'no'
|
|
||||||
gpu_ids: all
|
|
||||||
machine_rank: 0
|
|
||||||
main_training_function: main
|
|
||||||
mixed_precision: fp16
|
|
||||||
num_machines: 1
|
|
||||||
num_processes: 4
|
|
||||||
rdzv_backend: static
|
|
||||||
same_network: true
|
|
||||||
tpu_env: []
|
|
||||||
tpu_use_cluster: false
|
|
||||||
tpu_use_sudo: false
|
|
||||||
use_cpu: false
|
|
||||||
```
|
```
|
||||||
|
|
||||||
</details>
|
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
|
||||||
|
|
||||||
#### 使用 DeepSpeed
|
|
||||||
|
|
||||||
```bash
|
|
||||||
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|
||||||
--deepspeed ds_config.json \
|
|
||||||
... # 参数同上
|
|
||||||
```
|
|
||||||
|
|
||||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
|
|
||||||
|
|
||||||
```json
|
|
||||||
{
|
|
||||||
"train_batch_size": "auto",
|
|
||||||
"train_micro_batch_size_per_gpu": "auto",
|
|
||||||
"gradient_accumulation_steps": "auto",
|
|
||||||
"gradient_clipping": "auto",
|
|
||||||
"zero_allow_untested_optimizer": true,
|
|
||||||
"fp16": {
|
|
||||||
"enabled": "auto",
|
|
||||||
"loss_scale": 0,
|
|
||||||
"initial_scale_power": 16,
|
|
||||||
"loss_scale_window": 1000,
|
|
||||||
"hysteresis": 2,
|
|
||||||
"min_loss_scale": 1
|
|
||||||
},
|
|
||||||
"zero_optimization": {
|
|
||||||
"stage": 2,
|
|
||||||
"allgather_partitions": true,
|
|
||||||
"allgather_bucket_size": 5e8,
|
|
||||||
"reduce_scatter": true,
|
|
||||||
"reduce_bucket_size": 5e8,
|
|
||||||
"overlap_comm": false,
|
|
||||||
"contiguous_gradients": true
|
|
||||||
}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
</details>
|
|
||||||
|
|
||||||
### 合并 LoRA 权重并导出完整模型
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/export_model.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--export_dir path_to_export
|
|
||||||
```
|
|
||||||
|
|
||||||
### API 服务
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/api_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
> [!TIP]
|
|
||||||
> 关于 API 文档请见 `http://localhost:8000/docs`。
|
|
||||||
|
|
||||||
### 命令行测试
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/cli_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
### 浏览器测试
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python src/web_demo.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint
|
|
||||||
```
|
|
||||||
|
|
||||||
### 模型评估
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--template vanilla \
|
|
||||||
--task ceval \
|
|
||||||
--split validation \
|
|
||||||
--lang zh \
|
|
||||||
--n_shot 5 \
|
|
||||||
--batch_size 4
|
|
||||||
```
|
|
||||||
|
|
||||||
### 模型预测
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|
||||||
--stage sft \
|
|
||||||
--model_name_or_path path_to_llama_model \
|
|
||||||
--do_predict \
|
|
||||||
--dataset alpaca_gpt4_zh \
|
|
||||||
--template default \
|
|
||||||
--finetuning_type lora \
|
|
||||||
--checkpoint_dir path_to_checkpoint \
|
|
||||||
--output_dir path_to_predict_result \
|
|
||||||
--per_device_eval_batch_size 8 \
|
|
||||||
--max_samples 100 \
|
|
||||||
--predict_with_generate \
|
|
||||||
--fp16
|
|
||||||
```
|
|
||||||
|
|
||||||
> [!WARNING]
|
|
||||||
> 如果使用 fp16 精度进行 LLaMA-2 模型的预测,请使用 `--per_device_eval_batch_size=1`。
|
|
||||||
|
|
||||||
> [!TIP]
|
|
||||||
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
|
||||||
|
|
||||||
## 使用了 LLaMA Factory 的项目
|
## 使用了 LLaMA Factory 的项目
|
||||||
|
|
||||||
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||||
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
|
||||||
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
|
||||||
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
|
||||||
|
|
||||||
> [!TIP]
|
<details><summary>点击显示</summary>
|
||||||
> 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
|
|
||||||
|
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
|
||||||
|
1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
|
||||||
|
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||||
|
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||||
|
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||||
|
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||||
|
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||||
|
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||||
|
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||||
|
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||||
|
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||||
|
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||||
|
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||||
|
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||||
|
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||||
|
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||||
|
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||||
|
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||||
|
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||||
|
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||||
|
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||||
|
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||||
|
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||||
|
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||||
|
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||||
|
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||||
|
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||||
|
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||||
|
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||||
|
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||||
|
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||||
|
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||||
|
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||||
|
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||||
|
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||||
|
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||||
|
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||||
|
1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
|
||||||
|
1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
|
||||||
|
1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
|
||||||
|
1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
|
||||||
|
1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
|
||||||
|
1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
|
||||||
|
1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
|
||||||
|
1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
|
||||||
|
1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
|
||||||
|
1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
|
||||||
|
1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
|
||||||
|
1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
|
||||||
|
1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
|
||||||
|
1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
|
||||||
|
1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
|
||||||
|
1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
|
||||||
|
1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
|
||||||
|
1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
|
||||||
|
1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
|
||||||
|
1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
|
||||||
|
1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
|
||||||
|
1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
|
||||||
|
1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
|
||||||
|
1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
|
||||||
|
1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
|
||||||
|
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
||||||
|
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
||||||
|
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
||||||
|
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
|
||||||
|
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
||||||
|
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||||
|
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
|
||||||
|
1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。
|
||||||
|
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
|
||||||
|
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
## 协议
|
## 协议
|
||||||
|
|
||||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||||
|
|
||||||
使用模型权重时,请遵循对应的模型协议:[Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
|
使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||||
|
|
||||||
## 引用
|
## 引用
|
||||||
|
|
||||||
如果您觉得此项目有帮助,请考虑以下列格式引用
|
如果您觉得此项目有帮助,请考虑以下列格式引用
|
||||||
|
|
||||||
```bibtex
|
```bibtex
|
||||||
@Misc{llama-factory,
|
@inproceedings{zheng2024llamafactory,
|
||||||
title = {LLaMA Factory},
|
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||||
author = {hiyouga},
|
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
||||||
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
|
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
||||||
year = {2023}
|
address={Bangkok, Thailand},
|
||||||
|
publisher={Association for Computational Linguistics},
|
||||||
|
year={2024},
|
||||||
|
url={http://arxiv.org/abs/2403.13372}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## 致谢
|
## 致谢
|
||||||
|
|
||||||
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
|
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[TRL](https://github.com/huggingface/trl)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
|
||||||
|
|
||||||
## Star History
|
## Star History
|
||||||
|
|
||||||
|
|||||||
328
data/README.md
328
data/README.md
@@ -1,77 +1,215 @@
|
|||||||
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
|
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
|
||||||
|
|
||||||
|
Currently we support datasets in **alpaca** and **sharegpt** format.
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)",
|
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
|
||||||
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
|
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
|
||||||
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)",
|
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
|
||||||
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
|
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
|
||||||
"subset": "the name of the subset. (optional, default: None)",
|
|
||||||
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
|
|
||||||
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
|
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
|
||||||
"columns": {
|
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
|
||||||
"prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)",
|
"subset": "the name of the subset. (optional, default: None)",
|
||||||
"query": "the column name in the dataset containing the queries. (default: input, for alpaca)",
|
"split": "the name of dataset split to be used. (optional, default: train)",
|
||||||
"response": "the column name in the dataset containing the responses. (default: output, for alpaca)",
|
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
|
||||||
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
|
"num_samples": "the number of samples in the dataset to be used. (optional, default: None)",
|
||||||
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
|
"columns (optional)": {
|
||||||
"role": "the key in the message represents the identity. (default: from, for sharegpt)",
|
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
|
||||||
"content": "the key in the message represents the content. (default: value, for sharegpt)"
|
"query": "the column name in the dataset containing the queries. (default: input)",
|
||||||
|
"response": "the column name in the dataset containing the responses. (default: output)",
|
||||||
|
"history": "the column name in the dataset containing the histories. (default: None)",
|
||||||
|
"messages": "the column name in the dataset containing the messages. (default: conversations)",
|
||||||
|
"system": "the column name in the dataset containing the system prompts. (default: None)",
|
||||||
|
"tools": "the column name in the dataset containing the tool description. (default: None)",
|
||||||
|
"images": "the column name in the dataset containing the image inputs. (default: None)",
|
||||||
|
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
|
||||||
|
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
|
||||||
|
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
|
||||||
|
},
|
||||||
|
"tags (optional, used for the sharegpt format)": {
|
||||||
|
"role_tag": "the key in the message represents the identity. (default: from)",
|
||||||
|
"content_tag": "the key in the message represents the content. (default: value)",
|
||||||
|
"user_tag": "the value of the role_tag represents the user. (default: human)",
|
||||||
|
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
|
||||||
|
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
|
||||||
|
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
|
||||||
|
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
|
## Alpaca Format
|
||||||
|
|
||||||
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
|
### Supervised Fine-Tuning Dataset
|
||||||
|
|
||||||
|
* [Example dataset](alpaca_en_demo.json)
|
||||||
|
|
||||||
|
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
|
||||||
|
|
||||||
|
The `system` column will be used as the system prompt if specified.
|
||||||
|
|
||||||
|
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
{
|
{
|
||||||
"instruction": "user instruction (required)",
|
"instruction": "human instruction (required)",
|
||||||
"input": "user input (optional)",
|
"input": "human input (optional)",
|
||||||
"output": "model response (required)",
|
"output": "model response (required)",
|
||||||
|
"system": "system prompt (optional)",
|
||||||
"history": [
|
"history": [
|
||||||
["user instruction in the first round (optional)", "model response in the first round (optional)"],
|
["human instruction in the first round (optional)", "model response in the first round (optional)"],
|
||||||
["user instruction in the second round (optional)", "model response in the second round (optional)"]
|
["human instruction in the second round (optional)", "model response in the second round (optional)"]
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
"columns": {
|
"columns": {
|
||||||
"prompt": "instruction",
|
"prompt": "instruction",
|
||||||
"query": "input",
|
"query": "input",
|
||||||
"response": "output",
|
"response": "output",
|
||||||
|
"system": "system",
|
||||||
"history": "history"
|
"history": "history"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
|
### Pre-training Dataset
|
||||||
|
|
||||||
The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
|
- [Example dataset](c4_demo.json)
|
||||||
|
|
||||||
For the pre-training datasets, only the `prompt` column will be used for training.
|
In pre-training, only the `text` column will be used for model learning.
|
||||||
|
|
||||||
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
|
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
[
|
||||||
"instruction": "user instruction",
|
{"text": "document"},
|
||||||
"input": "user input",
|
{"text": "document"}
|
||||||
"output": [
|
]
|
||||||
"chosen answer",
|
```
|
||||||
"rejected answer"
|
|
||||||
]
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "text"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
The dataset in sharegpt format should follow the below format:
|
### Preference Dataset
|
||||||
|
|
||||||
|
Preference datasets are used for reward modeling, DPO training and ORPO training.
|
||||||
|
|
||||||
|
It requires a better response in `chosen` column and a worse response in `rejected` column.
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "human instruction (required)",
|
||||||
|
"input": "human input (optional)",
|
||||||
|
"chosen": "chosen answer (required)",
|
||||||
|
"rejected": "rejected answer (required)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"chosen": "chosen",
|
||||||
|
"rejected": "rejected"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### KTO Dataset
|
||||||
|
|
||||||
|
- [Example dataset](kto_en_demo.json)
|
||||||
|
|
||||||
|
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "human instruction (required)",
|
||||||
|
"input": "human input (optional)",
|
||||||
|
"output": "model response (required)",
|
||||||
|
"kto_tag": "human feedback [true/false] (required)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
"kto_tag": "kto_tag"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Multimodal Dataset
|
||||||
|
|
||||||
|
- [Example dataset](mllm_demo.json)
|
||||||
|
|
||||||
|
Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "human instruction (required)",
|
||||||
|
"input": "human input (optional)",
|
||||||
|
"output": "model response (required)",
|
||||||
|
"images": [
|
||||||
|
"image path (required)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
"images": "images"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Sharegpt Format
|
||||||
|
|
||||||
|
### Supervised Fine-Tuning Dataset
|
||||||
|
|
||||||
|
- [Example dataset](glaive_toolcall_en_demo.json)
|
||||||
|
|
||||||
|
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
|
||||||
|
|
||||||
|
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
@@ -79,29 +217,135 @@ The dataset in sharegpt format should follow the below format:
|
|||||||
"conversations": [
|
"conversations": [
|
||||||
{
|
{
|
||||||
"from": "human",
|
"from": "human",
|
||||||
"value": "user instruction"
|
"value": "human instruction"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "function_call",
|
||||||
|
"value": "tool arguments"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "observation",
|
||||||
|
"value": "tool result"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"from": "gpt",
|
"from": "gpt",
|
||||||
"value": "model response"
|
"value": "model response"
|
||||||
}
|
}
|
||||||
|
],
|
||||||
|
"system": "system prompt (optional)",
|
||||||
|
"tools": "tool description (optional)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"columns": {
|
||||||
|
"messages": "conversations",
|
||||||
|
"system": "system",
|
||||||
|
"tools": "tools"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Preference Dataset
|
||||||
|
|
||||||
|
- [Example dataset](dpo_en_demo.json)
|
||||||
|
|
||||||
|
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"conversations": [
|
||||||
|
{
|
||||||
|
"from": "human",
|
||||||
|
"value": "human instruction"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "model response"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "human",
|
||||||
|
"value": "human instruction"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"chosen": {
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "chosen answer (required)"
|
||||||
|
},
|
||||||
|
"rejected": {
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "rejected answer (required)"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"messages": "conversations",
|
||||||
|
"chosen": "chosen",
|
||||||
|
"rejected": "rejected"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### OpenAI Format
|
||||||
|
|
||||||
|
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "system prompt (optional)"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "human instruction"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "model response"
|
||||||
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
|
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"dataset_name": {
|
"dataset_name": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
"columns": {
|
"columns": {
|
||||||
"messages": "conversations",
|
"messages": "messages"
|
||||||
"role": "from",
|
},
|
||||||
"content": "value"
|
"tags": {
|
||||||
|
"role_tag": "role",
|
||||||
|
"content_tag": "content",
|
||||||
|
"user_tag": "user",
|
||||||
|
"assistant_tag": "assistant",
|
||||||
|
"system_tag": "system"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order.
|
The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.
|
||||||
|
|
||||||
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.
|
Pre-training datasets are **incompatible** with the sharegpt format.
