204 Commits

Author SHA1 Message Date
hiyouga
ec334f5891 release v0.2.2, fix #1478 #1466
Former-commit-id: c9534c411716e1dceb54c5eb35fe845c93ee2973
2023-11-13 23:09:05 +08:00
hiyouga
885efe772e fix #424
Former-commit-id: ca24d445f825e120e659f5cd080a954c2243b8f2
2023-11-13 22:42:23 +08:00
hiyouga
64fc9ba678 refactor evaluation, upgrade trl to 074
Former-commit-id: ed09ebe2c1926ffdb0520b3866f7fd03a9aed046
2023-11-13 22:20:35 +08:00
hiyouga
989eccd286 fix flashattn warning
Former-commit-id: 6eb095d39bd82fdbdb729a0ea57fc7246e3a60d6
2023-11-10 18:34:54 +08:00
hiyouga
f0766a2ab0 add todo
Former-commit-id: 0bd884feb11736d0ab24ca19885151cb47d9dcd3
2023-11-10 14:38:18 +08:00
hiyouga
178b85ff9a refactor constants
Former-commit-id: a4d4c3fd35276f20e3b354e9d13ea971029c8775
2023-11-10 14:16:10 +08:00
hiyouga
68dd1ef121 tiny fix
Former-commit-id: 97ba2027bb1ddc01a3c824c40d5a180828810c2c
2023-11-09 17:20:49 +08:00
hoshi-hiyouga
b222cffe98 Merge pull request #1454 from yyq/main
Update finetuning_args.py

Former-commit-id: e67d8b93705383a8590f99e26e9fe8f663712aef
2023-11-09 17:12:18 +08:00
Yanqing
b4f1ab93d1 Update finetuning_args.py
更新 chatglm/falcon/bloom 的 lora_target 的名称

Former-commit-id: 06606739af035a80ae9ddba9d12c965ed289305d
2023-11-09 17:04:40 +08:00
hiyouga
f2e139f5cd fix #1452
Former-commit-id: 4d16214467715df458e24d03bb7d303d62b8bdcd
2023-11-09 16:41:32 +08:00
hiyouga
a9cbca1604 update readme
Former-commit-id: f7ead54042868550a3e8a6928ea3c0e2673f15b3
2023-11-09 16:00:24 +08:00
hiyouga
3a30ce6c16 release v0.2.1
Former-commit-id: 1c30f2be0140f5ab47c2bc811170d0271a0cdad6
2023-11-09 15:54:16 +08:00
hiyouga
48ec5355f9 add template, modify datasets
Former-commit-id: 81e54beb4d0f792f4fd7f450643caaf10f2f0b7d
2023-11-09 15:53:23 +08:00
hoshi-hiyouga
11859bc322 Merge pull request #1436 from lvzii/main
fix tokenizer config changed after pretrain

Former-commit-id: f485c3983e413fd3a3a57b451800705b072869a7
2023-11-09 14:30:50 +08:00
hiyouga
28c67a5be8 support parquet format #1446
Former-commit-id: 44a3b9ac9f10d2012b8ad3d8c48123db9a0da2f1
2023-11-09 14:17:40 +08:00
hiyouga
44fe93e9b0 fix #1438 #1439
Former-commit-id: 84260d58dda22adc32c26bc943ed2a36fd01341d
2023-11-09 13:45:10 +08:00
lvzi
09a1681b63 fix tokenizer config changed after pretrain
Changing tokenizer's attribute at preprocessing stage will result in saving a wrong tokenizer.
for example, baichuan2

Former-commit-id: 19942b5314b84267691f0a5657d0679f2ddbe58b
2023-11-08 15:50:46 +08:00
hiyouga
f5ba2190fb fix ppo train and dpo eval
Former-commit-id: ced863031836632cb5920e22ae6991f251372118
2023-11-07 22:48:51 +08:00
hiyouga
14a38b5069 fix #1422
Former-commit-id: 25d7bbd0a5142f001bd2ff498df07b24137050a9
2023-11-07 19:42:01 +08:00
hiyouga
f23e5b602a fix reward model loading
Former-commit-id: 9709ca501180a1afce32e9043aedb359762b437d
2023-11-07 17:20:51 +08:00
hiyouga
857696ed9c fix args
Former-commit-id: 44d0fa2ac6a6423c7ddaf91eb8998c1b9248c04e
2023-11-07 16:36:06 +08:00
hiyouga
2084133058 update info
Former-commit-id: 89643b8ac1e3fa8d2f29f1c88e4d4503410c0d05
2023-11-07 16:28:21 +08:00
hiyouga
f7f0c3070e delete file
Former-commit-id: 7d6355db0fd5809b99f3fa42753cf4dffd251fd1
2023-11-07 16:20:12 +08:00
hiyouga
46235aa514 fix #1418
Former-commit-id: 9bfecc72c53cf95fea4a9ff02ec40a65da6d4f54
2023-11-07 16:17:22 +08:00
hiyouga
2eb65d21ac upgrade peft, fix #1088 #1411
Former-commit-id: aa7d104f8e050d12cb8f585bc8a52c850995500f
2023-11-07 16:13:36 +08:00
hiyouga
37a0d62a82 update requirements
Former-commit-id: 82ebbbbb80b3f3f616274210970738d0f44b5a0a
2023-11-06 19:01:21 +08:00
hiyouga
21ac46e439 use seed in evaluate.py
Former-commit-id: ab5cac1dfa681933f3266827f80068ce798b4c56
2023-11-06 18:17:51 +08:00
hiyouga
ba3e8ba20c update readme (list in alphabetical order)
Former-commit-id: e6a67b5477ee095bd92764581cfe6af57e799a69
2023-11-06 17:18:12 +08:00
hiyouga
2c48e798ca update templates
Former-commit-id: 85be2e242b062283f192c4c4d0715dc1e8a68589
2023-11-06 12:25:47 +08:00
hiyouga
4e40f5b62b fix #1383
Former-commit-id: 9b8a782aa80f27c3e2a2e2621f9be17cae1a27e8
2023-11-06 11:42:23 +08:00
hiyouga
2a8892b785 fix deepseek template
Former-commit-id: 1fdbcdad9a1cdb20299350efd87a8e5cb8c625a3
2023-11-05 13:08:46 +08:00
hiyouga
ee3b33ff03 support deepseek coder #1378
Former-commit-id: ae0c829917b9de10e71199c85c77a52cdcd2b7b3
2023-11-05 12:51:03 +08:00
hiyouga
b2c3001f8e fix #1365
Former-commit-id: 0277d120e62164bb7fa1d6043b8fcc52c881fe96
2023-11-05 12:21:07 +08:00
hiyouga
6cfe1e1ac2 tiny fix
Former-commit-id: 594c510a20d6c2782d7b7ffff18931e3003e6c22
2023-11-03 01:26:06 +08:00
hiyouga
52326870e4 fix #1290
Former-commit-id: ad911d258c4cea16f54d09bc192e076c21d26394
2023-11-03 00:44:53 +08:00
hiyouga
217fde0918 fix bug in data loader, support dpo eval
Former-commit-id: f4f3dcff990468a2fa864b7176adcebbcf16dac9
2023-11-03 00:34:26 +08:00
hiyouga
065021d82a update data readme
Former-commit-id: 6a65ef44ed58714c611da60b5af96b85352e8735
2023-11-03 00:15:23 +08:00
hiyouga
4bb643e685 update data readme (zh)
Former-commit-id: b32fb3a984c681732b82f6544d6c05a98c34cf4c
2023-11-02 23:42:49 +08:00
hiyouga
b77c745b1a support sharegpt format, add datasets
Former-commit-id: 202daf8987ccb7523be03ca535b572b5c9e65994
2023-11-02 23:10:04 +08:00
hiyouga
7d13501b94 support pagination in webui preview
Former-commit-id: f2307e26b9c2ce5d60917cce5a9638466ea676c8
2023-11-02 21:21:45 +08:00
hiyouga
ac74639b32 fix webui
Former-commit-id: 9192948fa221c0275ddfa579ef6b3442d45b8962
2023-11-02 18:03:14 +08:00
hiyouga
12fa56ae68 support warning in webui
Former-commit-id: 9903b523fad2f0ec0e66c3d313823bd4674bfa2b
2023-11-02 17:57:04 +08:00
hiyouga
f11b863f4b fix #1349
Former-commit-id: 556c023eab2a68560b26a7d5318a79410fb0c700
2023-11-02 17:02:44 +08:00
hiyouga
f3e4b72957 fix #1356
Former-commit-id: d2ed436108a339d405dad1be1ca15baca3d6d3e4
2023-11-02 16:51:52 +08:00
hiyouga
8d52fb46ca fix #1325
Former-commit-id: 59f2cbbd52d4646fbd1ba83032bf522ecc49a50f
2023-11-01 23:38:49 +08:00
hiyouga
dab8f45033 fix chat
Former-commit-id: 68f2b3df09c4c8638b9e225fd5b8aed3541e97a0
2023-11-01 23:07:58 +08:00
hiyouga
bff8b02543 update gradio, support multiple resp in api
Former-commit-id: a34263e7c0e07a080276d164cdab9f12f1d767d2
2023-11-01 23:02:16 +08:00
hiyouga
2406200914 fix SFT trainer
Former-commit-id: bf09b6a6cd75cc2738d9af6b8c30bcbba77fa9b5
2023-10-31 21:52:52 +08:00
hiyouga
db06fcfc84 fix #1316
Former-commit-id: 88a753fe80e277007bac2264aee24024e18f2314
2023-10-31 11:32:08 +08:00
hiyouga
93b9f74e9f update projects
Former-commit-id: 33d58e9171ad2693b9d54715eb61a6f4326c59f4
2023-10-29 22:53:47 +08:00
hiyouga
33ec844f76 add projects
Former-commit-id: 495a68cd5962dd3b3af7e4a920d91ac25531a862
2023-10-29 22:07:13 +08:00
hiyouga
0f727b393e update constants
Former-commit-id: ebacbb1072045924a7e335cc9dda488d6f0be8b3
2023-10-29 13:30:20 +08:00
hiyouga
7da2aad6ee fix vicuna template
Former-commit-id: a98eda0803e4b73a24f12d848e14161451921e98
2023-10-27 22:15:25 +08:00
hiyouga
6f09f50d02 fix chatglm3 template
Former-commit-id: 69bcbc9f6c98e4f4ad97ec0306b33ab21923d311
2023-10-27 21:12:06 +08:00
hiyouga
5919832059 update readme
Former-commit-id: 6fb92c7088316c56ce8656e540fc47b0a5a1bf18
2023-10-27 19:19:03 +08:00
hiyouga
f7635c1afc support chatglm3
Former-commit-id: ba82e13bbeed3b262d301196b1860d73f319401d
2023-10-27 19:16:28 +08:00
hiyouga
c762168ed0 support dataset cache
Former-commit-id: f79ee62eb4a2a4a01cb4e2a6aa2d07158cf8eb59
2023-10-26 21:48:45 +08:00
hiyouga
67a46e553f fix #1287
Former-commit-id: d885aca472c6448bbf9a9e8d16bead92038825e3
2023-10-26 17:49:41 +08:00
hiyouga
e406f37b54 fix #1285
Former-commit-id: 2f8fe4439506e844b147fe38b5eb878c5748c31c
2023-10-26 16:34:52 +08:00
hiyouga
62fe877124 remove filter in preprocess
Former-commit-id: 9eac08b35fec47129a29c401ca265343f8388ab0
2023-10-23 23:46:02 +08:00
hiyouga
a0e682ba79 update neftune logic
Former-commit-id: bb4f0589ed23bf0236d3e918272ad64f0a05ef39
2023-10-22 17:42:13 +08:00
hiyouga
49e8a87383 fix webui
Former-commit-id: a5a5a7bc1f53d36e1b26e418999465903cb7d9ed
2023-10-22 17:24:56 +08:00
hiyouga
b2764b49ca add new options in webui
Former-commit-id: 6698b832dd9cc2d7d60be4fa5ab90e34a7e9d8e0
2023-10-22 17:17:58 +08:00
hiyouga
06b810de8f fix recursion error
Former-commit-id: c7938188c36a71a878bca982b7dd151195164986
2023-10-22 16:28:37 +08:00
hiyouga
6da51565f5 reimplement neftune
Former-commit-id: efe9e5a194d3a9f052701d904715238816e4c09e
2023-10-22 16:15:08 +08:00
hoshi-hiyouga
1f69965239 Merge pull request #1252 from anvie/neftune
add NEFTune optimization