|
||||||
|
|||||||
@@ -1,36 +1,63 @@
|
|||||||
如果您使用自定义数据集,请务必在 `dataset_info.json` 文件中按照以下格式提供数据集定义。
|
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
|
||||||
|
|
||||||
|
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
"hf_hub_url": "Hugging Face 上的项目地址(若指定,则忽略下列三个参数)",
|
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
|
||||||
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
|
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
|
||||||
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
|
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
|
||||||
"file_sha1": "数据集文件的SHA-1哈希值(可选,留空不影响训练)",
|
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
|
||||||
"subset": "数据集子集的名称(可选,默认:None)",
|
|
||||||
"ranking": "是否为偏好数据集(可选,默认:False)",
|
|
||||||
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
|
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
|
||||||
"columns": {
|
"ranking": "是否为偏好数据集(可选,默认:False)",
|
||||||
"prompt": "数据集代表提示词的表头名称(默认:instruction,用于 alpaca 格式)",
|
"subset": "数据集子集的名称(可选,默认:None)",
|
||||||
"query": "数据集代表请求的表头名称(默认:input,用于 alpaca 格式)",
|
"split": "所使用的数据集切分(可选,默认:train)",
|
||||||
"response": "数据集代表回答的表头名称(默认:output,用于 alpaca 格式)",
|
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
|
||||||
"history": "数据集代表历史对话的表头名称(默认:None,用于 alpaca 格式)",
|
"num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
|
||||||
"messages": "数据集代表消息列表的表头名称(默认:conversations,用于 sharegpt 格式)",
|
"columns(可选)": {
|
||||||
"role": "消息中代表发送者身份的键名(默认:from,用于 sharegpt 格式)",
|
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
|
||||||
"content": "消息中代表文本内容的键名(默认:value,用于 sharegpt 格式)"
|
"query": "数据集代表请求的表头名称(默认:input)",
|
||||||
|
"response": "数据集代表回答的表头名称(默认:output)",
|
||||||
|
"history": "数据集代表历史对话的表头名称(默认:None)",
|
||||||
|
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
|
||||||
|
"system": "数据集代表系统提示的表头名称(默认:None)",
|
||||||
|
"tools": "数据集代表工具描述的表头名称(默认:None)",
|
||||||
|
"images": "数据集代表图像输入的表头名称(默认:None)",
|
||||||
|
"chosen": "数据集代表更优回答的表头名称(默认:None)",
|
||||||
|
"rejected": "数据集代表更差回答的表头名称(默认:None)",
|
||||||
|
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
|
||||||
|
},
|
||||||
|
"tags(可选,用于 sharegpt 格式)": {
|
||||||
|
"role_tag": "消息中代表发送者身份的键名(默认:from)",
|
||||||
|
"content_tag": "消息中代表文本内容的键名(默认:value)",
|
||||||
|
"user_tag": "消息中代表用户的 role_tag(默认:human)",
|
||||||
|
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
|
||||||
|
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
|
||||||
|
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
|
||||||
|
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
|
## Alpaca 格式
|
||||||
|
|
||||||
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
|
### 指令监督微调数据集
|
||||||
|
|
||||||
|
- [样例数据集](alpaca_zh_demo.json)
|
||||||
|
|
||||||
|
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
|
||||||
|
|
||||||
|
如果指定,`system` 列对应的内容将被作为系统提示词。
|
||||||
|
|
||||||
|
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
{
|
{
|
||||||
"instruction": "用户指令(必填)",
|
"instruction": "人类指令(必填)",
|
||||||
"input": "用户输入(选填)",
|
"input": "人类输入(选填)",
|
||||||
"output": "模型回答(必填)",
|
"output": "模型回答(必填)",
|
||||||
|
"system": "系统提示词(选填)",
|
||||||
"history": [
|
"history": [
|
||||||
["第一轮指令(选填)", "第一轮回答(选填)"],
|
["第一轮指令(选填)", "第一轮回答(选填)"],
|
||||||
["第二轮指令(选填)", "第二轮回答(选填)"]
|
["第二轮指令(选填)", "第二轮回答(选填)"]
|
||||||
@@ -39,39 +66,150 @@
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
"columns": {
|
"columns": {
|
||||||
"prompt": "instruction",
|
"prompt": "instruction",
|
||||||
"query": "input",
|
"query": "input",
|
||||||
"response": "output",
|
"response": "output",
|
||||||
|
"system": "system",
|
||||||
"history": "history"
|
"history": "history"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
其中 `prompt` 和 `response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
|
### 预训练数据集
|
||||||
|
|
||||||
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
|
- [样例数据集](c4_demo.json)
|
||||||
|
|
||||||
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
|
在预训练时,只有 `text` 列中的内容会用于模型学习。
|
||||||
|
|
||||||
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
|
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
[
|
||||||
"instruction": "用户指令",
|
{"text": "document"},
|
||||||
"input": "用户输入",
|
{"text": "document"}
|
||||||
"output": [
|
]
|
||||||
"优质回答",
|
```
|
||||||
"劣质回答"
|
|
||||||
]
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "text"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
而 sharegpt 格式的数据集按照以下方式组织:
|
### 偏好数据集
|
||||||
|
|
||||||
|
偏好数据集用于奖励模型训练、DPO 训练和 ORPO 训练。
|
||||||
|
|
||||||
|
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "人类指令(必填)",
|
||||||
|
"input": "人类输入(选填)",
|
||||||
|
"chosen": "优质回答(必填)",
|
||||||
|
"rejected": "劣质回答(必填)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"chosen": "chosen",
|
||||||
|
"rejected": "rejected"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### KTO 数据集
|
||||||
|
|
||||||
|
- [样例数据集](kto_en_demo.json)
|
||||||
|
|
||||||
|
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "人类指令(必填)",
|
||||||
|
"input": "人类输入(选填)",
|
||||||
|
"output": "模型回答(必填)",
|
||||||
|
"kto_tag": "人类反馈 [true/false](必填)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
"kto_tag": "kto_tag"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 多模态数据集
|
||||||
|
|
||||||
|
- [样例数据集](mllm_demo.json)
|
||||||
|
|
||||||
|
多模态数据集需要额外添加一个 `images` 列,包含输入图像的路径。目前我们仅支持单张图像输入。
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"instruction": "人类指令(必填)",
|
||||||
|
"input": "人类输入(选填)",
|
||||||
|
"output": "模型回答(必填)",
|
||||||
|
"images": [
|
||||||
|
"图像路径(必填)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"columns": {
|
||||||
|
"prompt": "instruction",
|
||||||
|
"query": "input",
|
||||||
|
"response": "output",
|
||||||
|
"images": "images"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Sharegpt 格式
|
||||||
|
|
||||||
|
### 指令监督微调数据集
|
||||||
|
|
||||||
|
- [样例数据集](glaive_toolcall_zh_demo.json)
|
||||||
|
|
||||||
|
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
|
||||||
|
|
||||||
|
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
|
||||||
|
|
||||||
```json
|
```json
|
||||||
[
|
[
|
||||||
@@ -79,29 +217,135 @@
|
|||||||
"conversations": [
|
"conversations": [
|
||||||
{
|
{
|
||||||
"from": "human",
|
"from": "human",
|
||||||
"value": "用户指令"
|
"value": "人类指令"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "function_call",
|
||||||
|
"value": "工具参数"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "observation",
|
||||||
|
"value": "工具结果"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"from": "gpt",
|
"from": "gpt",
|
||||||
"value": "模型回答"
|
"value": "模型回答"
|
||||||
}
|
}
|
||||||
|
],
|
||||||
|
"system": "系统提示词(选填)",
|
||||||
|
"tools": "工具描述(选填)"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"columns": {
|
||||||
|
"messages": "conversations",
|
||||||
|
"system": "system",
|
||||||
|
"tools": "tools"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 偏好数据集
|
||||||
|
|
||||||
|
- [样例数据集](dpo_zh_demo.json)
|
||||||
|
|
||||||
|
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"conversations": [
|
||||||
|
{
|
||||||
|
"from": "human",
|
||||||
|
"value": "人类指令"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "模型回答"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"from": "human",
|
||||||
|
"value": "人类指令"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"chosen": {
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "优质回答"
|
||||||
|
},
|
||||||
|
"rejected": {
|
||||||
|
"from": "gpt",
|
||||||
|
"value": "劣质回答"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
|
```json
|
||||||
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
|
"ranking": true,
|
||||||
|
"columns": {
|
||||||
|
"messages": "conversations",
|
||||||
|
"chosen": "chosen",
|
||||||
|
"rejected": "rejected"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### OpenAI 格式
|
||||||
|
|
||||||
|
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "系统提示词(选填)"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "人类指令"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "模型回答"
|
||||||
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
|
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
|
||||||
|
|
||||||
```json
|
```json
|
||||||
"数据集名称": {
|
"数据集名称": {
|
||||||
|
"file_name": "data.json",
|
||||||
|
"formatting": "sharegpt",
|
||||||
"columns": {
|
"columns": {
|
||||||
"messages": "conversations",
|
"messages": "messages"
|
||||||
"role": "from",
|
},
|
||||||
"content": "value"
|
"tags": {
|
||||||
|
"role_tag": "role",
|
||||||
|
"content_tag": "content",
|
||||||
|
"user_tag": "user",
|
||||||
|
"assistant_tag": "assistant",
|
||||||
|
"system_tag": "system"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
其中 `messages` 列必须为偶数长度的列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
|
Sharegpt 格式中的 KTO 数据集和多模态数据集与 alpaca 格式的类似。
|
||||||
|
|
||||||
预训练数据集和偏好数据集尚不支持 sharegpt 格式。
|
预训练数据集**不支持** sharegpt 格式。
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
3779ddbc040543ab1834ef216c983d6fcc06cc9a
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
fc9a6a3458caca2af8dafc6181773fe10c6d8657
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
25508714b7879a1e5a6764ba7f979a980f549f1a
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
7cb6a7d11455bddc3d495750a2392683d775b184
|
|
||||||
@@ -1,7 +1,11 @@
|
|||||||
import json
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
|
|
||||||
|
|
||||||
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||||
|
|
||||||
_DESCRIPTION = "BELLE multiturn chat dataset."
|
_DESCRIPTION = "BELLE multiturn chat dataset."
|
||||||
|
|
||||||
_CITATION = """\
|
_CITATION = """\
|
||||||
@@ -13,37 +17,25 @@ _CITATION = """\
|
|||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
_HOMEPAGE = "https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M"
|
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT)
|
||||||
_LICENSE = "gpl-3.0"
|
_LICENSE = "gpl-3.0"
|
||||||
_URL = "https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
|
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT)
|
||||||
|
|
||||||
|
|
||||||
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||||||
|
|
||||||
VERSION = datasets.Version("0.0.0")
|
VERSION = datasets.Version("0.0.0")
|
||||||
|
|
||||||
def _info(self):
|
def _info(self):
|
||||||
features = datasets.Features({
|
features = datasets.Features(
|
||||||
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
|
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
|
||||||
})
|
)
|
||||||
return datasets.DatasetInfo(
|
return datasets.DatasetInfo(
|
||||||
description=_DESCRIPTION,
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||||
features=features,
|
|
||||||
homepage=_HOMEPAGE,
|
|
||||||
license=_LICENSE,
|
|
||||||
citation=_CITATION
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||||
file_path = dl_manager.download(_URL)
|
file_path = dl_manager.download(_URL)
|
||||||
return [
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
||||||
datasets.SplitGenerator(
|
|
||||||
name=datasets.Split.TRAIN,
|
|
||||||
gen_kwargs={
|
|
||||||
"filepath": file_path
|
|
||||||
}
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
def _generate_examples(self, filepath: str):
|
def _generate_examples(self, filepath: str):
|
||||||
with open(filepath, "r", encoding="utf-8") as f:
|
with open(filepath, "r", encoding="utf-8") as f:
|
||||||
@@ -55,7 +47,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
|||||||
|
|
||||||
assist_idx = prompt.rfind("Assistant:")
|
assist_idx = prompt.rfind("Assistant:")
|
||||||
human_idx = prompt.rfind("Human:")
|
human_idx = prompt.rfind("Human:")
|
||||||
query = prompt[human_idx+6:assist_idx].strip()
|
query = prompt[human_idx + 6 : assist_idx].strip()
|
||||||
prompt = prompt[:human_idx].strip()
|
prompt = prompt[:human_idx].strip()
|
||||||
conversations.insert(0, {"from": "gpt", "value": response})
|
conversations.insert(0, {"from": "gpt", "value": response})
|
||||||
conversations.insert(0, {"from": "human", "value": query})
|
conversations.insert(0, {"from": "human", "value": query})
|
||||||
@@ -64,8 +56,8 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
|||||||
assist_idx = prompt.rfind("Assistant:")
|
assist_idx = prompt.rfind("Assistant:")
|
||||||
human_idx = prompt.rfind("Human:")
|
human_idx = prompt.rfind("Human:")
|
||||||
if human_idx != -1:
|
if human_idx != -1:
|
||||||
old_query = prompt[human_idx+6:assist_idx].strip()
|
old_query = prompt[human_idx + 6 : assist_idx].strip()
|
||||||
old_resp = prompt[assist_idx+10:].strip()
|
old_resp = prompt[assist_idx + 10 :].strip()
|
||||||
conversations.insert(0, {"from": "gpt", "value": old_resp})
|
conversations.insert(0, {"from": "gpt", "value": old_resp})
|
||||||
conversations.insert(0, {"from": "human", "value": old_query})
|
conversations.insert(0, {"from": "human", "value": old_query})
|
||||||
else:
|
else:
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
f5cb08305ff5dc9c17a09809c54c8c8834aadc70
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
aee47b7b443496e37808d7f34ef10403ff99bcc3
|
|
||||||
@@ -1,46 +0,0 @@
|
|||||||
import json
|
|
||||||
import datasets
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
|
|
||||||
_DESCRIPTION = "An example of dataset."
|
|
||||||
_CITATION = ""
|
|
||||||
_HOMEPAGE = ""
|
|
||||||
_LICENSE = ""
|
|
||||||
_URL = "examples.json"
|
|
||||||
|
|
||||||
|
|
||||||
class ExampleDataset(datasets.GeneratorBasedBuilder):
|
|
||||||
|
|
||||||
VERSION = datasets.Version("0.0.0")
|
|
||||||
|
|
||||||
def _info(self) -> datasets.DatasetInfo:
|
|
||||||
features = datasets.Features({
|
|
||||||
"instruction": datasets.Value("string"),
|
|
||||||
"input": datasets.Value("string"),
|
|
||||||
"output": datasets.Value("string"),
|
|
||||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
|
||||||
})
|
|
||||||
return datasets.DatasetInfo(
|
|
||||||
description=_DESCRIPTION,
|
|
||||||
features=features,
|
|
||||||
homepage=_HOMEPAGE,
|
|
||||||
license=_LICENSE,
|
|
||||||
citation=_CITATION
|
|
||||||
)
|
|
||||||
|
|
||||||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
|
||||||
file_path = dl_manager.download(_URL)
|
|
||||||
return [
|
|
||||||
datasets.SplitGenerator(
|
|
||||||
name=datasets.Split.TRAIN,
|
|
||||||
gen_kwargs={
|
|
||||||
"filepath": file_path
|
|
||||||
}
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
def _generate_examples(self, filepath: str) -> Dict[int, Dict[str, Any]]:
|
|
||||||
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
|
|
||||||
for key, example in enumerate(example_dataset):
|
|
||||||
yield key, example
|
|
||||||
@@ -1,62 +1,53 @@
|
|||||||
import json
|
import json
|
||||||
import datasets
|
import os
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
|
||||||
|
|
||||||
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||||
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
|
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
|
||||||
_CITATION = ""
|
_CITATION = ""
|
||||||
_HOMEPAGE = "https://huggingface.co/datasets/Anthropic/hh-rlhf"
|
_HOMEPAGE = "{}/datasets/Anthropic/hh-rlhf".format(_HF_ENDPOINT)
|
||||||
_LICENSE = "mit"
|
_LICENSE = "mit"
|
||||||
_URL = "https://huggingface.co/datasets/Anthropic/hh-rlhf/resolve/main/"
|
_URL = "{}/datasets/Anthropic/hh-rlhf/resolve/main/".format(_HF_ENDPOINT)
|
||||||
_URLS = {
|
_URLS = {
|
||||||
"train": [
|
"train": [
|
||||||
_URL + "harmless-base/train.jsonl.gz",
|
_URL + "harmless-base/train.jsonl.gz",
|
||||||
_URL + "helpful-base/train.jsonl.gz",
|
_URL + "helpful-base/train.jsonl.gz",
|
||||||
_URL + "helpful-online/train.jsonl.gz",
|
_URL + "helpful-online/train.jsonl.gz",
|
||||||
_URL + "helpful-rejection-sampled/train.jsonl.gz"
|
_URL + "helpful-rejection-sampled/train.jsonl.gz",
|
||||||
],
|
],
|
||||||
"test": [
|
"test": [
|
||||||
_URL + "harmless-base/test.jsonl.gz",
|
_URL + "harmless-base/test.jsonl.gz",
|
||||||
_URL + "helpful-base/test.jsonl.gz",
|
_URL + "helpful-base/test.jsonl.gz",
|
||||||
_URL + "helpful-online/test.jsonl.gz",
|
_URL + "helpful-online/test.jsonl.gz",
|
||||||
_URL + "helpful-rejection-sampled/test.jsonl.gz"
|
_URL + "helpful-rejection-sampled/test.jsonl.gz",
|
||||||
]
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
||||||
|
|
||||||
VERSION = datasets.Version("0.0.0")
|
VERSION = datasets.Version("0.0.0")
|
||||||
|
|
||||||
def _info(self) -> datasets.DatasetInfo:
|
def _info(self) -> datasets.DatasetInfo:
|
||||||
features = datasets.Features({
|
features = datasets.Features(
|
||||||
"instruction": datasets.Value("string"),
|
{
|
||||||
"output": datasets.Sequence(datasets.Value("string")),
|
"instruction": datasets.Value("string"),
|
||||||
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
"chosen": datasets.Value("string"),
|
||||||
})
|
"rejected": datasets.Value("string"),
|
||||||
|
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
||||||
|
}
|
||||||
|
)
|
||||||
return datasets.DatasetInfo(
|
return datasets.DatasetInfo(
|
||||||
description=_DESCRIPTION,
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||||
features=features,
|
|
||||||
homepage=_HOMEPAGE,
|
|
||||||
license=_LICENSE,
|
|
||||||
citation=_CITATION
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||||
file_path = dl_manager.download_and_extract(_URLS)
|
file_path = dl_manager.download_and_extract(_URLS)
|
||||||
return [
|
return [
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_path["train"]}),
|
||||||
name=datasets.Split.TRAIN,
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": file_path["test"]}),
|
||||||
gen_kwargs={
|
|
||||||
"filepaths": file_path["train"]
|
|
||||||
}
|
|
||||||
),
|
|
||||||
datasets.SplitGenerator(
|
|
||||||
name=datasets.Split.TEST,
|
|
||||||
gen_kwargs={
|
|
||||||
"filepaths": file_path["test"]
|
|
||||||
}
|
|
||||||
)
|
|
||||||
]
|
]
|
||||||
|
|
||||||
def _generate_examples(self, filepaths: List[str]):
|
def _generate_examples(self, filepaths: List[str]):
|
||||||
@@ -69,12 +60,12 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
|||||||
rejected = data["rejected"]
|
rejected = data["rejected"]
|
||||||
|
|
||||||
assist_idx = rejected.rfind("\n\nAssistant: ")
|
assist_idx = rejected.rfind("\n\nAssistant: ")
|
||||||
r_reject = rejected[assist_idx+13:].strip()
|
r_reject = rejected[assist_idx + 13 :].strip()
|
||||||
assist_idx = chosen.rfind("\n\nAssistant: ")
|
assist_idx = chosen.rfind("\n\nAssistant: ")
|
||||||
r_accept = chosen[assist_idx+13:].strip()
|
r_accept = chosen[assist_idx + 13 :].strip()
|
||||||
|
|
||||||
human_idx = chosen.rfind("\n\nHuman: ")
|
human_idx = chosen.rfind("\n\nHuman: ")
|
||||||
query = chosen[human_idx+9:assist_idx].strip()
|
query = chosen[human_idx + 9 : assist_idx].strip()
|
||||||
prompt = chosen[:human_idx]
|
prompt = chosen[:human_idx]
|
||||||
history = []
|
history = []
|
||||||
|
|
||||||
@@ -82,16 +73,12 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
|
|||||||
assist_idx = prompt.rfind("\n\nAssistant: ")
|
assist_idx = prompt.rfind("\n\nAssistant: ")
|
||||||
human_idx = prompt.rfind("\n\nHuman: ")
|
human_idx = prompt.rfind("\n\nHuman: ")
|
||||||
if human_idx != -1:
|
if human_idx != -1:
|
||||||
old_query = prompt[human_idx+9:assist_idx].strip()
|
old_query = prompt[human_idx + 9 : assist_idx].strip()
|
||||||
old_resp = prompt[assist_idx+13:].strip()
|
old_resp = prompt[assist_idx + 13 :].strip()
|
||||||
history.insert(0, (old_query, old_resp))
|
history.insert(0, (old_query, old_resp))
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
prompt = prompt[:human_idx]
|
prompt = prompt[:human_idx]
|
||||||
|
|
||||||
yield key, {
|
yield key, {"instruction": query, "chosen": r_accept, "rejected": r_reject, "history": history}
|
||||||
"instruction": query,
|
|
||||||
"output": [r_accept, r_reject],
|
|
||||||
"history": history
|
|
||||||
}
|
|
||||||
key += 1
|
key += 1
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
274079ea921762be356de85b18f13fa60b7ba8cb
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
57fd080be5bffe4153fe3ee26a175e3d56da30f3
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
38c89869c6aeca2a3af9ea1e09afe460f9b46810
|
|
||||||
@@ -1,7 +1,11 @@
|
|||||||
import json
|
import json
|
||||||
import datasets
|
import os
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
|
||||||
|
|
||||||
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
||||||
|
|
||||||
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
|
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
|
||||||
|
|
||||||
@@ -16,37 +20,25 @@ _CITATION = """\
|
|||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
_HOMEPAGE = "https://huggingface.co/datasets/stingning/ultrachat"
|
_HOMEPAGE = "{}/datasets/stingning/ultrachat".format(_HF_ENDPOINT)
|
||||||
_LICENSE = "cc-by-nc-4.0"
|
_LICENSE = "cc-by-nc-4.0"
|
||||||
_BASE_DATA_URL = "https://huggingface.co/datasets/stingning/ultrachat/resolve/main/train_{idx}.jsonl"
|
_BASE_DATA_URL = "{}/datasets/stingning/ultrachat/resolve/main/train_{{idx}}.jsonl".format(_HF_ENDPOINT)
|
||||||
|
|
||||||
|
|
||||||
class UltraChat(datasets.GeneratorBasedBuilder):
|
class UltraChat(datasets.GeneratorBasedBuilder):
|
||||||
|
|
||||||
VERSION = datasets.Version("0.0.0")
|
VERSION = datasets.Version("0.0.0")
|
||||||
|
|
||||||
def _info(self):
|
def _info(self):
|
||||||
features = datasets.Features({
|
features = datasets.Features(
|
||||||
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
|
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
|
||||||
})
|
)
|
||||||
return datasets.DatasetInfo(
|
return datasets.DatasetInfo(
|
||||||
description=_DESCRIPTION,
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
||||||
features=features,
|
|
||||||
homepage=_HOMEPAGE,
|
|
||||||
license=_LICENSE,
|
|
||||||
citation=_CITATION
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
||||||
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
|
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
|
||||||
return [
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": file_paths})]
|
||||||
datasets.SplitGenerator(
|
|
||||||
name=datasets.Split.TRAIN,
|
|
||||||
gen_kwargs={
|
|
||||||
"filepaths": file_paths
|
|
||||||
}
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
def _generate_examples(self, filepaths: List[str]):
|
def _generate_examples(self, filepaths: List[str]):
|
||||||
for filepath in filepaths:
|
for filepath in filepaths:
|
||||||
@@ -54,7 +46,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
|
|||||||
for row in f:
|
for row in f:
|
||||||
try:
|
try:
|
||||||
data = json.loads(row)
|
data = json.loads(row)
|
||||||
except:
|
except Exception:
|
||||||
continue
|
continue
|
||||||
key: int = data["id"]
|
key: int = data["id"]
|
||||||
content: List[str] = data["data"]
|
content: List[str] = data["data"]
|
||||||
@@ -62,8 +54,7 @@ class UltraChat(datasets.GeneratorBasedBuilder):
|
|||||||
content.pop(-1)
|
content.pop(-1)
|
||||||
if len(content) < 2:
|
if len(content) < 2:
|
||||||
continue
|
continue
|
||||||
conversations = [{
|
conversations = [
|
||||||
"from": "human" if i % 2 == 0 else "gpt",
|
{"from": "human" if i % 2 == 0 else "gpt", "value": content[i]} for i in range(len(content))
|
||||||
"value": content[i]
|
]
|
||||||
} for i in range(len(content))]
|
|
||||||
yield key, {"conversations": conversations}
|
yield key, {"conversations": conversations}
|
||||||
|
|||||||
30
data/wiki_demo.txt
Normal file
30
data/wiki_demo.txt
Normal file
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
|||||||
c9cf509b7fdac5490cfd6dae72c2d7b8a60af6cb
|
|
||||||
59
docker/docker-cuda/Dockerfile
Normal file
59
docker/docker-cuda/Dockerfile
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
# Use the NVIDIA official image with PyTorch 2.3.0
|
||||||
|
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-02.html
|
||||||
|
FROM nvcr.io/nvidia/pytorch:24.02-py3
|
||||||
|
|
||||||
|
# Define environments
|
||||||
|
ENV MAX_JOBS=4
|
||||||
|
ENV FLASH_ATTENTION_FORCE_BUILD=TRUE
|
||||||
|
ENV VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||||
|
|
||||||
|
# Define installation arguments
|
||||||
|
ARG INSTALL_BNB=false
|
||||||
|
ARG INSTALL_VLLM=false
|
||||||
|
ARG INSTALL_DEEPSPEED=false
|
||||||
|
ARG INSTALL_FLASHATTN=false
|
||||||
|
ARG PIP_INDEX=https://pypi.org/simple
|
||||||
|
|
||||||
|
# Set the working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install the requirements
|
||||||
|
COPY requirements.txt /app
|
||||||
|
RUN pip config set global.index-url "$PIP_INDEX" && \
|
||||||
|
pip config set global.extra-index-url "$PIP_INDEX" && \
|
||||||
|
python -m pip install --upgrade pip && \
|
||||||
|
python -m pip install -r requirements.txt
|
||||||
|
|
||||||
|
# Copy the rest of the application into the image
|
||||||
|
COPY . /app
|
||||||
|
|
||||||
|
# Install the LLaMA Factory
|
||||||
|
RUN EXTRA_PACKAGES="metrics"; \
|
||||||
|
if [ "$INSTALL_BNB" == "true" ]; then \
|
||||||
|
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
|
||||||
|
fi; \
|
||||||
|
if [ "$INSTALL_VLLM" == "true" ]; then \
|
||||||
|
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
|
||||||
|
fi; \
|
||||||
|
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
|
||||||
|
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
|
||||||
|
fi; \
|
||||||
|
pip install -e ".[$EXTRA_PACKAGES]"
|
||||||
|
|
||||||
|
# Rebuild flash attention
|
||||||
|
RUN pip uninstall -y transformer-engine flash-attn && \
|
||||||
|
if [ "$INSTALL_FLASHATTN" == "true" ]; then \
|
||||||
|
pip uninstall -y ninja && pip install ninja && \
|
||||||
|
pip install --no-cache-dir flash-attn --no-build-isolation; \
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Set up volumes
|
||||||
|
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
|
||||||
|
|
||||||
|
# Expose port 7860 for the LLaMA Board
|
||||||
|
ENV GRADIO_SERVER_PORT 7860
|
||||||
|
EXPOSE 7860
|
||||||
|
|
||||||
|
# Expose port 8000 for the API service
|
||||||
|
ENV API_PORT 8000
|
||||||
|
EXPOSE 8000
|
||||||
32
docker/docker-cuda/docker-compose.yml
Normal file
32
docker/docker-cuda/docker-compose.yml
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
services:
|
||||||
|
llamafactory:
|
||||||
|
build:
|
||||||
|
dockerfile: ./docker/docker-cuda/Dockerfile
|
||||||
|
context: ../..
|
||||||
|
args:
|
||||||
|
INSTALL_BNB: false
|
||||||
|
INSTALL_VLLM: false
|
||||||
|
INSTALL_DEEPSPEED: false
|
||||||
|
INSTALL_FLASHATTN: false
|
||||||
|
PIP_INDEX: https://pypi.org/simple
|
||||||
|
container_name: llamafactory
|
||||||
|
volumes:
|
||||||
|
- ../../hf_cache:/root/.cache/huggingface
|
||||||
|
- ../../ms_cache:/root/.cache/modelscope
|
||||||
|
- ../../data:/app/data
|
||||||
|
- ../../output:/app/output
|
||||||
|
ports:
|
||||||
|
- "7860:7860"
|
||||||
|
- "8000:8000"
|
||||||
|
ipc: host
|
||||||
|
tty: true
|
||||||
|
stdin_open: true
|
||||||
|
command: bash
|
||||||
|
deploy:
|
||||||
|
resources:
|
||||||
|
reservations:
|
||||||
|
devices:
|
||||||
|
- driver: nvidia
|
||||||
|
count: "all"
|
||||||
|
capabilities: [gpu]
|
||||||
|
restart: unless-stopped
|
||||||
45
docker/docker-npu/Dockerfile
Normal file
45
docker/docker-npu/Dockerfile
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# Use the Ubuntu 22.04 image with CANN 8.0.rc1
|
||||||
|
# More versions can be found at https://hub.docker.com/r/cosdt/cann/tags
|
||||||
|
# FROM cosdt/cann:8.0.rc1-910-ubuntu22.04
|
||||||
|
FROM cosdt/cann:8.0.rc1-910b-ubuntu22.04
|
||||||
|
# FROM cosdt/cann:8.0.rc1-910-openeuler22.03
|
||||||
|
# FROM cosdt/cann:8.0.rc1-910b-openeuler22.03
|
||||||
|
|
||||||
|
# Define environments
|
||||||
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
|
|
||||||
|
# Define installation arguments
|
||||||
|
ARG INSTALL_DEEPSPEED=false
|
||||||
|
ARG PIP_INDEX=https://pypi.org/simple
|
||||||
|
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
|
||||||
|
|
||||||
|
# Set the working directory
|
||||||
|
WORKDIR /app
|
||||||
|
|
||||||
|
# Install the requirements
|
||||||
|
COPY requirements.txt /app
|
||||||
|
RUN pip config set global.index-url "$PIP_INDEX" && \
|
||||||
|
pip config set global.extra-index-url "$TORCH_INDEX" && \
|
||||||
|
python -m pip install --upgrade pip && \
|
||||||
|
python -m pip install -r requirements.txt
|
||||||
|
|
||||||
|
# Copy the rest of the application into the image
|
||||||
|
COPY . /app
|
||||||
|
|
||||||
|
# Install the LLaMA Factory
|
||||||
|
RUN EXTRA_PACKAGES="torch-npu,metrics"; \
|
||||||
|
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
|
||||||
|
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
|
||||||
|
fi; \
|
||||||
|
pip install -e ".[$EXTRA_PACKAGES]"
|
||||||
|
|
||||||
|
# Set up volumes
|
||||||
|
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ]
|
||||||
|
|
||||||
|
# Expose port 7860 for the LLaMA Board
|
||||||
|
ENV GRADIO_SERVER_PORT 7860
|
||||||
|
EXPOSE 7860
|
||||||
|
|
||||||
|
# Expose port 8000 for the API service
|
||||||
|
ENV API_PORT 8000
|
||||||
|
EXPOSE 8000
|
||||||
31
docker/docker-npu/docker-compose.yml
Normal file
31
docker/docker-npu/docker-compose.yml
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
services:
|
||||||
|
llamafactory:
|
||||||
|
build:
|
||||||
|
dockerfile: ./docker/docker-npu/Dockerfile
|
||||||
|
context: ../..