Former-commit-id: 85d5c5fbe731f486c3e83812227fa05edc131487
2023-10-22 15:59:20 +08:00
anvie
af2d61178d add NEFTune optimization
Former-commit-id: 603e0298af64116ac07130fe6661a9ba823c186c
2023-10-21 13:24:10 +07:00
hiyouga
6a955ccf4f fix openchat template
Former-commit-id: 88b9b657bc50495ac4c42f64195fc652fe4ca3df
2023-10-21 01:25:42 +08:00
hiyouga
c0658711ca fix tokenizer padding side in evaluate.py
Former-commit-id: bcb43ff8ba1946c1f7e7865c9d0fb47ba276935d
2023-10-21 00:30:04 +08:00
hiyouga
d602f06882 fix #1232
Former-commit-id: 49975755d47344e362145c52548fdda8783f2c0c
2023-10-20 23:28:52 +08:00
hiyouga
1cb9a38ac2 fix #1215
Former-commit-id: d91b43a8afbea4859357f2224e3d9b9d71160e6d
2023-10-19 16:19:21 +08:00
hiyouga
47a1f73d0f fix #1218
Former-commit-id: b301f35bd4a3bf368159c8f5fb4e2736f922115b
2023-10-19 16:17:41 +08:00
hiyouga
142dd63b47 fix #1228
Former-commit-id: e4e0cae3f55da2f1b566c97dbfdd7fc5b7b728a4
2023-10-19 15:54:10 +08:00
hiyouga
b1bd8370c2 fix #1217
Former-commit-id: 065fc0a6f3f005bb87e1c5c126c8b6bb470ce700
2023-10-19 15:52:24 +08:00
hiyouga
215660c8da rename webui
Former-commit-id: 26feaf80fff6177d9eb4e28ad18feb6d34d3ea27
2023-10-16 15:16:24 +08:00
hiyouga
0cafe67efe fix #1197
Former-commit-id: 00100e23fcfef9587fda4cf01c62599d996e1176
2023-10-16 15:13:46 +08:00
hoshi-hiyouga
ea83b3222b Update README_zh.md
Former-commit-id: 3450404bb9a33c3bd4b45ac4afcf51062f8c7d1d
2023-10-16 00:28:27 +08:00
hoshi-hiyouga
725087a04f Update README.md
Former-commit-id: d84896597eded79f78224faed81cc9f2df222978
2023-10-16 00:23:37 +08:00
hiyouga
d627ab4855 release v0.2.0
Former-commit-id: 7f941c1ab6c52915aa2675fa77cae5efc530fdd9
2023-10-15 20:49:43 +08:00
hiyouga
7d867e8df4 update readme
Former-commit-id: a99a92b129a3d2372e66ca73b87c3e521f144043
2023-10-15 20:28:14 +08:00
hoshi-hiyouga
3d34d44497 Update README.md
Former-commit-id: e6fcc1831dadd2ec2c0acb14697a35f6471139ab
2023-10-15 20:23:22 +08:00
hiyouga
a6f800b741 fix config, #1191
Former-commit-id: 5dbc9b355e85b203cb43ff72589374f0e04be391
2023-10-15 18:28:45 +08:00
hiyouga
a003d1fa1e disable tqdm in webui mode
Former-commit-id: 832be571bec2eefb79ea88f110b7827f5c1249e6
2023-10-15 16:18:25 +08:00
hiyouga
c2e84d4558 refactor export, fix #1190
Former-commit-id: 30e60e37023a7c4a2db033ffec0542efa3d5cdfb
2023-10-15 16:01:48 +08:00
hiyouga
68330eab2a fix eval resuming in webui
Former-commit-id: b28b53cd06777f213ef7b925a914ff5fd357ade1
2023-10-15 15:45:38 +08:00
hiyouga
7070f3969d tiny fix
Former-commit-id: 47b7b34357708a5354d542ddc239146c6417d718
2023-10-15 05:02:48 +08:00
hiyouga
e4727ab155 fix callback
Former-commit-id: 51208655a8c1d66551b7b644247321a3583debdc
2023-10-15 04:59:44 +08:00
hoshi-hiyouga
280e7d97ad Merge pull request #1186 from hiyouga/dev
Support Web UI resuming training

Former-commit-id: fcbecd0c4cb17b883e9b780a71d2abc38228293e
2023-10-15 04:53:14 +08:00
hiyouga
31e3805fb8 implement webui resuming training
Former-commit-id: 2d41672ef52414c56c50c8b4fdc442797ba682e9
2023-10-15 04:52:19 +08:00
hiyouga
ef248dbe15 fix bugs in webui
Former-commit-id: 4befa74ea630d90e4d7a1f7d7c34d39257717ec1
2023-10-15 03:41:58 +08:00
hiyouga
6a61b4b638 refactor webui
Former-commit-id: 813ecd8e51949c21ab6fbaa51cc2b1a84ee07952
2023-10-15 03:06:21 +08:00
hiyouga
4b1473502f fix loading dtype
Former-commit-id: d54a356128f7e335c12089702cf3de7f5b4baf16
2023-10-14 20:15:24 +08:00
hiyouga
bf211d818d fix #1176 #1177
Former-commit-id: 5627a2b57c270a78095a32083e2dc7aa02162875
2023-10-14 20:00:17 +08:00
hiyouga
27dd87c890 fix #1184
Former-commit-id: 5b069a967823e659dbc70b0d50361b3ad248087e
2023-10-14 19:20:11 +08:00
hiyouga
8659084ab0 fix webui
Former-commit-id: a0fe43aac968d9f6ca4724b8d718b45c03063b91
2023-10-13 16:27:59 +08:00
hiyouga
e1c9dcea93 update readme
Former-commit-id: 9d9018fad314cdc4512b4847633489cdd7a25347
2023-10-13 13:53:43 +08:00
hiyouga
171339ab17 update discord link
Former-commit-id: f725cb4940a3a18e9f1edca986ef06d425b39710
2023-10-12 21:44:28 +08:00
hiyouga
8542ba5c69 rename repository
Former-commit-id: 6100ac080a5e52edd66b98147aede6cb77481beb
2023-10-12 21:42:29 +08:00
hiyouga
97b74d328b fix ppo args
Former-commit-id: 0f12899951808f53a482082eb116bda309775930
2023-10-11 23:40:50 +08:00
hiyouga
3198a7e5f4 refactor model_dtype, fix PPO trainer
Former-commit-id: 3e17ee5afbcb823a7c9a2f91864b3750cd79edb4
2023-10-11 23:16:01 +08:00
hiyouga
a2d08ce961 add averaging in evaluation
Former-commit-id: b39d6e0b8658e1c69bbaf6bcb6cfaa8f7af30110
2023-10-10 23:16:31 +08:00
hiyouga
bd8ea09479 fix aquila template, repair sft packing mechanism
Former-commit-id: 8c82cfa5dd4bec957426b5bf176d242c77552ab0
2023-10-10 18:49:55 +08:00
hiyouga
6d0d46c7fb tiny fix
Former-commit-id: 31ccd3329ac634b239c43d60bd955cd95670df16
2023-10-10 17:41:13 +08:00
hiyouga
820540780a update readme
Former-commit-id: 4a9c8a4f18b07455c34e6c1e6bbc81cbefd82eea
2023-10-09 20:02:50 +08:00
hiyouga
f74d600497 fix flash shift short attention
Former-commit-id: e44ad23eafa39b3ac0400b6f97cd440106a87f44
2023-10-09 17:54:48 +08:00
hiyouga
94fec9f50e fix webui args
Former-commit-id: 64aa75c8cd7c84ab4a0f1dbaf4763765ba973f54
2023-10-09 17:13:57 +08:00
hiyouga
e387a50475 fix shift short attention
Former-commit-id: 9a49cce8e6f6b222f74a07bdab40efee6a77b0f1
2023-10-09 17:07:46 +08:00
hiyouga
5c4248a29c update webui #1086
Former-commit-id: 65a48bc398f18f71f5f2659b2070e3b9593af243
2023-10-09 14:50:14 +08:00
hiyouga
f22886e2b6 fix #1097
Former-commit-id: c5b8796322d9d48e815038f9fecf0ce39036a4ee
2023-10-08 22:29:26 +08:00
hiyouga
33af3cbf37 add llamafy_qwen.py
Former-commit-id: 6cdc91543c022edcc98076488f06e809fde9bad7
2023-10-08 22:05:36 +08:00
hiyouga
728dfb1be7 fix #1068 #1074
Former-commit-id: 26c6bfd21de06cc56be9a58e2ef69045ea70cc14
2023-09-28 14:39:16 +08:00
hiyouga
e49f7f1afe fix bug in packed sft dataset
Former-commit-id: 51d26b2af6612e65a91c576da5270028da27b322
2023-09-28 01:16:46 +08:00
hiyouga
21a454fa6c tiny fix
Former-commit-id: 35b355b76d2a8f8adf3750a905224e52d03d218f
2023-09-28 01:03:04 +08:00
hiyouga
22c6c27f78 tiny fix
Former-commit-id: 7451b2ae7e58d0f1857f01a037672a8c53b1bd0d
2023-09-28 01:02:11 +08:00
hiyouga
aecbb43096 fix #1064
Former-commit-id: fd4660aa72d981d7efdad465f24a59358626c975
2023-09-28 00:53:29 +08:00
hiyouga
fa53fd2db2 fix bug in pretraining
Former-commit-id: 18a2d90bd6e7c3e1e3513e6f9d895e4048b35b04
2023-09-28 00:45:20 +08:00
hiyouga
1c150995ae fix layer norm dtype
Former-commit-id: 67af21961b68d9b54d07b09e444c7140869f26da
2023-09-28 00:25:55 +08:00
hiyouga
6c5d8f089e fix #1026
Former-commit-id: d0940d0dbd03d4bbcc955304566b0d5507edf9e6
2023-09-27 22:57:09 +08:00
hiyouga
dd623325e8 fix #424
Former-commit-id: daaf89f1126112a73b9f115b0f5617a8cd974a3e
2023-09-27 22:49:43 +08:00
hiyouga
e8a375c8f2 fix #1032
Former-commit-id: 1235b2da5a79ffefd1342054ea8e7dabf47398c1
2023-09-27 22:42:16 +08:00
hiyouga
386d85ae72 refactor finetuning Args
Former-commit-id: be425a70a4c8f051717cf1e4464dbd79dae4c0b5
2023-09-27 22:28:06 +08:00
hiyouga
ebb3901b05 update readme
Former-commit-id: badbc210435d92cea8799bcd1af4c738da902cd7
2023-09-27 21:57:47 +08:00
hiyouga
20130b486c support LongLoRA
Former-commit-id: 0832ed37e7947d699f17375648a52f80752c2b6b
2023-09-27 21:55:50 +08:00
hiyouga
73c48d0463 add CMMLU, update eval script
Former-commit-id: 47f31f06a946eefa5a972e4a566cf3ce05e1e111
2023-09-23 21:10:17 +08:00
hiyouga
f7cecd20e3 update evaluate
Former-commit-id: 288137a76ed1528faa39b467da22f6468ba368ee
2023-09-23 11:55:31 +08:00
hiyouga
2bc64a7636 move file
Former-commit-id: 8711ca9b5421f971ee4cb2fada23832f1021577c
2023-09-23 11:52:12 +08:00
hiyouga
9564ddbb48 shuffle few shot examples
Former-commit-id: 2c9c14c122382e640dfa41a3799628c764c99457
2023-09-23 00:53:20 +08:00
hiyouga
28062c71b5 fix MMLU
Former-commit-id: eeab92323899694010469451b8dfb1f00d685bff
2023-09-23 00:42:23 +08:00
hiyouga
35d1921081 add MMLU and C-Eval script
Former-commit-id: 3403f876127b4b99c5e3edb2834cc3b9a3a0063f
2023-09-23 00:34:17 +08:00
hiyouga
4fbdf18c70 fix #1000
Former-commit-id: 85de2d0a99e4a81fae890a963ccbb5c6142d52d4
2023-09-22 15:00:48 +08:00
hiyouga
5e07ab01f0 update readme
Former-commit-id: 776f9ea3a5837cb3f80ebe53f19e9951400bf05d
2023-09-22 14:34:13 +08:00
hiyouga
fac465a21e fix webui
Former-commit-id: e28485b476816c1bd6c34f7ff9efaa9e3fb85176
2023-09-21 19:55:38 +08:00
hiyouga
e145a2ce0c tiny fix
Former-commit-id: d24ea58c1a44b94227f4cb60f13fc1dd79997d01
2023-09-21 19:52:06 +08:00
hiyouga
dc68c313ee fix #944
Former-commit-id: 032245647848aaa4167086636b6c985268c5fee3
2023-09-21 19:51:02 +08:00
hiyouga
95c0d9ab24 tiny fix
Former-commit-id: 1a7ddd8c1d20dc251f53923bd0ab9f3f1031dd21
2023-09-21 15:25:29 +08:00
hoshi-hiyouga
46a718f339 Merge pull request #975 from statelesshz/npu-support
Add Ascend NPU support