|
||||||
|
args:
|
||||||
|
INSTALL_DEEPSPEED: false
|
||||||
|
PIP_INDEX: https://pypi.org/simple
|
||||||
|
container_name: llamafactory
|
||||||
|
volumes:
|
||||||
|
- ../../hf_cache:/root/.cache/huggingface
|
||||||
|
- ../../ms_cache:/root/.cache/modelscope
|
||||||
|
- ../../data:/app/data
|
||||||
|
- ../../output:/app/output
|
||||||
|
- /usr/local/dcmi:/usr/local/dcmi
|
||||||
|
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
|
||||||
|
- /usr/local/Ascend/driver:/usr/local/Ascend/driver
|
||||||
|
- /etc/ascend_install.info:/etc/ascend_install.info
|
||||||
|
ports:
|
||||||
|
- "7860:7860"
|
||||||
|
- "8000:8000"
|
||||||
|
ipc: host
|
||||||
|
tty: true
|
||||||
|
stdin_open: true
|
||||||
|
command: bash
|
||||||
|
devices:
|
||||||
|
- /dev/davinci0
|
||||||
|
- /dev/davinci_manager
|
||||||
|
- /dev/devmm_svm
|
||||||
|
- /dev/hisi_hdc
|
||||||
|
restart: unless-stopped
|
||||||
@@ -11,6 +11,7 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
@@ -133,25 +134,19 @@ class Ceval(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -11,6 +11,7 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
@@ -37,73 +38,73 @@ _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internatio
|
|||||||
_URL = "cmmlu.zip"
|
_URL = "cmmlu.zip"
|
||||||
|
|
||||||
task_list = [
|
task_list = [
|
||||||
'agronomy',
|
"agronomy",
|
||||||
'anatomy',
|
"anatomy",
|
||||||
'ancient_chinese',
|
"ancient_chinese",
|
||||||
'arts',
|
"arts",
|
||||||
'astronomy',
|
"astronomy",
|
||||||
'business_ethics',
|
"business_ethics",
|
||||||
'chinese_civil_service_exam',
|
"chinese_civil_service_exam",
|
||||||
'chinese_driving_rule',
|
"chinese_driving_rule",
|
||||||
'chinese_food_culture',
|
"chinese_food_culture",
|
||||||
'chinese_foreign_policy',
|
"chinese_foreign_policy",
|
||||||
'chinese_history',
|
"chinese_history",
|
||||||
'chinese_literature',
|
"chinese_literature",
|
||||||
'chinese_teacher_qualification',
|
"chinese_teacher_qualification",
|
||||||
'clinical_knowledge',
|
"clinical_knowledge",
|
||||||
'college_actuarial_science',
|
"college_actuarial_science",
|
||||||
'college_education',
|
"college_education",
|
||||||
'college_engineering_hydrology',
|
"college_engineering_hydrology",
|
||||||
'college_law',
|
"college_law",
|
||||||
'college_mathematics',
|
"college_mathematics",
|
||||||
'college_medical_statistics',
|
"college_medical_statistics",
|
||||||
'college_medicine',
|
"college_medicine",
|
||||||
'computer_science',
|
"computer_science",
|
||||||
'computer_security',
|
"computer_security",
|
||||||
'conceptual_physics',
|
"conceptual_physics",
|
||||||
'construction_project_management',
|
"construction_project_management",
|
||||||
'economics',
|
"economics",
|
||||||
'education',
|
"education",
|
||||||
'electrical_engineering',
|
"electrical_engineering",
|
||||||
'elementary_chinese',
|
"elementary_chinese",
|
||||||
'elementary_commonsense',
|
"elementary_commonsense",
|
||||||
'elementary_information_and_technology',
|
"elementary_information_and_technology",
|
||||||
'elementary_mathematics',
|
"elementary_mathematics",
|
||||||
'ethnology',
|
"ethnology",
|
||||||
'food_science',
|
"food_science",
|
||||||
'genetics',
|
"genetics",
|
||||||
'global_facts',
|
"global_facts",
|
||||||
'high_school_biology',
|
"high_school_biology",
|
||||||
'high_school_chemistry',
|
"high_school_chemistry",
|
||||||
'high_school_geography',
|
"high_school_geography",
|
||||||
'high_school_mathematics',
|
"high_school_mathematics",
|
||||||
'high_school_physics',
|
"high_school_physics",
|
||||||
'high_school_politics',
|
"high_school_politics",
|
||||||
'human_sexuality',
|
"human_sexuality",
|
||||||
'international_law',
|
"international_law",
|
||||||
'journalism',
|
"journalism",
|
||||||
'jurisprudence',
|
"jurisprudence",
|
||||||
'legal_and_moral_basis',
|
"legal_and_moral_basis",
|
||||||
'logical',
|
"logical",
|
||||||
'machine_learning',
|
"machine_learning",
|
||||||
'management',
|
"management",
|
||||||
'marketing',
|
"marketing",
|
||||||
'marxist_theory',
|
"marxist_theory",
|
||||||
'modern_chinese',
|
"modern_chinese",
|
||||||
'nutrition',
|
"nutrition",
|
||||||
'philosophy',
|
"philosophy",
|
||||||
'professional_accounting',
|
"professional_accounting",
|
||||||
'professional_law',
|
"professional_law",
|
||||||
'professional_medicine',
|
"professional_medicine",
|
||||||
'professional_psychology',
|
"professional_psychology",
|
||||||
'public_relations',
|
"public_relations",
|
||||||
'security_study',
|
"security_study",
|
||||||
'sociology',
|
"sociology",
|
||||||
'sports_science',
|
"sports_science",
|
||||||
'traditional_chinese_medicine',
|
"traditional_chinese_medicine",
|
||||||
'virology',
|
"virology",
|
||||||
'world_history',
|
"world_history",
|
||||||
'world_religions',
|
"world_religions",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -11,6 +11,7 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
@@ -136,31 +137,25 @@ class MMLU(datasets.GeneratorBasedBuilder):
|
|||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TEST,
|
name=datasets.Split.TEST,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "test", f"{task_name}_test.csv"),
|
||||||
data_dir, "data", "test", f"{task_name}_test.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.VALIDATION,
|
name=datasets.Split.VALIDATION,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "val", f"{task_name}_val.csv"),
|
||||||
data_dir, "data", "val", f"{task_name}_val.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
datasets.SplitGenerator(
|
datasets.SplitGenerator(
|
||||||
name=datasets.Split.TRAIN,
|
name=datasets.Split.TRAIN,
|
||||||
gen_kwargs={
|
gen_kwargs={
|
||||||
"filepath": os.path.join(
|
"filepath": os.path.join(data_dir, "data", "dev", f"{task_name}_dev.csv"),
|
||||||
data_dir, "data", "dev", f"{task_name}_dev.csv"
|
|
||||||
),
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
||||||
def _generate_examples(self, filepath):
|
def _generate_examples(self, filepath):
|
||||||
df = pd.read_csv(filepath)
|
df = pd.read_csv(filepath, header=None)
|
||||||
df.columns = ["question", "A", "B", "C", "D", "answer"]
|
df.columns = ["question", "A", "B", "C", "D", "answer"]
|
||||||
|
|
||||||
for i, instance in enumerate(df.to_dict(orient="records")):
|
for i, instance in enumerate(df.to_dict(orient="records")):
|
||||||
|
|||||||
221
examples/README.md
Normal file
221
examples/README.md
Normal file
@@ -0,0 +1,221 @@
|
|||||||
|
We provide diverse examples about fine-tuning LLMs.
|
||||||
|
|
||||||
|
Make sure to execute these commands in the `LLaMA-Factory` directory.
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
|
||||||
|
- [LoRA Fine-Tuning](#lora-fine-tuning)
|
||||||
|
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
|
||||||
|
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
|
||||||
|
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
|
||||||
|
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
||||||
|
- [Extras](#extras)
|
||||||
|
|
||||||
|
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### LoRA Fine-Tuning
|
||||||
|
|
||||||
|
#### (Continuous) Pre-Training
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Multimodal Supervised Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Reward Modeling
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### PPO Training
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### DPO/ORPO/SimPO Training
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### KTO Training
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Preprocess Dataset
|
||||||
|
|
||||||
|
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning on Multiple Nodes
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### QLoRA Fine-Tuning
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes/HQQ/EETQ Quantization (Recommended)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Full-Parameter Fine-Tuning
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning on Single Node
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning on Multiple Nodes
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Merging LoRA Adapters and Quantization
|
||||||
|
|
||||||
|
#### Merge LoRA Adapters
|
||||||
|
|
||||||
|
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Quantizing Model using AutoGPTQ
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Inferring LoRA Fine-Tuned Models
|
||||||
|
|
||||||
|
#### Use CLI
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Use Web UI
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Launch OpenAI-style API
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Extras
|
||||||
|
|
||||||
|
#### Full-Parameter Fine-Tuning using GaLore
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Full-Parameter Fine-Tuning using BAdam
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LoRA+ Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### PiSSA Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Mixture-of-Depths Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LLaMA-Pro Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/llama_pro/expand.sh
|
||||||
|
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### FSDP+QLoRA Fine-Tuning
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/fsdp_qlora/train.sh
|
||||||
|
```
|
||||||
221
examples/README_zh.md
Normal file
221
examples/README_zh.md
Normal file
@@ -0,0 +1,221 @@
|
|||||||
|
我们提供了多样化的大模型微调示例脚本。
|
||||||
|
|
||||||
|
请确保在 `LLaMA-Factory` 目录下执行下述命令。
|
||||||
|
|
||||||
|
## 目录
|
||||||
|
|
||||||
|
- [LoRA 微调](#lora-微调)
|
||||||
|
- [QLoRA 微调](#qlora-微调)
|
||||||
|
- [全参数微调](#全参数微调)
|
||||||
|
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
||||||
|
- [推理 LoRA 模型](#推理-lora-模型)
|
||||||
|
- [杂项](#杂项)
|
||||||
|
|
||||||
|
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
|
||||||
|
|
||||||
|
## 示例
|
||||||
|
|
||||||
|
### LoRA 微调
|
||||||
|
|
||||||
|
#### (增量)预训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 多模态指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 奖励模型训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### PPO 训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### DPO/ORPO/SimPO 训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### KTO 训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 预处理数据集
|
||||||
|
|
||||||
|
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 在 MMLU/CMMLU/C-Eval 上评估
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 多机指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### QLoRA 微调
|
||||||
|
|
||||||
|
#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 全参数微调
|
||||||
|
|
||||||
|
#### 在单机上进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 在多机上进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 合并 LoRA 适配器与模型量化
|
||||||
|
|
||||||
|
#### 合并 LoRA 适配器
|
||||||
|
|
||||||
|
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 AutoGPTQ 量化模型
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 推理 LoRA 模型
|
||||||
|
|
||||||
|
#### 使用命令行接口
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用浏览器界面
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 启动 OpenAI 风格 API
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 杂项
|
||||||
|
|
||||||
|
#### 使用 GaLore 进行全参数训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 使用 BAdam 进行全参数训练
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LoRA+ 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### PiSSA 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 深度混合微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LLaMA-Pro 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/llama_pro/expand.sh
|
||||||
|
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### FSDP+QLoRA 微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
bash examples/extras/fsdp_qlora/train.sh
|
||||||
|
```
|
||||||
25
examples/accelerate/fsdp_config.yaml
Normal file
25
examples/accelerate/fsdp_config.yaml
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
distributed_type: FSDP
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
fsdp_config:
|
||||||
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||||
|
fsdp_backward_prefetch: BACKWARD_PRE
|
||||||
|
fsdp_forward_prefetch: false
|
||||||
|
fsdp_cpu_ram_efficient_loading: true
|
||||||
|
fsdp_offload_params: true # offload may affect training speed
|
||||||
|
fsdp_sharding_strategy: FULL_SHARD
|
||||||
|
fsdp_state_dict_type: FULL_STATE_DICT
|
||||||
|
fsdp_sync_module_states: true
|
||||||
|
fsdp_use_orig_params: true
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: fp16 # or bf16
|
||||||
|
num_machines: 1 # the number of nodes
|
||||||
|
num_processes: 2 # the number of GPUs in all nodes
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
||||||
41
examples/extras/badam/llama3_full_sft.yaml
Normal file
41
examples/extras/badam/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
use_badam: true
|
||||||
|
badam_mode: layer
|
||||||
|
badam_switch_mode: ascending
|
||||||
|
badam_switch_interval: 50
|
||||||
|
badam_verbose: 2
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
42
examples/extras/badam/llama3_full_sft_ds3.yaml
Normal file
42
examples/extras/badam/llama3_full_sft_ds3.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
use_badam: true
|
||||||
|
badam_mode: layer
|
||||||
|
badam_switch_mode: ascending
|
||||||
|
badam_switch_interval: 50
|
||||||
|
badam_verbose: 2
|
||||||
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
40
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
Normal file
40
examples/extras/fsdp_qlora/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
quantization_bit: 4
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
6
examples/extras/fsdp_qlora/train.sh
Normal file
6
examples/extras/fsdp_qlora/train.sh
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
||||||
|
--config_file examples/accelerate/fsdp_config.yaml \
|
||||||
|
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml
|
||||||
42
examples/extras/galore/llama3_full_sft.yaml
Normal file
42
examples/extras/galore/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
use_galore: true
|
||||||
|
galore_layerwise: true
|
||||||
|
galore_target: mlp,self_attn
|
||||||
|
galore_rank: 128
|
||||||
|
galore_scale: 2.0
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 1
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
pure_bf16: true
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
6
examples/extras/llama_pro/expand.sh
Normal file
6
examples/extras/llama_pro/expand.sh
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
python scripts/llama_pro.py \
|
||||||
|
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||||
|
--output_dir models/llama3-8b-instruct-pro \
|
||||||
|
--num_expand 8
|
||||||
41
examples/extras/llama_pro/llama3_freeze_sft.yaml
Normal file
41
examples/extras/llama_pro/llama3_freeze_sft.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: models/llama3-8b-instruct-pro
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: freeze
|
||||||
|
freeze_trainable_layers: 8
|
||||||
|
freeze_trainable_modules: all
|
||||||
|
use_llama_pro: true
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
40
examples/extras/loraplus/llama3_lora_sft.yaml
Normal file
40
examples/extras/loraplus/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
loraplus_lr_ratio: 16.0
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
40
examples/extras/mod/llama3_full_sft.yaml
Normal file
40
examples/extras/mod/llama3_full_sft.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
mixture_of_depths: convert
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b-mod/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
optim: paged_adamw_8bit
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
pure_bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
42
examples/extras/pissa/llama3_lora_sft.yaml
Normal file
42
examples/extras/pissa/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
pissa_init: true
|
||||||
|
pissa_iter: 16
|
||||||
|
pissa_convert: true
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
2
examples/inference/llama3.yaml
Normal file
2
examples/inference/llama3.yaml
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
4
examples/inference/llama3_lora_sft.yaml
Normal file
4
examples/inference/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
template: llama3
|
||||||
|
finetuning_type: lora
|
||||||
4
examples/inference/llama3_vllm.yaml
Normal file
4
examples/inference/llama3_vllm.yaml
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
|
infer_backend: vllm
|
||||||
|
vllm_enforce_eager: true
|
||||||
3
examples/inference/llava1_5.yaml
Normal file
3
examples/inference/llava1_5.yaml
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||||
|
template: vicuna
|
||||||
|
visual_inputs: true
|
||||||
11
examples/merge_lora/llama3_gptq.yaml
Normal file
11
examples/merge_lora/llama3_gptq.yaml
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
template: llama3
|
||||||
|
|
||||||
|
### export
|
||||||
|
export_dir: models/llama3_gptq
|
||||||
|
export_quantization_bit: 4
|
||||||
|
export_quantization_dataset: data/c4_demo.json
|
||||||
|
export_size: 2
|
||||||
|
export_device: cpu
|
||||||
|
export_legacy_format: false
|
||||||
13
examples/merge_lora/llama3_lora_sft.yaml
Normal file
13
examples/merge_lora/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
|
||||||
|
|
||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
template: llama3
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
### export
|
||||||
|
export_dir: models/llama3_lora_sft
|
||||||
|
export_size: 2
|
||||||
|
export_device: cpu
|
||||||
|
export_legacy_format: false
|
||||||
23
examples/train_full/llama3_full_predict.yaml
Normal file
23
examples/train_full/llama3_full_predict.yaml
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: saves/llama3-8b/full/sft
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_predict: true
|
||||||
|
finetuning_type: full
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 50
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/full/predict
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### eval
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
predict_with_generate: true
|
||||||
39
examples/train_full/llama3_full_sft_ds3.yaml
Normal file
39
examples/train_full/llama3_full_sft_ds3.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/full/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
41
examples/train_lora/llama3_lora_dpo.yaml
Normal file
41
examples/train_lora/llama3_lora_dpo.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: dpo
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
pref_beta: 0.1
|
||||||
|
pref_loss: sigmoid # choices: [sigmoid (dpo), orpo, simpo]
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: dpo_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/dpo
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 5.0e-6
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
18
examples/train_lora/llama3_lora_eval.yaml
Normal file
18
examples/train_lora/llama3_lora_eval.yaml
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
|
||||||
|
### method
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
task: mmlu_test # choices: [mmlu_test, ceval_validation, cmmlu_test]
|
||||||
|
template: fewshot
|
||||||
|
lang: en
|
||||||
|
n_shot: 5
|
||||||
|
|
||||||
|
### output
|
||||||
|
save_dir: saves/llama3-8b/lora/eval
|
||||||
|
|
||||||
|
### eval
|
||||||
|
batch_size: 4
|
||||||
40
examples/train_lora/llama3_lora_kto.yaml
Normal file
40
examples/train_lora/llama3_lora_kto.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: kto
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
pref_beta: 0.1
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: kto_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/kto
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 5.0e-6
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_lora/llama3_lora_ppo.yaml
Normal file
39
examples/train_lora/llama3_lora_ppo.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
reward_model: saves/llama3-8b/lora/reward
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: ppo
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/ppo
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-5
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### generate
|
||||||
|
max_new_tokens: 512
|
||||||
|
top_k: 0
|
||||||
|
top_p: 0.9
|
||||||
25
examples/train_lora/llama3_lora_predict.yaml
Normal file
25
examples/train_lora/llama3_lora_predict.yaml
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_predict: true
|
||||||
|
finetuning_type: lora
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
eval_dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 50
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/predict
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### eval
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
predict_with_generate: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
38
examples/train_lora/llama3_lora_pretrain.yaml
Normal file
38
examples/train_lora/llama3_lora_pretrain.yaml
Normal file
@@ -0,0 +1,38 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: pt
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: c4_demo
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/pretrain
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_lora/llama3_lora_reward.yaml
Normal file
39
examples/train_lora/llama3_lora_reward.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: rm
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: dpo_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/reward
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_lora/llama3_lora_sft.yaml
Normal file
39
examples/train_lora/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
40
examples/train_lora/llama3_lora_sft_ds0.yaml
Normal file
40
examples/train_lora/llama3_lora_sft_ds0.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
deepspeed: examples/deepspeed/ds_z0_config.json
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
40
examples/train_lora/llama3_lora_sft_ds3.yaml
Normal file
40
examples/train_lora/llama3_lora_sft_ds3.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 2
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
21
examples/train_lora/llama3_preprocess.yaml
Normal file
21
examples/train_lora/llama3_preprocess.yaml
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
tokenized_path: saves/llama3-8b/dataset/sft
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
overwrite_output_dir: true
|
||||||
40
examples/train_lora/llava1_5_lora_sft.yaml
Normal file
40
examples/train_lora/llava1_5_lora_sft.yaml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||||
|
visual_inputs: true
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: mllm_demo
|
||||||
|
template: vicuna
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llava1_5-7b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_qlora/llama3_lora_sft_aqlm.yaml
Normal file
39
examples/train_qlora/llama3_lora_sft_aqlm.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_qlora/llama3_lora_sft_awq.yaml
Normal file
39
examples/train_qlora/llama3_lora_sft_awq.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
39
examples/train_qlora/llama3_lora_sft_gptq.yaml
Normal file
39
examples/train_qlora/llama3_lora_sft_gptq.yaml
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
41
examples/train_qlora/llama3_lora_sft_otfq.yaml
Normal file
41
examples/train_qlora/llama3_lora_sft_otfq.yaml
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
### model
|
||||||
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||||
|
quantization_bit: 4
|
||||||
|
quantization_method: bitsandbytes # choices: [bitsandbytes (4/8), hqq (2/3/4/5/6/8), eetq (8)]
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: all
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: identity,alpaca_en_demo
|
||||||
|
template: llama3
|
||||||
|
cutoff_len: 1024
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/llama3-8b/lora/sft
|
||||||
|
logging_steps: 10
|
||||||
|
save_steps: 500
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 1
|
||||||
|
gradient_accumulation_steps: 8
|
||||||
|
learning_rate: 1.0e-4
|
||||||
|
num_train_epochs: 3.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
|
### eval
|
||||||
|
val_size: 0.1
|
||||||
|
per_device_eval_batch_size: 1
|
||||||
|
eval_strategy: steps
|
||||||
|
eval_steps: 500
|
||||||
@@ -1,3 +1,33 @@
|
|||||||
[build-system]
|
[build-system]
|
||||||
requires = ["setuptools>=61.0"]
|
requires = ["setuptools>=61.0"]
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
|
[tool.ruff]
|
||||||
|
target-version = "py38"
|
||||||
|
line-length = 119
|
||||||
|
indent-width = 4
|
||||||
|
|
||||||
|
[tool.ruff.lint]
|
||||||
|
ignore = ["C408", "C901", "E501", "E731", "E741", "W605"]
|
||||||
|
select = ["C", "E", "F", "I", "W"]
|
||||||
|
|
||||||
|
[tool.ruff.lint.isort]
|
||||||
|
lines-after-imports = 2
|
||||||
|
known-first-party = ["llamafactory"]
|
||||||
|
known-third-party = [
|
||||||
|
"accelerate",
|
||||||
|
"datasets",
|
||||||
|
"gradio",
|
||||||
|
"numpy",
|
||||||
|
"peft",
|
||||||
|
"torch",
|
||||||
|
"transformers",
|
||||||
|
"trl"
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.ruff.format]
|
||||||
|
quote-style = "double"
|
||||||
|
indent-style = "space"
|
||||||
|
docstring-code-format = true
|
||||||
|
skip-magic-trailing-comma = false
|
||||||
|
line-ending = "auto"
|
||||||
|
|||||||
@@ -1,19 +1,21 @@
|
|||||||
torch>=1.13.1
|
transformers>=4.41.2
|
||||||
transformers>=4.31.0,<4.35.0
|
datasets>=2.16.0
|
||||||
datasets>=2.14.0
|
accelerate>=0.30.1
|
||||||
accelerate>=0.21.0
|
peft>=0.11.1
|
||||||
peft>=0.6.0
|
trl>=0.8.6
|
||||||
trl>=0.7.4
|
gradio>=4.0.0
|
||||||
gradio>=3.38.0,<4.0.0
|
pandas>=2.0.0
|
||||||
scipy
|
scipy
|
||||||
|
einops
|
||||||
sentencepiece
|
sentencepiece
|
||||||
protobuf
|
|
||||||
tiktoken
|
tiktoken
|
||||||
jieba
|
protobuf
|
||||||
rouge-chinese
|
|
||||||
nltk
|
|
||||||
uvicorn
|
uvicorn
|
||||||
pydantic
|
pydantic
|
||||||
fastapi
|
fastapi
|
||||||
sse-starlette
|
sse-starlette
|
||||||
matplotlib
|
matplotlib>=3.7.0
|
||||||
|
fire
|
||||||
|
packaging
|
||||||
|
pyyaml
|
||||||
|
numpy<2.0.0
|
||||||
|
|||||||
48
scripts/cal_flops.py
Normal file
48
scripts/cal_flops.py
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 Microsoft Corporation and the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# This code is inspired by the Microsoft's DeepSpeed library.
|
||||||
|
# https://www.deepspeed.ai/tutorials/flops-profiler/
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from deepspeed.accelerator import get_accelerator # type: ignore
|
||||||
|
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
||||||
|
|
||||||
|
from llamafactory.chat import ChatModel
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_flops(
|
||||||
|
model_name_or_path: str,
|
||||||
|
batch_size: int = 1,
|
||||||
|
seq_length: int = 256,
|
||||||
|
flash_attn: str = "auto",
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Calculates the flops of pre-trained models.
|
||||||
|
Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
|
||||||
|
"""
|
||||||
|
with get_accelerator().device(0):
|
||||||
|
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
|
||||||
|
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
|
||||||
|
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
|
||||||
|
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
|
||||||
|
print("FLOPs:", flops)
|
||||||
|
print("MACs:", macs)
|
||||||
|
print("Params:", params)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(calculate_flops)
|
||||||
96
scripts/cal_lr.py
Normal file
96
scripts/cal_lr.py
Normal file
@@ -0,0 +1,96 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 imoneoi and the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# This code is inspired by the imoneoi's OpenChat library.
|
||||||
|
# https://github.com/imoneoi/openchat/blob/3.6.0/ochat/training_deepspeed/train.py
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||||
|
|
||||||
|
from llamafactory.data import get_dataset
|
||||||
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
|
from llamafactory.hparams import get_train_args
|
||||||
|
from llamafactory.model import load_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models
|
||||||
|
BASE_BS = 4_000_000 # from llama paper
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_lr(
|
||||||
|
model_name_or_path: str,
|
||||||
|
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
|
||||||
|
stage: Literal["pt", "sft"] = "sft",
|
||||||
|
dataset: str = "alpaca_en",
|
||||||
|
dataset_dir: str = "data",
|
||||||
|
template: str = "default",
|
||||||
|
cutoff_len: int = 1024, # i.e. maximum input length during training
|
||||||
|
is_mistral: bool = False, # mistral model uses a smaller learning rate,
|
||||||
|
packing: bool = False,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters.
|
||||||
|
Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
|
||||||
|
"""
|
||||||
|
model_args, data_args, training_args, _, _ = get_train_args(
|
||||||
|
dict(
|
||||||
|
stage=stage,
|
||||||
|
model_name_or_path=model_name_or_path,
|
||||||
|
dataset=dataset,
|
||||||
|
dataset_dir=dataset_dir,
|
||||||
|
template=template,
|
||||||
|
cutoff_len=cutoff_len,
|
||||||
|
packing=packing,
|
||||||
|
output_dir="dummy_dir",
|
||||||
|
overwrite_cache=True,
|
||||||
|
do_train=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
|
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"]
|
||||||
|
if stage == "pt":
|
||||||
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
|
elif stage == "sft":
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
||||||
|
|
||||||
|
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
|
valid_tokens, total_tokens = 0, 0
|
||||||
|
for batch in tqdm(dataloader):
|
||||||
|
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()
|
||||||
|
total_tokens += torch.numel(batch["labels"])
|
||||||
|
|
||||||
|
batch_max_len = cutoff_len * batch_size # max tokens in a batch
|
||||||
|
valid_ratio = valid_tokens / total_tokens
|
||||||
|
batch_valid_len = batch_max_len * valid_ratio
|
||||||
|
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size)
|
||||||
|
lr = lr / 6.0 if is_mistral else lr
|
||||||
|
print(
|
||||||
|
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
|
||||||
|
lr, valid_ratio * 100, batch_valid_len
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(calculate_lr)
|
||||||
132
scripts/cal_ppl.py
Normal file
132
scripts/cal_ppl.py
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import json
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Dict, Literal, Optional, Sequence
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||||
|
|
||||||
|
from llamafactory.data import get_dataset
|
||||||
|
from llamafactory.extras.constants import IGNORE_INDEX
|
||||||
|
from llamafactory.hparams import get_train_args
|
||||||
|
from llamafactory.model import load_model, load_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||||
|
r"""
|
||||||
|
Data collator for pairwise data.
|
||||||
|
"""
|
||||||
|
|
||||||
|
train_on_prompt: bool = False
|
||||||
|
|
||||||
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||||
|
r"""
|
||||||
|
Pads batched data to the longest sequence in the batch.
|
||||||
|
|
||||||
|
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||||
|
the last n examples represent rejected examples.
|
||||||
|
"""
|
||||||
|
chosen_features = []
|
||||||
|
for feature in features:
|
||||||
|
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
|
||||||
|
input_ids = feature["prompt_ids"] + feature["chosen_ids"]
|
||||||
|
attention_mask = [1] * (prompt_len + answer_len)
|
||||||
|
labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
|
||||||
|
chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})
|
||||||
|
|
||||||
|
return super().__call__(chosen_features)
|
||||||
|
|
||||||
|
|
||||||
|
def cal_ppl(
|
||||||
|
model_name_or_path: str,
|
||||||
|
save_name: str,
|
||||||
|
batch_size: int = 4,
|
||||||
|
stage: Literal["pt", "sft", "rm"] = "sft",
|
||||||
|
dataset: str = "alpaca_en",
|
||||||
|
dataset_dir: str = "data",
|
||||||
|
template: str = "default",
|
||||||
|
cutoff_len: int = 1024,
|
||||||
|
max_samples: Optional[int] = None,
|
||||||
|
train_on_prompt: bool = False,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Calculates the ppl on the dataset of the pre-trained models.
|
||||||
|
Usage: python cal_ppl.py --model_name_or_path path_to_model --save_name ppl.json
|
||||||
|
"""
|
||||||
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||||
|
dict(
|
||||||
|
stage=stage,
|
||||||
|
model_name_or_path=model_name_or_path,
|
||||||
|
dataset=dataset,
|
||||||
|
dataset_dir=dataset_dir,
|
||||||
|
template=template,
|
||||||
|
cutoff_len=cutoff_len,
|
||||||
|
max_samples=max_samples,
|
||||||
|
train_on_prompt=train_on_prompt,
|
||||||
|
output_dir="dummy_dir",
|
||||||
|
overwrite_cache=True,
|
||||||
|
do_train=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
|
tokenizer = tokenizer_module["tokenizer"]
|
||||||
|
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"]
|
||||||
|
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
|
||||||
|
if stage == "pt":
|
||||||
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||||
|
elif stage == "sft":
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||||
|
elif stage == "rm":
|
||||||
|
data_collator = PairwiseDataCollatorWithPadding(
|
||||||
|
tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Stage does not supported: {}.".format(stage))
|
||||||
|
|
||||||
|
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss(reduction="none")
|
||||||
|
total_ppl = 0
|
||||||
|
perplexities = []
|
||||||
|
batch: Dict[str, "torch.Tensor"]
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in tqdm(dataloader):
|
||||||
|
batch = batch.to(model.device)
|
||||||
|
outputs = model(**batch)
|
||||||
|
shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
|
||||||
|
shift_labels: "torch.Tensor" = batch["labels"][..., 1:]
|
||||||
|
loss_mask = shift_labels != IGNORE_INDEX
|
||||||
|
flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1)
|
||||||
|
flatten_labels = shift_labels.contiguous().view(-1)
|
||||||
|
token_logps: "torch.Tensor" = criterion(flatten_logits, flatten_labels)
|
||||||
|
token_logps = token_logps.contiguous().view(shift_logits.size(0), -1)
|
||||||
|
sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
||||||
|
total_ppl += sentence_logps.exp().sum().item()
|
||||||
|
perplexities.extend(sentence_logps.exp().tolist())
|
||||||
|
|
||||||
|
with open(save_name, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(perplexities, f, indent=2)
|
||||||
|
|
||||||
|
print("Average perplexity is {:.2f}".format(total_ppl / len(perplexities)))
|
||||||
|
print("Perplexities have been saved at {}.".format(save_name))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(cal_ppl)
|
||||||
67
scripts/length_cdf.py
Normal file
67
scripts/length_cdf.py
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
import fire
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from llamafactory.data import get_dataset
|
||||||
|
from llamafactory.hparams import get_train_args
|
||||||
|
from llamafactory.model import load_tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def length_cdf(
|
||||||
|
model_name_or_path: str,
|
||||||
|
dataset: str = "alpaca_en",
|
||||||
|
dataset_dir: str = "data",
|
||||||
|
template: str = "default",
|
||||||
|
interval: int = 1000,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Calculates the distribution of the input lengths in the dataset.