Former-commit-id: b348c7569c0d3f46b03fb274226444ac7a80e68d
2023-09-20 14:56:50 +08:00
statelesshz
496ba46960 support export model on Ascend NPU
Former-commit-id: 50f94e6d9d62c848db7a3db85fa999d67ddd9f04
2023-09-20 10:26:02 +08:00
hiyouga
43ae0aca1d fix webui
Former-commit-id: 2aa06a5a74d98ec25ed6e1e39df11230670f5bad
2023-09-19 18:35:21 +08:00
hiyouga
b8574c1b82 fix error info
Former-commit-id: b90ed220c5e94086d2b73045eff2440ff1b58c5c
2023-09-19 18:30:23 +08:00
hiyouga
32f8b1082b add tests.cal_flops.py
Former-commit-id: 47a119db6c6e937f6ed96f70e3cda6031b9fbd0d
2023-09-16 23:40:41 +08:00
hiyouga
6443fef31a update readme
Former-commit-id: 813c2df5dc179d82c6c999f63c2640e7c3f6aaff
2023-09-16 17:33:01 +08:00
hiyouga
14c3795a7d fix #913
Former-commit-id: d67c11d69277292648dd9889a7321345e2c0c437
2023-09-15 20:58:28 +08:00
hiyouga
3d9e2de573 fix #896
Former-commit-id: 4b70d623d817460de4732749110622e4a1b51958
2023-09-14 18:37:34 +08:00
hiyouga
0ca36a0f8d fix #887
Former-commit-id: e131bc03e05ccae3c6ad8bb42ccf2cdcc2cf3cea
2023-09-14 17:56:58 +08:00
mmbwf
3e5555502a Update utils.py
Fix parameters load error.