|
||||||
|
Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
|
||||||
|
"""
|
||||||
|
model_args, data_args, training_args, _, _ = get_train_args(
|
||||||
|
dict(
|
||||||
|
stage="sft",
|
||||||
|
model_name_or_path=model_name_or_path,
|
||||||
|
dataset=dataset,
|
||||||
|
dataset_dir=dataset_dir,
|
||||||
|
template=template,
|
||||||
|
cutoff_len=1_000_000,
|
||||||
|
output_dir="dummy_dir",
|
||||||
|
overwrite_cache=True,
|
||||||
|
do_train=True,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
tokenizer_module = load_tokenizer(model_args)
|
||||||
|
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)["train_dataset"]
|
||||||
|
total_num = len(trainset)
|
||||||
|
length_dict = defaultdict(int)
|
||||||
|
for sample in tqdm(trainset["input_ids"]):
|
||||||
|
length_dict[len(sample) // interval * interval] += 1
|
||||||
|
|
||||||
|
length_tuples = list(length_dict.items())
|
||||||
|
length_tuples.sort()
|
||||||
|
count_accu, prob_accu = 0, 0
|
||||||
|
for length, count in length_tuples:
|
||||||
|
count_accu += count
|
||||||
|
prob_accu += count / total_num * 100
|
||||||
|
print("{:d} ({:.2f}%) samples have length < {}.".format(count_accu, prob_accu, length + interval))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(length_cdf)
|
||||||
131
scripts/llama_pro.py
Normal file
131
scripts/llama_pro.py
Normal file
@@ -0,0 +1,131 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# This code is inspired by the Tencent's LLaMA-Pro library.
|
||||||
|
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from collections import OrderedDict
|
||||||
|
from typing import TYPE_CHECKING, Optional
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import save_file
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||||
|
from transformers.modeling_utils import (
|
||||||
|
SAFE_WEIGHTS_INDEX_NAME,
|
||||||
|
SAFE_WEIGHTS_NAME,
|
||||||
|
WEIGHTS_INDEX_NAME,
|
||||||
|
WEIGHTS_NAME,
|
||||||
|
shard_checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from transformers import PretrainedConfig, PreTrainedModel
|
||||||
|
|
||||||
|
|
||||||
|
def change_name(name: str, old_index: int, new_index: int) -> str:
|
||||||
|
return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index))
|
||||||
|
|
||||||
|
|
||||||
|
def block_expansion(
|
||||||
|
model_name_or_path: str,
|
||||||
|
output_dir: str,
|
||||||
|
num_expand: int,
|
||||||
|
shard_size: Optional[str] = "2GB",
|
||||||
|
save_safetensors: Optional[bool] = False,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
|
||||||
|
Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
|
||||||
|
"""
|
||||||
|
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
|
||||||
|
num_layers = getattr(config, "num_hidden_layers")
|
||||||
|
setattr(config, "num_hidden_layers", num_layers + num_expand)
|
||||||
|
config.save_pretrained(output_dir)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
||||||
|
tokenizer.save_pretrained(output_dir)
|
||||||
|
|
||||||
|
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one
|
||||||
|
if save_safetensors:
|
||||||
|
setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights
|
||||||
|
|
||||||
|
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name_or_path,
|
||||||
|
config=config,
|
||||||
|
torch_dtype="auto",
|
||||||
|
trust_remote_code=True,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
)
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
|
||||||
|
if num_layers % num_expand != 0:
|
||||||
|
raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand))
|
||||||
|
|
||||||
|
split = num_layers // num_expand
|
||||||
|
layer_cnt = 0
|
||||||
|
output_state_dict = OrderedDict()
|
||||||
|
for i in range(num_layers):
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if ".{:d}.".format(i) in key:
|
||||||
|
output_state_dict[change_name(key, i, layer_cnt)] = value
|
||||||
|
|
||||||
|
print("Add layer {} copied from layer {}".format(layer_cnt, i))
|
||||||
|
layer_cnt += 1
|
||||||
|
if (i + 1) % split == 0:
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if ".{:d}.".format(i) in key:
|
||||||
|
if "down_proj" in key or "o_proj" in key:
|
||||||
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value)
|
||||||
|
else:
|
||||||
|
output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value)
|
||||||
|
|
||||||
|
print("Add layer {} expanded from layer {}".format(layer_cnt, i))
|
||||||
|
layer_cnt += 1
|
||||||
|
|
||||||
|
for key, value in state_dict.items():
|
||||||
|
if key not in output_state_dict:
|
||||||
|
output_state_dict[key] = value
|
||||||
|
|
||||||
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||||
|
shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||||
|
|
||||||
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||||
|
if save_safetensors:
|
||||||
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||||
|
|
||||||
|
if index is None:
|
||||||
|
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
|
||||||
|
else:
|
||||||
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||||
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||||
|
json.dump(index, f, indent=2, sort_keys=True)
|
||||||
|
print("Model weights saved in {}".format(output_dir))
|
||||||
|
|
||||||
|
print("- Fine-tune this model with:")
|
||||||
|
print("model_name_or_path: {}".format(output_dir))
|
||||||
|
print("finetuning_type: freeze")
|
||||||
|
print("freeze_trainable_layers: {}".format(num_expand))
|
||||||
|
print("use_llama_pro: true")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(block_expansion)
|
||||||
106
scripts/llamafy_baichuan2.py
Normal file
106
scripts/llamafy_baichuan2.py
Normal file
@@ -0,0 +1,106 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from collections import OrderedDict
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import save_file
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers.modeling_utils import (
|
||||||
|
SAFE_WEIGHTS_INDEX_NAME,
|
||||||
|
SAFE_WEIGHTS_NAME,
|
||||||
|
WEIGHTS_INDEX_NAME,
|
||||||
|
WEIGHTS_NAME,
|
||||||
|
shard_checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
CONFIG_NAME = "config.json"
|
||||||
|
|
||||||
|
|
||||||
|
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
|
||||||
|
baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||||
|
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
|
||||||
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
|
||||||
|
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
|
||||||
|
baichuan2_state_dict.update(shard_weight)
|
||||||
|
|
||||||
|
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||||
|
for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"):
|
||||||
|
if "W_pack" in key:
|
||||||
|
proj_size = value.size(0) // 3
|
||||||
|
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
|
||||||
|
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :]
|
||||||
|
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :]
|
||||||
|
elif "lm_head" in key:
|
||||||
|
llama2_state_dict[key] = torch.nn.functional.normalize(value)
|
||||||
|
else:
|
||||||
|
llama2_state_dict[key] = value
|
||||||
|
|
||||||
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||||
|
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||||
|
|
||||||
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||||
|
if save_safetensors:
|
||||||
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||||
|
|
||||||
|
if index is None:
|
||||||
|
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
|
||||||
|
else:
|
||||||
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||||
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||||
|
json.dump(index, f, indent=2, sort_keys=True)
|
||||||
|
print("Model weights saved in {}".format(output_dir))
|
||||||
|
|
||||||
|
|
||||||
|
def save_config(input_dir: str, output_dir: str):
|
||||||
|
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
|
||||||
|
llama2_config_dict: Dict[str, Any] = json.load(f)
|
||||||
|
|
||||||
|
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
|
||||||
|
llama2_config_dict.pop("auto_map", None)
|
||||||
|
llama2_config_dict.pop("tokenizer_class", None)
|
||||||
|
llama2_config_dict["model_type"] = "llama"
|
||||||
|
|
||||||
|
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
|
||||||
|
json.dump(llama2_config_dict, f, indent=2)
|
||||||
|
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
|
||||||
|
|
||||||
|
|
||||||
|
def llamafy_baichuan2(
|
||||||
|
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
|
||||||
|
Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
|
||||||
|
Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
os.makedirs(output_dir, exist_ok=False)
|
||||||
|
except Exception as e:
|
||||||
|
raise print("Output dir already exists", e)
|
||||||
|
|
||||||
|
save_weight(input_dir, output_dir, shard_size, save_safetensors)
|
||||||
|
save_config(input_dir, output_dir)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(llamafy_baichuan2)
|
||||||
@@ -1,33 +1,50 @@
|
|||||||
# coding=utf-8
|
# coding=utf-8
|
||||||
# Converts the Qwen models in the same format as LLaMA2.
|
# Copyright 2024 the LlamaFactory team.
|
||||||
# Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
|
||||||
import fire
|
|
||||||
import json
|
import json
|
||||||
import torch
|
import os
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import fire
|
||||||
|
import torch
|
||||||
from safetensors import safe_open
|
from safetensors import safe_open
|
||||||
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME
|
from safetensors.torch import save_file
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers.modeling_utils import (
|
||||||
|
SAFE_WEIGHTS_INDEX_NAME,
|
||||||
|
SAFE_WEIGHTS_NAME,
|
||||||
|
WEIGHTS_INDEX_NAME,
|
||||||
|
WEIGHTS_NAME,
|
||||||
|
shard_checkpoint,
|
||||||
|
)
|
||||||
from transformers.utils import check_min_version
|
from transformers.utils import check_min_version
|
||||||
from typing import Any, Dict
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
check_min_version("4.34.0")
|
check_min_version("4.34.0")
|
||||||
except:
|
except Exception:
|
||||||
raise ValueError("Please upgrade `transformers` to 4.34.0")
|
raise ValueError("Please upgrade `transformers` to 4.34.0")
|
||||||
|
|
||||||
|
|
||||||
CONFIG_NAME = "config.json"
|
CONFIG_NAME = "config.json"
|
||||||
|
|
||||||
|
|
||||||
def save_weight(
|
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool) -> str:
|
||||||
input_dir: str,
|
|
||||||
output_dir: str,
|
|
||||||
shard_size: str
|
|
||||||
) -> str:
|
|
||||||
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||||
for filepath in os.listdir(input_dir):
|
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
|
||||||
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"):
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"):
|
||||||
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f:
|
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f:
|
||||||
for key in f.keys():
|
for key in f.keys():
|
||||||
@@ -35,7 +52,7 @@ def save_weight(
|
|||||||
|
|
||||||
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
||||||
torch_dtype = None
|
torch_dtype = None
|
||||||
for key, value in qwen_state_dict.items():
|
for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"):
|
||||||
if torch_dtype is None:
|
if torch_dtype is None:
|
||||||
torch_dtype = value.dtype
|
torch_dtype = value.dtype
|
||||||
if "wte" in key:
|
if "wte" in key:
|
||||||
@@ -47,13 +64,15 @@ def save_weight(
|
|||||||
if "attn.c_attn" in key:
|
if "attn.c_attn" in key:
|
||||||
proj_size = value.size(0) // 3
|
proj_size = value.size(0) // 3
|
||||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
|
||||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[proj_size:2*proj_size, ...]
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[
|
||||||
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2*proj_size:, ...]
|
proj_size : 2 * proj_size, ...
|
||||||
|
]
|
||||||
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...]
|
||||||
elif "attn.c_proj" in key:
|
elif "attn.c_proj" in key:
|
||||||
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
|
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
|
||||||
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = (
|
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like(
|
||||||
torch.zeros_like(value[:, 0]).squeeze()
|
value[:, 0]
|
||||||
)
|
).squeeze()
|
||||||
elif "ln_1" in key:
|
elif "ln_1" in key:
|
||||||
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
|
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
|
||||||
elif "ln_2" in key:
|
elif "ln_2" in key:
|
||||||
@@ -69,25 +88,27 @@ def save_weight(
|
|||||||
else:
|
else:
|
||||||
raise KeyError("Unable to process key {}".format(key))
|
raise KeyError("Unable to process key {}".format(key))
|
||||||
|
|
||||||
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME)
|
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
|
||||||
for shard_file, shard in shards.items():
|
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
|
||||||
torch.save(shard, os.path.join(output_dir, shard_file))
|
|
||||||
|
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
|
||||||
|
if save_safetensors:
|
||||||
|
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(shard, os.path.join(output_dir, shard_file))
|
||||||
|
|
||||||
if index is None:
|
if index is None:
|
||||||
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
|
print("Model weights saved in {}".format(os.path.join(output_dir, weights_name)))
|
||||||
else:
|
else:
|
||||||
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
|
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
|
||||||
|
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
|
||||||
json.dump(index, f, indent=2, sort_keys=True)
|
json.dump(index, f, indent=2, sort_keys=True)
|
||||||
print("Model weights saved in {}".format(output_dir))
|
print("Model weights saved in {}".format(output_dir))
|
||||||
|
|
||||||
return str(torch_dtype).replace("torch.", "")
|
return str(torch_dtype).replace("torch.", "")
|
||||||
|
|
||||||
|
|
||||||
def save_config(
|
def save_config(input_dir: str, output_dir: str, torch_dtype: str):
|
||||||
input_dir: str,
|
|
||||||
output_dir: str,
|
|
||||||
torch_dtype: str
|
|
||||||
):
|
|
||||||
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
|
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
|
||||||
qwen_config_dict: Dict[str, Any] = json.load(f)
|
qwen_config_dict: Dict[str, Any] = json.load(f)
|
||||||
|
|
||||||
@@ -118,16 +139,19 @@ def save_config(
|
|||||||
|
|
||||||
|
|
||||||
def llamafy_qwen(
|
def llamafy_qwen(
|
||||||
input_dir: str,
|
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
|
||||||
output_dir: str,
|
|
||||||
shard_size: str
|
|
||||||
):
|
):
|
||||||
|
r"""
|
||||||
|
Converts the Qwen models in the same format as LLaMA2.
|
||||||
|
Usage: python llamafy_qwen.py --input_dir input --output_dir output
|
||||||
|
Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied
|
||||||
|
"""
|
||||||
try:
|
try:
|
||||||
os.makedirs(output_dir, exist_ok=False)
|
os.makedirs(output_dir, exist_ok=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise print("Output dir already exists", e)
|
raise print("Output dir already exists", e)
|
||||||
|
|
||||||
torch_dtype = save_weight(input_dir, output_dir, shard_size)
|
torch_dtype = save_weight(input_dir, output_dir, shard_size, save_safetensors)
|
||||||
save_config(input_dir, output_dir, torch_dtype)
|
save_config(input_dir, output_dir, torch_dtype)
|
||||||
|
|
||||||
|
|
||||||
89
scripts/loftq_init.py
Normal file
89
scripts/loftq_init.py
Normal file
@@ -0,0 +1,89 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# This code is based on the HuggingFace's PEFT library.
|
||||||
|
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
from typing import TYPE_CHECKING
|
||||||
|
|
||||||
|
import fire
|
||||||
|
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from transformers import PreTrainedModel
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_loftq(
|
||||||
|
model_name_or_path: str,
|
||||||
|
output_dir: str,
|
||||||
|
loftq_bits: int = 4,
|
||||||
|
loftq_iter: int = 4,
|
||||||
|
lora_alpha: int = None,
|
||||||
|
lora_rank: int = 16,
|
||||||
|
lora_dropout: float = 0,
|
||||||
|
lora_target: tuple = ("q_proj", "v_proj"),
|
||||||
|
save_safetensors: bool = True,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
|
||||||
|
Usage: python loftq_init.py --model_name_or_path path_to_model --output_dir output_dir
|
||||||
|
"""
|
||||||
|
if isinstance(lora_target, str):
|
||||||
|
lora_target = [name.strip() for name in lora_target.split(",")]
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
|
||||||
|
|
||||||
|
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter)
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
task_type=TaskType.CAUSAL_LM,
|
||||||
|
inference_mode=True,
|
||||||
|
r=lora_rank,
|
||||||
|
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
|
||||||
|
lora_dropout=lora_dropout,
|
||||||
|
target_modules=lora_target,
|
||||||
|
init_lora_weights="loftq",
|
||||||
|
loftq_config=loftq_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Init LoftQ model
|
||||||
|
print("Initializing LoftQ weights, it may be take several minutes, wait patiently.")
|
||||||
|
peft_model = get_peft_model(model, lora_config)
|
||||||
|
loftq_dir = os.path.join(output_dir, "loftq_init")
|
||||||
|
|
||||||
|
# Save LoftQ model
|
||||||
|
setattr(peft_model.peft_config["default"], "base_model_name_or_path", output_dir)
|
||||||
|
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply loftq again
|
||||||
|
peft_model.save_pretrained(loftq_dir, safe_serialization=save_safetensors)
|
||||||
|
print("Adapter weights saved in {}".format(loftq_dir))
|
||||||
|
|
||||||
|
# Save base model
|
||||||
|
base_model: "PreTrainedModel" = peft_model.unload()
|
||||||
|
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
|
||||||
|
tokenizer.save_pretrained(output_dir)
|
||||||
|
print("Model weights saved in {}".format(output_dir))
|
||||||
|
|
||||||
|
print("- Fine-tune this model with:")
|
||||||
|
print("model_name_or_path: {}".format(output_dir))
|
||||||
|
print("adapter_name_or_path: {}".format(loftq_dir))
|
||||||
|
print("finetuning_type: lora")
|
||||||
|
print("quantization_bit: {}".format(loftq_bits))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(quantize_loftq)
|
||||||
86
scripts/pissa_init.py
Normal file
86
scripts/pissa_init.py
Normal file
@@ -0,0 +1,86 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# This code is based on the HuggingFace's PEFT library.
|
||||||
|
# https://github.com/huggingface/peft/blob/v0.11.0/examples/pissa_finetuning/preprocess.py
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
from typing import TYPE_CHECKING
|
||||||
|
|
||||||
|
import fire
|
||||||
|
from peft import LoraConfig, TaskType, get_peft_model
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from transformers import PreTrainedModel
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_pissa(
|
||||||
|
model_name_or_path: str,
|
||||||
|
output_dir: str,
|
||||||
|
pissa_iter: int = 4,
|
||||||
|
lora_alpha: int = None,
|
||||||
|
lora_rank: int = 16,
|
||||||
|
lora_dropout: float = 0,
|
||||||
|
lora_target: tuple = ("q_proj", "v_proj"),
|
||||||
|
save_safetensors: bool = True,
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Initializes LoRA weights with Principal Singular values and Singular vectors Adaptation (PiSSA)
|
||||||
|
Usage: python pissa_init.py --model_name_or_path path_to_model --output_dir output_dir
|
||||||
|
"""
|
||||||
|
if isinstance(lora_target, str):
|
||||||
|
lora_target = [name.strip() for name in lora_target.split(",")]
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
|
||||||
|
|
||||||
|
lora_config = LoraConfig(
|
||||||
|
task_type=TaskType.CAUSAL_LM,
|
||||||
|
r=lora_rank,
|
||||||
|
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
|
||||||
|
lora_dropout=lora_dropout,
|
||||||
|
target_modules=lora_target,
|
||||||
|
init_lora_weights="pissa" if pissa_iter == -1 else "pissa_niter_{}".format(pissa_iter),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Init PiSSA model
|
||||||
|
peft_model = get_peft_model(model, lora_config)
|
||||||
|
pissa_dir = os.path.join(output_dir, "pissa_init")
|
||||||
|
|
||||||
|
# Save PiSSA model
|
||||||
|
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply pissa again
|
||||||
|
peft_model.save_pretrained(pissa_dir, safe_serialization=save_safetensors)
|
||||||
|
print("Adapter weights saved in {}".format(pissa_dir))
|
||||||
|
|
||||||
|
# Save base model
|
||||||
|
base_model: "PreTrainedModel" = peft_model.unload()
|
||||||
|
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
|
||||||
|
tokenizer.save_pretrained(output_dir)
|
||||||
|
print("Model weights saved in {}".format(output_dir))
|
||||||
|
|
||||||
|
print("- Fine-tune this model with:")
|
||||||
|
print("model_name_or_path: {}".format(output_dir))
|
||||||
|
print("adapter_name_or_path: {}".format(pissa_dir))
|
||||||
|
print("finetuning_type: lora")
|
||||||
|
print("pissa_init: false")
|
||||||
|
print("pissa_convert: true")
|
||||||
|
print("- and optionally with:")
|
||||||
|
print("quantization_bit: 4")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(quantize_pissa)
|
||||||
79
scripts/test_toolcall.py
Normal file
79
scripts/test_toolcall.py
Normal file
@@ -0,0 +1,79 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from typing import Sequence
|
||||||
|
|
||||||
|
from openai import OpenAI
|
||||||
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
|
|
||||||
|
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
|
||||||
|
grade_to_score = {"A": 4, "B": 3, "C": 2}
|
||||||
|
total_score, total_hour = 0, 0
|
||||||
|
for grade, hour in zip(grades, hours):
|
||||||
|
total_score += grade_to_score[grade] * hour
|
||||||
|
total_hour += hour
|
||||||
|
return round(total_score / total_hour, 2)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
client = OpenAI(
|
||||||
|
api_key="{}".format(os.environ.get("API_KEY", "0")),
|
||||||
|
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
|
||||||
|
)
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "calculate_gpa",
|
||||||
|
"description": "Calculate the Grade Point Average (GPA) based on grades and credit hours",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"},
|
||||||
|
"hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"},
|
||||||
|
},
|
||||||
|
"required": ["grades", "hours"],
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
]
|
||||||
|
tool_map = {"calculate_gpa": calculate_gpa}
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."})
|
||||||
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
|
||||||
|
if result.choices[0].message.tool_calls is None:
|
||||||
|
raise ValueError("Cannot retrieve function call from the response.")
|
||||||
|
|
||||||
|
messages.append(result.choices[0].message)
|
||||||
|
tool_call = result.choices[0].message.tool_calls[0].function
|
||||||
|
print(tool_call)
|
||||||
|
# Function(arguments='{"grades": ["A", "A", "B", "C"], "hours": [3, 4, 3, 2]}', name='calculate_gpa')
|
||||||
|
name, arguments = tool_call.name, json.loads(tool_call.arguments)
|
||||||
|
tool_result = tool_map[name](**arguments)
|
||||||
|
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
|
||||||
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
|
||||||
|
print(result.choices[0].message.content)
|
||||||
|
# Based on the grades and credit hours you provided, your Grade Point Average (GPA) is 3.42.
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
53
setup.py
53
setup.py
@@ -1,13 +1,28 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
from setuptools import setup, find_packages
|
|
||||||
|
from setuptools import find_packages, setup
|
||||||
|
|
||||||
|
|
||||||
def get_version():
|
def get_version():
|
||||||
with open(os.path.join("src", "llmtuner", "__init__.py"), "r", encoding="utf-8") as f:
|
with open(os.path.join("src", "llamafactory", "extras", "env.py"), "r", encoding="utf-8") as f:
|
||||||
file_content = f.read()
|
file_content = f.read()
|
||||||
pattern = r"{0}\W*=\W*\"([^\"]+)\"".format("__version__")
|
pattern = r"{}\W*=\W*\"([^\"]+)\"".format("VERSION")
|
||||||
version, = re.findall(pattern, file_content)
|
(version,) = re.findall(pattern, file_content)
|
||||||
return version
|
return version
|
||||||
|
|
||||||
|
|
||||||
@@ -18,10 +33,29 @@ def get_requires():
|
|||||||
return lines
|
return lines
|
||||||
|
|
||||||
|
|
||||||
def main():
|
extra_require = {
|
||||||
|
"torch": ["torch>=1.13.1"],
|
||||||
|
"torch-npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
|
||||||
|
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||||
|
"deepspeed": ["deepspeed>=0.10.0"],
|
||||||
|
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
||||||
|
"hqq": ["hqq"],
|
||||||
|
"eetq": ["eetq"],
|
||||||
|
"gptq": ["optimum>=1.17.0", "auto-gptq>=0.5.0"],
|
||||||
|
"awq": ["autoawq"],
|
||||||
|
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
||||||
|
"vllm": ["vllm>=0.4.3"],
|
||||||
|
"galore": ["galore-torch"],
|
||||||
|
"badam": ["badam>=1.2.1"],
|
||||||
|
"qwen": ["transformers_stream_generator"],
|
||||||
|
"modelscope": ["modelscope"],
|
||||||
|
"dev": ["ruff", "pytest"],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
setup(
|
setup(
|
||||||
name="llmtuner",
|
name="llamafactory",
|
||||||
version=get_version(),
|
version=get_version(),
|
||||||
author="hiyouga",
|
author="hiyouga",
|
||||||
author_email="hiyouga" "@" "buaa.edu.cn",
|
author_email="hiyouga" "@" "buaa.edu.cn",
|
||||||
@@ -35,8 +69,10 @@ def main():
|
|||||||
packages=find_packages("src"),
|
packages=find_packages("src"),
|
||||||
python_requires=">=3.8.0",
|
python_requires=">=3.8.0",
|
||||||
install_requires=get_requires(),
|
install_requires=get_requires(),
|
||||||
|
extras_require=extra_require,
|
||||||
|
entry_points={"console_scripts": ["llamafactory-cli = llamafactory.cli:main"]},
|
||||||
classifiers=[
|
classifiers=[
|
||||||
"Development Status :: 3 - Alpha",
|
"Development Status :: 4 - Beta",
|
||||||
"Intended Audience :: Developers",
|
"Intended Audience :: Developers",
|
||||||
"Intended Audience :: Education",
|
"Intended Audience :: Education",
|
||||||
"Intended Audience :: Science/Research",
|
"Intended Audience :: Science/Research",
|
||||||
@@ -46,8 +82,9 @@ def main():
|
|||||||
"Programming Language :: Python :: 3.8",
|
"Programming Language :: Python :: 3.8",
|
||||||
"Programming Language :: Python :: 3.9",
|
"Programming Language :: Python :: 3.9",
|
||||||
"Programming Language :: Python :: 3.10",
|
"Programming Language :: Python :: 3.10",
|
||||||
|
"Programming Language :: Python :: 3.11",
|
||||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
]
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
33
src/api.py
Normal file
33
src/api.py
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
from llamafactory.api.app import create_app
|
||||||
|
from llamafactory.chat import ChatModel
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
chat_model = ChatModel()
|
||||||
|
app = create_app(chat_model)
|
||||||
|
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||||
|
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||||
|
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||||
|
uvicorn.run(app, host=api_host, port=api_port)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -1,14 +0,0 @@
|
|||||||
import uvicorn
|
|
||||||
|
|
||||||
from llmtuner import ChatModel, create_app
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
app = create_app(chat_model)
|
|
||||||
print("Visit http://localhost:8000/docs for API document.")
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,47 +0,0 @@
|
|||||||
from llmtuner import ChatModel
|
|
||||||
from llmtuner.extras.misc import torch_gc
|
|
||||||
|
|
||||||
try:
|
|
||||||
import platform
|
|
||||||
if platform.system() != "Windows":
|
|
||||||
import readline
|
|
||||||
except ImportError:
|
|
||||||
print("Install `readline` for a better experience.")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
history = []
|
|
||||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
query = input("\nUser: ")
|
|
||||||
except UnicodeDecodeError:
|
|
||||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
||||||
continue
|
|
||||||
except Exception:
|
|
||||||
raise
|
|
||||||
|
|
||||||
if query.strip() == "exit":
|
|
||||||
break
|
|
||||||
|
|
||||||
if query.strip() == "clear":
|
|
||||||
history = []
|
|
||||||
torch_gc()
|
|
||||||
print("History has been removed.")
|
|
||||||
continue
|
|
||||||
|
|
||||||
print("Assistant: ", end="", flush=True)
|
|
||||||
|
|
||||||
response = ""
|
|
||||||
for new_text in chat_model.stream_chat(query, history):
|
|
||||||
print(new_text, end="", flush=True)
|
|
||||||
response += new_text
|
|
||||||
print()
|
|
||||||
|
|
||||||
history = history + [(query, response)]
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,10 +0,0 @@
|
|||||||
from llmtuner import Evaluator
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
evaluator = Evaluator()
|
|
||||||
evaluator.eval()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
from llmtuner import export_model
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
export_model()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
41
src/llamafactory/__init__.py
Normal file
41
src/llamafactory/__init__.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
r"""
|
||||||
|
Efficient fine-tuning of large language models.
|
||||||
|
|
||||||
|
Level:
|
||||||
|
api, webui > chat, eval, train > data, model > hparams > extras
|
||||||
|
|
||||||
|
Dependency graph:
|
||||||
|
main:
|
||||||
|
transformers>=4.41.2
|
||||||
|
datasets>=2.16.0
|
||||||
|
accelerate>=0.30.1
|
||||||
|
peft>=0.11.1
|
||||||
|
trl>=0.8.6
|
||||||
|
attention:
|
||||||
|
transformers>=4.42.4 (gemma+fa2)
|
||||||
|
longlora:
|
||||||
|
transformers>=4.41.2,<=4.42.4
|
||||||
|
packing:
|
||||||
|
transformers>=4.41.2,<=4.42.4
|
||||||
|
patcher:
|
||||||
|
transformers==4.41.2 (chatglm)
|
||||||
|
"""
|
||||||
|
|
||||||
|
from .cli import VERSION
|
||||||
|
|
||||||
|
|
||||||
|
__version__ = VERSION
|
||||||
122
src/llamafactory/api/app.py
Normal file
122
src/llamafactory/api/app.py
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
from contextlib import asynccontextmanager
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from typing_extensions import Annotated
|
||||||
|
|
||||||
|
from ..chat import ChatModel
|
||||||
|
from ..extras.misc import torch_gc
|
||||||
|
from ..extras.packages import is_fastapi_available, is_starlette_available, is_uvicorn_available
|
||||||
|
from .chat import (
|
||||||
|
create_chat_completion_response,
|
||||||
|
create_score_evaluation_response,
|
||||||
|
create_stream_chat_completion_response,
|
||||||
|
)
|
||||||
|
from .protocol import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ModelCard,
|
||||||
|
ModelList,
|
||||||
|
ScoreEvaluationRequest,
|
||||||
|
ScoreEvaluationResponse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if is_fastapi_available():
|
||||||
|
from fastapi import Depends, FastAPI, HTTPException, status
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
|
||||||
|
|
||||||
|
|
||||||
|
if is_starlette_available():
|
||||||
|
from sse_starlette import EventSourceResponse
|
||||||
|
|
||||||
|
|
||||||
|
if is_uvicorn_available():
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
|
||||||
|
@asynccontextmanager
|
||||||
|
async def lifespan(app: "FastAPI"): # collects GPU memory
|
||||||
|
yield
|
||||||
|
torch_gc()
|
||||||
|
|
||||||
|
|
||||||
|
def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||||
|
app = FastAPI(lifespan=lifespan)
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
api_key = os.environ.get("API_KEY")
|
||||||
|
security = HTTPBearer(auto_error=False)
|
||||||
|
|
||||||
|
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):
|
||||||
|
if api_key and (auth is None or auth.credentials != api_key):
|
||||||
|
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key.")