Former-commit-id: 112850364c7fdb53e3a38d42861404fc519108ce
2023-09-14 15:38:04 +08:00
hiyouga
fbf5b5e0a9 add MathInstruct dataset
Former-commit-id: 3d1d4b47055739854cf9788a902607e1bbba3723
2023-09-13 22:30:14 +08:00
hiyouga
3305e66f8c fix ppo save model
Former-commit-id: 300ca6d904524f46cb520056e1319a1e9a13d169
2023-09-12 16:25:29 +08:00
hiyouga
e19a44c12b fix #762 #814
Former-commit-id: 9a30ee5009040afbc524dbac0dad99904b2adf5f
2023-09-12 16:10:10 +08:00
hiyouga
8b0e6b9d1b tiny fix
Former-commit-id: d8ea0691f84c971e6860526714fc9873c350b064
2023-09-11 18:27:08 +08:00
hiyouga
f3e638ac6a Release v0.1.8
Former-commit-id: d9666411375964d334d0a93ec162b27e05f70d49
2023-09-11 17:31:34 +08:00
hiyouga
42e0b30476 update flashattn, fix ppo save model
Former-commit-id: 0b08bc3dac246d4aa3f89afb7172529dcad9c39f
2023-09-11 17:25:36 +08:00
hiyouga
a09a7b650d remove PeftTrainer
Former-commit-id: cc0cff3e991f194732d278e627648e528118a719
2023-09-10 22:23:23 +08:00
hiyouga
332d7bbd56 truncate readme
Former-commit-id: fed5d0cc87e4a5a023f2edae622f2820bded1509
2023-09-10 21:04:20 +08:00
hiyouga
d3b6fece71 update readme
Former-commit-id: c42fe77fec2918fe8811d48ec88e9a7c1e6f07ab
2023-09-10 21:01:20 +08:00
hiyouga
9d963b82de update readme
Former-commit-id: b4109cfe548e091cd20fa84815dce5ff3974a090
2023-09-10 20:52:21 +08:00
hiyouga
a402161631 support FlashAttention2
Former-commit-id: 23e56c5554b948d4f08ad87849b261eafd2c7890
2023-09-10 20:43:56 +08:00
hiyouga
b481ad58e6 fix #850
Former-commit-id: e5975c4c6b8bd47ec506b0d4a4703bee05495436
2023-09-10 14:22:03 +08:00
hiyouga
f91c5f2638 fix lora target
Former-commit-id: d822e41e7ac7e310ee49e347fc45754284ce30b8
2023-09-09 17:04:45 +08:00
hiyouga
7143c551ab support lora target auto find
Former-commit-id: bce9984733d88bf013847eed523d1c75fdf0995e
2023-09-09 15:38:37 +08:00
hiyouga
50e93392dd fix chatglm2 tokenizer
Former-commit-id: 1ab60b4a93fa1be5dfe6ffbd4deb64c0f9d9b431
2023-09-09 13:50:29 +08:00
hiyouga
9f83e93839 add baichuan2 convert script
Former-commit-id: 4d676e0ea9e59c1be13ecb47734917ba78938ac8
2023-09-08 22:59:41 +08:00
hiyouga
692b132dbf fix bug in DPO data collator
Former-commit-id: 4fc262cdf1347691e253bdfbd96568db5a49c086
2023-09-08 20:45:07 +08:00
hiyouga
e70b3e8947 fix #761
Former-commit-id: be76f6cbe5143f781b6b39603b80392253b3080a
2023-09-08 20:22:18 +08:00
hiyouga
612d97db6f change to right-padding, update reward score #803
Former-commit-id: baa90415bc8f5ebd423d001378b51c3a3a6c2ec7
2023-09-08 20:04:31 +08:00
hiyouga
bb1b67c076 fix chatglm template
Former-commit-id: 69a824628b4d6a56a680a7e713b217877c6c15c5
2023-09-08 14:45:58 +08:00
hiyouga
5a75c31caa update requirements
Former-commit-id: d796a4a5709c390629bafbeb7c91fccf6a9076d0
2023-09-07 19:26:25 +08:00
hiyouga
8b9210286b fix #818
Former-commit-id: e81fd458c279ed2f3cee780e517482b425c8886d
2023-09-07 19:19:53 +08:00
hiyouga
b5acec34f7 add deepspeed check in PPO training
Former-commit-id: e203ec7f71f504ccbaa89c27d20b8a0d9fa53f7e
2023-09-07 19:12:40 +08:00
hiyouga
86d835878c fix #809
Former-commit-id: 2783ca75365d7c373cefba039788a48f0b8f35fc
2023-09-07 19:04:32 +08:00
hiyouga
eae7b331d3 fix baichuan templates
Former-commit-id: f48a49e835b32f3991cfad8874c7b9c78953809f
2023-09-07 18:54:14 +08:00
hiyouga
ed89e29bcc update baichuan2 template
Former-commit-id: 16d9f8ba176443c5b397233da621600d6e1e1eec
2023-09-06 21:43:06 +08:00
hiyouga
c2b1886aff add Baichuan2 models
Former-commit-id: 90b3f02c44c0b8cc1b59f37af3a1ec28874a8a61
2023-09-06 18:40:11 +08:00
hiyouga
218f36bca5 add Baichuan2 models
Former-commit-id: 36960025e9274b574f57e7a7bf453cd96956e922
2023-09-06 18:36:04 +08:00
hoshi-hiyouga
b91fc1f5b3 Merge pull request #786 from kinghuin/patch-1
fix utils.py bug

Former-commit-id: 26aad616340748e1594a60119ca9434908bf7465
2023-09-05 10:49:34 +08:00
Q
2a22bf9c15 fix utils.py bug
Former-commit-id: dc490117d50c3cbc070b804bac89400f4290272f
2023-09-05 10:38:01 +08:00
hiyouga
62e2037125 fix #763
Former-commit-id: e424b928a35097b783af879a2290f59b2158801d
2023-09-01 23:13:05 +08:00
hiyouga
e5b72c6a77 refactor dataset_attr, add eos in pt, fix #757
Former-commit-id: 0feec9a830b917b36686b61938a66e842eccf930
2023-09-01 19:00:45 +08:00
codingma
93be211f80 Merge pull request #741 from hiyouga/feature-addDatasetCheck
Feature add dataset check

Former-commit-id: 4b6dabe73d2c7edc94cd495390577c8bcf88428b
2023-08-31 20:57:36 +08:00
codemayq
9ae3fb4ced update llama2 template
Former-commit-id: 01de1d51d9fa5a22a338b6ed18ffad4d0ad5e3e8
2023-08-30 16:23:56 +08:00
codemayq
f641075789 add dataset stage check
Former-commit-id: 5c719a7ce988339d034a653456da9742dc2cec7c
2023-08-30 16:23:08 +08:00
codingma
f7658db1b6 Merge pull request #651 from hiyouga/feature-dataset_stage
add dataset stage

Former-commit-id: 3b0ef57405cbc22ff8ce4eef2cfcb73872519db5
2023-08-28 16:03:45 +08:00
codemayq
b869bc1a20 add ad gen dataset
Former-commit-id: fcd0788aa4dda0cecc1420d369d371032a207810
2023-08-27 20:35:32 +08:00
codemayq
a72d756d77 add text format dataset preview in webui
Former-commit-id: cd30871aadb40cd3d598a6d0b415946744d2d550
2023-08-24 19:45:36 +08:00
codemayq
d3fd8f89b8 add stage in DatasetAttr
Former-commit-id: 9c55200d8de0623640f529dbf39b8b0f169636d3
2023-08-23 20:54:53 +08:00
hiyouga
180a05a446 fix import error
Former-commit-id: b3207a974a45038591b8cbbcf20d1ca1142d6679
2023-08-23 20:45:03 +08:00
hiyouga
eb9ac9ee1f fix #649
Former-commit-id: e6120a937ddb4f3c0b9bcb2466742f5cf4f77f8c
2023-08-23 20:21:15 +08:00
codemayq
a6662b73f5 add readme for dataset
Former-commit-id: bdcb0ea40e726e4c5752f938b379ed9a18e7e1d0
2023-08-23 19:55:45 +08:00
codemayq
cbc7db3478 add dataset stage and filter dataset when stage chosen in webui
Former-commit-id: 26e4136449a4df6028d834fd16a0f4a7c532759d
2023-08-23 18:54:23 +08:00
hiyouga
4606340f0f fix webui
Former-commit-id: 95304b6822d9fe04bcddc1ee246a56389bd5f96a
2023-08-23 11:03:35 +08:00
hoshi-hiyouga
d4b4ccd597 Merge pull request #644 from hiyouga/fix-quantization_bit
fix quantization bit is ""

Former-commit-id: e1a8eca182e532b48e472919b4474656a726b40c
2023-08-23 10:45:45 +08:00
codemayq
9c3f4e3a37 fix quantization bit is ""
Former-commit-id: 0dcab66f8843e2887f9f7ca66334122fef35c5b7
2023-08-23 10:08:17 +08:00
codemayq
440e00d8f9 fix quantization is ""
Former-commit-id: 2469cc16d1dd3f5ee822edc18b2d7021ff7cba03
2023-08-23 10:04:03 +08:00
hiyouga
6310613699 update template
Former-commit-id: a95f3a4d62de1073a78125401cf4289ec0523156
2023-08-22 19:46:09 +08:00
hoshi-hiyouga
f55907dbea Merge pull request #629 from panpan0000/main
add rm dataset explanation

Former-commit-id: c2b4571d0ffb6298d6e07212982d9c13efd65adf
2023-08-22 13:41:44 +08:00
Peter Pan
5cac87d317 add rm dataset explanation
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>

Former-commit-id: 1efb95025be6501f1b30b20e7c711d3590b5d1ee
2023-08-22 01:33:59 -04:00
hoshi-hiyouga
9c0622de13 Merge pull request #619 from hiyouga/feature-templateTest
add template encode test

Former-commit-id: 8a1587ae49fff3968e0182f4fcc9a65dfdb260fc
2023-08-21 20:56:34 +08:00
codemayq
37b93c8b71 add template encode test
Former-commit-id: c15e0d6847cbc055d8376b3c43ac4fbd17b5877a
2023-08-21 20:51:24 +08:00
hiyouga
d6be98cda6 fix #617
Former-commit-id: a7bdaf1c92c7d798caf8438dc42a8972632ec584
2023-08-21 18:16:11 +08:00
hiyouga
4d128acc17 fix #608
Former-commit-id: c02a6809124fcfd06628c49c95d419ec2d8cc8ef
2023-08-21 17:49:36 +08:00
hiyouga
516df9ecce fix baichuan template for training #597 #616
Former-commit-id: 6530c1d972301eac9ef058b3235618bb09833f15
2023-08-21 17:41:51 +08:00
hiyouga
8eec1d50e1 fix #595
Former-commit-id: a360ccf9aa0484ce783eaa5857cf698b3ac2051e
2023-08-20 16:40:00 +08:00
hoshi-hiyouga
cfb096d43a Merge pull request #596 from beat4ocean/beat
fix KeyError: 'lang' bug

Former-commit-id: dd22541cdf1b832d20bb894d78c034afce841bfb
2023-08-20 16:37:40 +08:00
beat4ocean
713fa28804 fix KeyError: 'lang' bug
Former-commit-id: 4d4d9172b1f362cb4876315f1f5739e417055065
2023-08-20 15:32:36 +08:00
hiyouga
5549f35939 fix ppo trainer #551
Former-commit-id: 050a5447c191b8c50a0826a0f03bae499bff8b48
2023-08-20 14:07:11 +08:00
83 changed files with 4564 additions and 3040 deletions