|
||||||
|
|
||||||
|
@app.get(
|
||||||
|
"/v1/models",
|
||||||
|
response_model=ModelList,
|
||||||
|
status_code=status.HTTP_200_OK,
|
||||||
|
dependencies=[Depends(verify_api_key)],
|
||||||
|
)
|
||||||
|
async def list_models():
|
||||||
|
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||||
|
return ModelList(data=[model_card])
|
||||||
|
|
||||||
|
@app.post(
|
||||||
|
"/v1/chat/completions",
|
||||||
|
response_model=ChatCompletionResponse,
|
||||||
|
status_code=status.HTTP_200_OK,
|
||||||
|
dependencies=[Depends(verify_api_key)],
|
||||||
|
)
|
||||||
|
async def create_chat_completion(request: ChatCompletionRequest):
|
||||||
|
if not chat_model.engine.can_generate:
|
||||||
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||||
|
|
||||||
|
if request.stream:
|
||||||
|
generate = create_stream_chat_completion_response(request, chat_model)
|
||||||
|
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||||
|
else:
|
||||||
|
return await create_chat_completion_response(request, chat_model)
|
||||||
|
|
||||||
|
@app.post(
|
||||||
|
"/v1/score/evaluation",
|
||||||
|
response_model=ScoreEvaluationResponse,
|
||||||
|
status_code=status.HTTP_200_OK,
|
||||||
|
dependencies=[Depends(verify_api_key)],
|
||||||
|
)
|
||||||
|
async def create_score_evaluation(request: ScoreEvaluationRequest):
|
||||||
|
if chat_model.engine.can_generate:
|
||||||
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed")
|
||||||
|
|
||||||
|
return await create_score_evaluation_response(request, chat_model)
|
||||||
|
|
||||||
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
def run_api() -> None:
|
||||||
|
chat_model = ChatModel()
|
||||||
|
app = create_app(chat_model)
|
||||||
|
api_host = os.environ.get("API_HOST", "0.0.0.0")
|
||||||
|
api_port = int(os.environ.get("API_PORT", "8000"))
|
||||||
|
print("Visit http://localhost:{}/docs for API document.".format(api_port))
|
||||||
|
uvicorn.run(app, host=api_host, port=api_port)
|
||||||
237
src/llamafactory/api/chat.py
Normal file
237
src/llamafactory/api/chat.py
Normal file
@@ -0,0 +1,237 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
from ..data import Role as DataRole
|
||||||
|
from ..extras.logging import get_logger
|
||||||
|
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
|
||||||
|
from .common import dictify, jsonify
|
||||||
|
from .protocol import (
|
||||||
|
ChatCompletionMessage,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatCompletionResponseChoice,
|
||||||
|
ChatCompletionResponseUsage,
|
||||||
|
ChatCompletionStreamResponse,
|
||||||
|
ChatCompletionStreamResponseChoice,
|
||||||
|
Finish,
|
||||||
|
Function,
|
||||||
|
FunctionCall,
|
||||||
|
Role,
|
||||||
|
ScoreEvaluationResponse,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if is_fastapi_available():
|
||||||
|
from fastapi import HTTPException, status
|
||||||
|
|
||||||
|
|
||||||
|
if is_pillow_available():
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
if is_requests_available():
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from numpy.typing import NDArray
|
||||||
|
|
||||||
|
from ..chat import ChatModel
|
||||||
|
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
|
||||||
|
|
||||||
|
|
||||||
|
logger = get_logger(__name__)
|
||||||
|
ROLE_MAPPING = {
|
||||||
|
Role.USER: DataRole.USER.value,
|
||||||
|
Role.ASSISTANT: DataRole.ASSISTANT.value,
|
||||||
|
Role.SYSTEM: DataRole.SYSTEM.value,
|
||||||
|
Role.FUNCTION: DataRole.FUNCTION.value,
|
||||||
|
Role.TOOL: DataRole.OBSERVATION.value,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def _process_request(
|
||||||
|
request: "ChatCompletionRequest",
|
||||||
|
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]:
|
||||||
|
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
|
||||||
|
|
||||||
|
if len(request.messages) == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length")
|
||||||
|
|
||||||
|
if request.messages[0].role == Role.SYSTEM:
|
||||||
|
system = request.messages.pop(0).content
|
||||||
|
else:
|
||||||
|
system = None
|
||||||
|
|
||||||
|
if len(request.messages) % 2 == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
|
||||||
|
|
||||||
|
input_messages = []
|
||||||
|
image = None
|
||||||
|
for i, message in enumerate(request.messages):
|
||||||
|
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||||
|
elif i % 2 == 1 and message.role not in [Role.ASSISTANT, Role.FUNCTION]:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
|
||||||
|
|
||||||
|
if message.role == Role.ASSISTANT and isinstance(message.tool_calls, list) and len(message.tool_calls):
|
||||||
|
tool_calls = [
|
||||||
|
{"name": tool_call.function.name, "arguments": tool_call.function.arguments}
|
||||||
|
for tool_call in message.tool_calls
|
||||||
|
]
|
||||||
|
content = json.dumps(tool_calls, ensure_ascii=False)
|
||||||
|
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
|
||||||
|
elif isinstance(message.content, list):
|
||||||
|
for input_item in message.content:
|
||||||
|
if input_item.type == "text":
|
||||||
|
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
|
||||||
|
else:
|
||||||
|
image_url = input_item.image_url.url
|
||||||
|
if image_url.startswith("data:image"): # base64 image
|
||||||
|
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1])
|
||||||
|
image_path = io.BytesIO(image_data)
|
||||||
|
elif os.path.isfile(image_url): # local file
|
||||||
|
image_path = open(image_url, "rb")
|
||||||
|
else: # web uri
|
||||||
|
image_path = requests.get(image_url, stream=True).raw
|
||||||
|
|
||||||
|
image = Image.open(image_path).convert("RGB")
|
||||||
|
else:
|
||||||
|
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
|
||||||
|
|
||||||
|
tool_list = request.tools
|
||||||
|
if isinstance(tool_list, list) and len(tool_list):
|
||||||
|
try:
|
||||||
|
tools = json.dumps([dictify(tool.function) for tool in tool_list], ensure_ascii=False)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
|
||||||
|
else:
|
||||||
|
tools = None
|
||||||
|
|
||||||
|
return input_messages, system, tools, image
|
||||||
|
|
||||||
|
|
||||||
|
def _create_stream_chat_completion_chunk(
|
||||||
|
completion_id: str,
|
||||||
|
model: str,
|
||||||
|
delta: "ChatCompletionMessage",
|
||||||
|
index: Optional[int] = 0,
|
||||||
|
finish_reason: Optional["Finish"] = None,
|
||||||
|
) -> str:
|
||||||
|
choice_data = ChatCompletionStreamResponseChoice(index=index, delta=delta, finish_reason=finish_reason)
|
||||||
|
chunk = ChatCompletionStreamResponse(id=completion_id, model=model, choices=[choice_data])
|
||||||
|
return jsonify(chunk)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_chat_completion_response(
|
||||||
|
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||||
|
) -> "ChatCompletionResponse":
|
||||||
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||||
|
input_messages, system, tools, image = _process_request(request)
|
||||||
|
responses = await chat_model.achat(
|
||||||
|
input_messages,
|
||||||
|
system,
|
||||||
|
tools,
|
||||||
|
image,
|
||||||
|
do_sample=request.do_sample,
|
||||||
|
temperature=request.temperature,
|
||||||
|
top_p=request.top_p,
|
||||||
|
max_new_tokens=request.max_tokens,
|
||||||
|
num_return_sequences=request.n,
|
||||||
|
stop=request.stop,
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_length, response_length = 0, 0
|
||||||
|
choices = []
|
||||||
|
for i, response in enumerate(responses):
|
||||||
|
if tools:
|
||||||
|
result = chat_model.engine.template.extract_tool(response.response_text)
|
||||||
|
else:
|
||||||
|
result = response.response_text
|
||||||
|
|
||||||
|
if isinstance(result, list):
|
||||||
|
tool_calls = []
|
||||||
|
for tool in result:
|
||||||
|
function = Function(name=tool[0], arguments=tool[1])
|
||||||
|
tool_calls.append(FunctionCall(id="call_{}".format(uuid.uuid4().hex), function=function))
|
||||||
|
|
||||||
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, tool_calls=tool_calls)
|
||||||
|
finish_reason = Finish.TOOL
|
||||||
|
else:
|
||||||
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result)
|
||||||
|
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH
|
||||||
|
|
||||||
|
choices.append(ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason))
|
||||||
|
prompt_length = response.prompt_length
|
||||||
|
response_length += response.response_length
|
||||||
|
|
||||||
|
usage = ChatCompletionResponseUsage(
|
||||||
|
prompt_tokens=prompt_length,
|
||||||
|
completion_tokens=response_length,
|
||||||
|
total_tokens=prompt_length + response_length,
|
||||||
|
)
|
||||||
|
|
||||||
|
return ChatCompletionResponse(id=completion_id, model=request.model, choices=choices, usage=usage)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_stream_chat_completion_response(
|
||||||
|
request: "ChatCompletionRequest", chat_model: "ChatModel"
|
||||||
|
) -> AsyncGenerator[str, None]:
|
||||||
|
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
||||||
|
input_messages, system, tools, image = _process_request(request)
|
||||||
|
if tools:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
|
||||||
|
|
||||||
|
if request.n > 1:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream multiple responses.")
|
||||||
|
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(role=Role.ASSISTANT, content="")
|
||||||
|
)
|
||||||
|
async for new_token in chat_model.astream_chat(
|
||||||
|
input_messages,
|
||||||
|
system,
|
||||||
|
tools,
|
||||||
|
image,
|
||||||
|
do_sample=request.do_sample,
|
||||||
|
temperature=request.temperature,
|
||||||
|
top_p=request.top_p,
|
||||||
|
max_new_tokens=request.max_tokens,
|
||||||
|
stop=request.stop,
|
||||||
|
):
|
||||||
|
if len(new_token) != 0:
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(content=new_token)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield _create_stream_chat_completion_chunk(
|
||||||
|
completion_id=completion_id, model=request.model, delta=ChatCompletionMessage(), finish_reason=Finish.STOP
|
||||||
|
)
|
||||||
|
yield "[DONE]"
|
||||||
|
|
||||||
|
|
||||||
|
async def create_score_evaluation_response(
|
||||||
|
request: "ScoreEvaluationRequest", chat_model: "ChatModel"
|
||||||
|
) -> "ScoreEvaluationResponse":
|
||||||
|
if len(request.messages) == 0:
|
||||||
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
|
||||||
|
|
||||||
|
scores = await chat_model.aget_scores(request.messages, max_length=request.max_length)
|
||||||
|
return ScoreEvaluationResponse(model=request.model, scores=scores)
|
||||||
34
src/llamafactory/api/common.py
Normal file
34
src/llamafactory/api/common.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import json
|
||||||
|
from typing import TYPE_CHECKING, Any, Dict
|
||||||
|
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
def dictify(data: "BaseModel") -> Dict[str, Any]:
|
||||||
|
try: # pydantic v2
|
||||||
|
return data.model_dump(exclude_unset=True)
|
||||||
|
except AttributeError: # pydantic v1
|
||||||
|
return data.dict(exclude_unset=True)
|
||||||
|
|
||||||
|
|
||||||
|
def jsonify(data: "BaseModel") -> str:
|
||||||
|
try: # pydantic v2
|
||||||
|
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
|
||||||
|
except AttributeError: # pydantic v1
|
||||||
|
return data.json(exclude_unset=True, ensure_ascii=False)
|
||||||
153
src/llamafactory/api/protocol.py
Normal file
153
src/llamafactory/api/protocol.py
Normal file
@@ -0,0 +1,153 @@
|
|||||||
|
# Copyright 2024 the LlamaFactory team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import time
|
||||||
|
from enum import Enum, unique
|
||||||
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from typing_extensions import Literal
|
||||||
|
|
||||||
|
|
||||||
|
@unique
|
||||||
|
class Role(str, Enum):
|
||||||
|
USER = "user"
|
||||||
|
ASSISTANT = "assistant"
|
||||||
|
SYSTEM = "system"
|
||||||
|
FUNCTION = "function"
|
||||||
|
TOOL = "tool"
|
||||||
|
|
||||||
|
|
||||||
|
@unique
|
||||||
|
class Finish(str, Enum):
|
||||||
|
STOP = "stop"
|
||||||
|
LENGTH = "length"
|
||||||
|
TOOL = "tool_calls"
|
||||||
|
|
||||||
|
|
||||||
|
class ModelCard(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: Literal["model"] = "model"
|
||||||
|
created: int = Field(default_factory=lambda: int(time.time()))
|
||||||
|
owned_by: Literal["owner"] = "owner"
|
||||||
|
|
||||||
|
|
||||||
|
class ModelList(BaseModel):
|
||||||
|
object: Literal["list"] = "list"
|
||||||
|
data: List[ModelCard] = []
|
||||||
|
|
||||||
|
|
||||||
|
class Function(BaseModel):
|
||||||
|
name: str
|
||||||
|
arguments: str
|
||||||
|
|
||||||
|
|
||||||
|
class FunctionDefinition(BaseModel):
|
||||||
|
name: str
|
||||||
|
description: str
|
||||||
|
parameters: Dict[str, Any]
|
||||||
|
|
||||||
|
|
||||||
|
class FunctionAvailable(BaseModel):
|
||||||
|
type: Literal["function", "code_interpreter"] = "function"
|
||||||
|
function: Optional[FunctionDefinition] = None
|
||||||
|
|
||||||
|
|
||||||
|
class FunctionCall(BaseModel):
|
||||||
|
id: str
|
||||||
|
type: Literal["function"] = "function"
|
||||||
|
function: Function
|
||||||
|
|
||||||
|
|
||||||
|
class ImageURL(BaseModel):
|
||||||
|
url: str
|
||||||
|
|
||||||
|
|
||||||
|
class MultimodalInputItem(BaseModel):
|
||||||
|
type: Literal["text", "image_url"]
|
||||||
|
text: Optional[str] = None
|
||||||
|
image_url: Optional[ImageURL] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatMessage(BaseModel):
|
||||||
|
role: Role
|
||||||
|
content: Optional[Union[str, List[MultimodalInputItem]]] = None
|
||||||
|
tool_calls: Optional[List[FunctionCall]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionMessage(BaseModel):
|
||||||
|
role: Optional[Role] = None
|
||||||
|
content: Optional[str] = None
|
||||||
|
tool_calls: Optional[List[FunctionCall]] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionRequest(BaseModel):
|
||||||
|
model: str
|
||||||
|
messages: List[ChatMessage]
|
||||||
|
tools: Optional[List[FunctionAvailable]] = None
|
||||||
|
do_sample: Optional[bool] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
top_p: Optional[float] = None
|
||||||
|
n: int = 1
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
stop: Optional[Union[str, List[str]]] = None
|
||||||
|
stream: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
message: ChatCompletionMessage
|
||||||
|
finish_reason: Finish
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionStreamResponseChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
delta: ChatCompletionMessage
|
||||||
|
finish_reason: Optional[Finish] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseUsage(BaseModel):
|
||||||
|
prompt_tokens: int
|
||||||
|
completion_tokens: int
|
||||||
|
total_tokens: int
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: Literal["chat.completion"] = "chat.completion"
|
||||||
|
created: int = Field(default_factory=lambda: int(time.time()))
|
||||||
|
model: str
|
||||||
|
choices: List[ChatCompletionResponseChoice]
|
||||||
|
usage: ChatCompletionResponseUsage
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionStreamResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
||||||
|
created: int = Field(default_factory=lambda: int(time.time()))
|
||||||
|
model: str
|
||||||
|
choices: List[ChatCompletionStreamResponseChoice]
|
||||||
|
|
||||||
|
|
||||||
|
class ScoreEvaluationRequest(BaseModel):
|
||||||
|
model: str
|
||||||
|
messages: List[str]
|
||||||
|
max_length: Optional[int] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ScoreEvaluationResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: Literal["score.evaluation"] = "score.evaluation"
|
||||||
|
model: str
|
||||||
|
scores: List[float]
|
||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user