281
README.md
View File

@@ -1,68 +1,77 @@
# LLaMA Efficient Tuning
# LLaMA Factory: Training and Evaluating Large Language Models with Minimal Effort
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/commits/main)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/pulls)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/e73gccsSd?compact=true&style=flat)](https://discord.gg/e73gccsSd)
👋 Join our [WeChat](assets/wechat.jpg).
\[ English | [中文](README_zh.md) \]
## LLaMA Board: A One-stop Web UI for Getting Started with LLaMA Factory
Launch **LLaMA Board** via `CUDA_VISIBLE_DEVICES=0 python src/train_web.py`. (multiple GPUs are not supported yet)
Here is an example of altering the self-cognition of an instruction-tuned language model within 10 minutes on a single GPU.
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
## Changelog
[23/08/18] Now we support **resuming training**, upgrade `transformers` to `4.31.0` to enjoy this feature.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`.
[23/08/12] Now we support **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
[23/08/11] Now we support **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models (experimental feature).
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/08/03] Now we support training the **Qwen-7B** model in this repo. Try `--model_name_or_path Qwen/Qwen-7B-Chat` and `--lora_target c_attn` arguments to train the Qwen-7B model. Remember to use `--template chatml` argument when you are using the Qwen-7B-Chat model.
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
[23/07/31] Now we support **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
[23/08/12] We supported **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
[23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)) for details.
[23/08/11] We supported **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
[23/07/19] Now we support training the **LLaMA-2** models in this repo. Try `--model_name_or_path meta-llama/Llama-2-7b-hf` argument to use the LLaMA-2 model. Remember to use `--template llama2` argument when you are using the LLaMA-2-chat model.
[23/07/31] We supported **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
[23/07/18] Now we develop an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
[23/07/29] We released two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
[23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base` and `--lora_target W_pack` arguments to train the Baichuan-13B model. Remember to use `--template baichuan` argument when you are using the Baichuan-13B-Chat model.
[23/07/18] We developed an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
[23/07/09] Now we release **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
[23/07/09] We released **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
[23/07/07] Now we support training the **InternLM-7B** model in this repo. Try `--model_name_or_path internlm/internlm-7b` argument to use the InternLM model. Remember to use `--template intern` argument when you are using the InternLM-chat model.
[23/06/29] We provided a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
[23/07/05] Now we support training the **Falcon-7B/40B** models in this repo. Try `--model_name_or_path tiiuae/falcon-7b` and `--lora_target query_key_value` arguments to use the Falcon model.
[23/06/22] We aligned the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
[23/06/29] We provide a **reproducible example** of training a chat model using instruction-following datasets, see this [Hugging Face Repo](https://huggingface.co/hiyouga/baichuan-7b-sft) for details.
[23/06/22] Now we align the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
[23/06/15] Now we support training the **Baichuan-7B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-7B` and `--lora_target W_pack` arguments to use the Baichuan-7B model.
[23/06/03] Now we support quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
[23/05/31] Now we support training the **BLOOM & BLOOMZ** models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
[23/06/03] We supported quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
## Supported Models
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
- **Default module** is used for the `--lora_target` argument. Please use `python src/train_bash.py -h` to see all available options.
- For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models.
> [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
>
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "chat" models.
Please refer to [template.py](src/llmtuner/extras/template.py) for a full list of models we supported.
## Supported Training Approaches
@@ -74,41 +83,66 @@
| PPO Training | | | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
- Use `--quantization_bit 4/8` argument to enable QLoRA.
> [!NOTE]
> Use `--quantization_bit 4/8` argument to enable QLoRA.
## Provided Datasets
- For pre-training:
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- For supervised fine-tuning:
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [Self-cognition (zh)](data/self_cognition.json)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- For reward modeling or DPO training:
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
<details><summary>Pre-training datasets</summary>
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
</details>
<details><summary>Supervised fine-tuning datasets</summary>
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self-cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
</details>
<details><summary>Preference datasets</summary>
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
</details>
Please refer to [data/README.md](data/README.md) for details.
@@ -123,10 +157,10 @@ huggingface-cli login
- Python 3.8+ and PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- sentencepiece and tiktoken
- jieba, rouge-chinese and nltk (used at evaluation)
- gradio and matplotlib (used in web_demo.py)
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
- sentencepiece, protobuf and tiktoken
- jieba, rouge-chinese and nltk (used at evaluation and predict)
- gradio and matplotlib (used in web UI)
- uvicorn, fastapi and sse-starlette (used in API)
And **powerful GPUs**!
@@ -134,17 +168,18 @@ And **powerful GPUs**!
### Data Preparation (optional)
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
### Dependence Installation (optional)
```bash
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
```
@@ -154,18 +189,11 @@ If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you wi
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
### All-in-one Web UI
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
```
We strongly recommend using the all-in-one Web UI for newcomers since it can also generate training scripts **automatically**.
Currently the web UI only supports training on **a single GPU**.
### Train on a single GPU
> [!IMPORTANT]
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
#### Pre-Training
```bash
@@ -174,7 +202,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
@@ -299,19 +326,13 @@ accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
```
<details><summary>Example config.yaml for training with DeepSpeed ZeRO-2</summary>
<details><summary>Example config for LoRA training</summary>
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
@@ -335,10 +356,11 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
... # arguments (same as above)
```
<details><summary>Example ds_config.json for training with DeepSpeed ZeRO-2</summary>
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
@@ -373,7 +395,7 @@ python src/export_model.py \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
--export_dir path_to_export
```
### API Demo
@@ -386,7 +408,8 @@ python src/api_demo.py \
--checkpoint_dir path_to_checkpoint
```
Visit `http://localhost:8000/docs` for API documentation.
> [!NOTE]
> Visit `http://localhost:8000/docs` for API documentation.
### CLI Demo
@@ -408,25 +431,21 @@ python src/web_demo.py \
--checkpoint_dir path_to_checkpoint
```
### Evaluation (BLEU and ROUGE_CHINESE)
### Evaluation
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--do_eval \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
--template vanilla \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4
```
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
### Predict
```bash
@@ -444,45 +463,39 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
## TODO
> [!NOTE]
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
- [ ] Supporting flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention)).
- [ ] Implementing multi-query attention for faster inference.
- [ ] Supporting full-parameter RLHF training.
## Projects using LLaMA Factory
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: A series of large language models for Chinese medical domain, based on LLaMA2-7B and Baichuan-13B.
## License
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights:
- [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
- [LLaMA-2](https://ai.meta.com/llama/license/)
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
- [Falcon](LICENSE)
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
- [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B/blob/main/MODEL_LICENSE)
Please follow the model licenses to use the corresponding model weights: [Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
## Citation
If this work is helpful, please kindly cite as:
```bibtex
@Misc{llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
@Misc{llama-factory,
title = {LLaMA Factory},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
year = {2023}
}
```
## Acknowledgement
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models.
This repo benefits from [PEFT](https://github.com/huggingface/peft), [QLoRA](https://github.com/artidoro/qlora) and [FastChat](https://github.com/lm-sys/FastChat). Thanks for their wonderful works.
## Star History
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Efficient-Tuning&type=Date)
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)

View File

@@ -1,68 +1,77 @@
# LLaMA Efficient Tuning
# LLaMA Factory: 轻松的大模型训练与评估
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/commits/main)
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Efficient-Tuning/pulls)
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/e73gccsSd?compact=true&style=flat)](https://discord.gg/e73gccsSd)
👋 加入我们的[微信群](assets/wechat.jpg)。
\[ [English](README.md) | 中文 \]
## LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory
使用 `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` 启动 **LLaMA Board**。(该界面目前仅支持单卡训练)
下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
## 更新日志
[23/08/18] 现在我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5`
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请尝试使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)(实验性功能)
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)
[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat``--lora_target c_attn` 参数。使用 Qwen-7B-Chat 模型时请添加 `--template chatml` 参数
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2
[23/07/31] 现在我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/07/19] 现在我们支持了 **LLaMA-2** 模型的训练。请尝试使用 `--model_name_or_path meta-llama/Llama-2-7b-hf` 参数。使用 LLaMA-2-chat 模型时请添加 `--template llama2` 参数
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)
[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-13B-Base``--lora_target W_pack` 参数。使用 Baichuan-13B-Chat 模型时请添加 `--template baichuan` 参数
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力
[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
[23/07/07] 现在我们支持了 **InternLM-7B** 模型的训练。请尝试使用 `--model_name_or_path internlm/internlm-7b` 参数。使用 InternLM-chat 模型时请添加 `--template intern` 参数
[23/07/05] 现在我们支持了 **Falcon-7B/40B** 模型的训练。请尝试使用 `--model_name_or_path tiiuae/falcon-7b``--lora_target query_key_value` 参数。
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Hugging Face 项目](https://huggingface.co/hiyouga/baichuan-7b-sft)。
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
[23/06/15] 现在我们支持了 **Baichuan-7B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-7B``--lora_target W_pack` 参数
[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
[23/05/31] 现在我们支持了 **BLOOM & BLOOMZ** 模型的训练。请尝试使用 `--model_name_or_path bigscience/bloomz-7b1-mt``--lora_target query_key_value` 参数。
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
- **默认模块**是 `--lora_target` 参数的部分可选项。请使用 `python src/train_bash.py -h` 查看全部可选项。
- 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用对应的模板
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用**对应的模板**。
项目所支持模型的完整列表请参阅 [template.py](src/llmtuner/extras/template.py)。
## 训练方法
@@ -74,43 +83,68 @@
| PPO 训练 | | | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
- 使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
> [!NOTE]
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
## 数据集
- 用于预训练:
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- 用于指令监督微调:
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [Self-cognition (zh)](data/self_cognition.json)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- 用于奖励模型或 DPO 训练:
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
<details><summary>预训练数据集</summary>
使用方法请参考 [data/README.md](data/README_zh.md) 文件。
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
</details>
<details><summary>指令微调数据集</summary>
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self-cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
</details>
<details><summary>偏好数据集</summary>
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
</details>
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
@@ -123,8 +157,8 @@ huggingface-cli login
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
- sentencepiece 和 tiktoken
- jieba, rouge-chinese 和 nltk (用于评估)
- sentencepiece, protobuf 和 tiktoken
- jieba, rouge-chinese 和 nltk (用于评估及预测)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
@@ -134,17 +168,18 @@ huggingface-cli login
### 数据准备(可跳过)
关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
注意:使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README_zh.md`。
### 环境搭建(可跳过)
```bash
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
```
@@ -154,18 +189,11 @@ pip install -r requirements.txt
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
### 浏览器一体化界面
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
```
我们极力推荐新手使用浏览器一体化界面,因为它还可以**自动**生成运行所需的命令行脚本。
目前网页 UI 仅支持**单卡训练**。
### 单 GPU 训练
> [!IMPORTANT]
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
#### 预训练
```bash
@@ -174,7 +202,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
@@ -298,19 +325,13 @@ accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
```
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数微调的 Accelerate 配置示例</summary>
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
@@ -334,10 +355,11 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
... # 参数同上
```
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数微调的 DeepSpeed 配置示例</summary>
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
@@ -364,7 +386,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
</details>
### 导出微调后的模型
### 导出微调后的完整模型
```bash
python src/export_model.py \
@@ -372,7 +394,7 @@ python src/export_model.py \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
--export_dir path_to_export
```
### API 服务
@@ -385,7 +407,8 @@ python src/api_demo.py \
--checkpoint_dir path_to_checkpoint
```
关于 API 文档请见 `http://localhost:8000/docs`
> [!NOTE]
> 关于 API 文档请见 `http://localhost:8000/docs`。
### 命令行测试
@@ -407,25 +430,21 @@ python src/web_demo.py \
--checkpoint_dir path_to_checkpoint
```
### 指标评估BLEU 分数和汉语 ROUGE 分数)
### 模型评估
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--do_eval \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
--template vanilla \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
```
我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1``--max_target_length 128`
### 模型预测
```bash
@@ -443,45 +462,39 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
## TODO
> [!NOTE]
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
- [ ] 实现 flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention))。
- [ ] 在推理阶段使用 Multi-query attention 进行加速。
- [ ] 支持 RLHF 的全参数微调
## 使用了 LLaMA Factory 的项目
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
## 协议
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:
- [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
- [LLaMA-2](https://ai.meta.com/llama/license/)
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
- [Falcon](LICENSE)
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
- [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B/blob/main/MODEL_LICENSE)
使用模型权重时,请遵循对应的模型协议:[Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
## 引用
如果您觉得此项目有帮助,请考虑以下列格式引用
```bibtex
@Misc{llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
@Misc{llama-factory,
title = {LLaMA Factory},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
year = {2023}
}
```
## 致谢
本项目是 [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning) 的同类项目。采用了类似的代码结构和训练方法
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出
## Star History
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Efficient-Tuning&type=Date)
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)

View File

@@ -2,17 +2,106 @@ If you are using a custom dataset, please provide your dataset definition in the
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the HuggingFace hub. (if specified, ignore below 3 arguments)",
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"columns": {
"prompt": "the name of the column in the datasets containing the prompts. (default: instruction)",
"query": "the name of the column in the datasets containing the queries. (default: input)",
"response": "the name of the column in the datasets containing the responses. (default: output)",
"history": "the name of the column in the datasets containing the history of chat. (default: None)"
"prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)",
"query": "the column name in the dataset containing the queries. (default: input, for alpaca)",
"response": "the column name in the dataset containing the responses. (default: output, for alpaca)",
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
"role": "the key in the message represents the identity. (default: from, for sharegpt)",
"content": "the key in the message represents the content. (default: value, for sharegpt)"
}
}
```
where the `prompt` and `response` columns should contain non-empty values. The `query` column will be concatenated with the `prompt` column and used as input for the model. The `history` column should contain a list where each element is a string tuple representing a query-response pair.
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
}
```
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
```json
{
"instruction": "user instruction",
"input": "user input",
"output": [
"chosen answer",
"rejected answer"
]
}
```
The dataset in sharegpt format should follow the below format:
```json
[
{
"conversations": [
{
"from": "human",
"value": "user instruction"
},
{
"from": "gpt",
"value": "model response"
}
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"messages": "conversations",
"role": "from",
"content": "value"
}
}
```
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order.
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.

View File

@@ -1,18 +1,107 @@
如果您使用自定义数据集,请务必在 `dataset_info.json` 文件中以下格式提供您的数据集定义。
如果您使用自定义数据集,请务必在 `dataset_info.json` 文件中按照以下格式提供数据集定义。
```json
"数据集名称": {
"hf_hub_url": "HuggingFace上的项目地址若指定则忽略下列三个参数",
"hf_hub_url": "Hugging Face 上的项目地址(若指定,则忽略下列三个参数)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选",
"file_sha1": "数据集文件的SHA-1哈希值可选,留空不影响训练",
"subset": "数据集子集的名称可选默认None",
"ranking": "是否为偏好数据集可选默认False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"columns": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
"response": "数据集代表回答的表头名称默认output",
"history": "数据集代表历史对话的表头名称默认None"
"prompt": "数据集代表提示词的表头名称默认instruction,用于 alpaca 格式",
"query": "数据集代表请求的表头名称默认input,用于 alpaca 格式",
"response": "数据集代表回答的表头名称默认output,用于 alpaca 格式",
"history": "数据集代表历史对话的表头名称默认None,用于 alpaca 格式)",
"messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)",
"role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)",
"content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)"
}
}
```
其中 `prompt``response` 列应当是非空的字符串。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。`history` 列应当是一个列表,其中每个元素是一个字符串二元组,分别代表用户请求和模型答复
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
```json
[
{
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"output": "模型回答(必填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
```json
"数据集名称": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
}
```
其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
对于偏好数据集,`response` 列应当是一个长度为 2 的字符串列表,排在前面的代表更优的回答,例如:
```json
{
"instruction": "用户指令",
"input": "用户输入",
"output": [
"优质回答",
"劣质回答"
]
}
```
而 sharegpt 格式的数据集按照以下方式组织:
```json
[
{
"conversations": [
{
"from": "human",
"value": "用户指令"
},
{
"from": "gpt",
"value": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的 `columns` 应为:
```json
"数据集名称": {
"columns": {
"messages": "conversations",
"role": "from",
"content": "value"
}
}
```
其中 `messages` 列必须为偶数长度的列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
预训练数据集和偏好数据集尚不支持 sharegpt 格式。

View File

@@ -1,6 +1,5 @@
import json
import datasets
from typing import Any, Dict, List
_DESCRIPTION = "BELLE multiturn chat dataset."
@@ -23,7 +22,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
def _info(self):
features = datasets.Features({
"instruction": datasets.Value("string"),
"output": datasets.Value("string"),
@@ -37,7 +36,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
@@ -48,7 +47,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
)
]
def _generate_examples(self, filepath: str) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat with history
def _generate_examples(self, filepath: str):
with open(filepath, "r", encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)

View File

@@ -3,7 +3,7 @@ import datasets
from typing import Any, Dict, List
_DESCRIPTION = "An example of dataset for LLaMA."
_DESCRIPTION = "An example of dataset."
_CITATION = ""
_HOMEPAGE = ""
_LICENSE = ""

View File

@@ -1,9 +1,9 @@
import json
import datasets
from typing import Any, Dict, List
from typing import List
_DESCRIPTION = "Human preference data about helpfulness and harmlessness for ChatGLM."
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
_CITATION = ""
_HOMEPAGE = "https://huggingface.co/datasets/Anthropic/hh-rlhf"
_LICENSE = "mit"
@@ -42,7 +42,7 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
@@ -59,7 +59,7 @@ class HhRlhfEn(datasets.GeneratorBasedBuilder):
)
]
def _generate_examples(self, filepaths: List[str]) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat for ChatGLM
def _generate_examples(self, filepaths: List[str]):
key = 0
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:

View File

@@ -1,6 +1,6 @@
import json
import datasets
from typing import Any, Dict, List
from typing import List
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
@@ -21,15 +21,13 @@ _LICENSE = "cc-by-nc-4.0"
_BASE_DATA_URL = "https://huggingface.co/datasets/stingning/ultrachat/resolve/main/train_{idx}.jsonl"
class BelleMultiturn(datasets.GeneratorBasedBuilder):
class UltraChat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
def _info(self):
features = datasets.Features({
"instruction": datasets.Value("string"),
"output": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
@@ -39,8 +37,8 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(9)] # multiple shards
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(10)] # multiple shards
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
@@ -50,7 +48,7 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
)
]
def _generate_examples(self, filepaths: List[str]) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat for ChatGLM
def _generate_examples(self, filepaths: List[str]):
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:
for row in f:
@@ -58,19 +56,16 @@ class BelleMultiturn(datasets.GeneratorBasedBuilder):
data = json.loads(row)
except:
continue
key = data["id"]
content = data["data"]
key: int = data["id"]
content: List[str] = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:
continue
query = content[-2]
response = content[-1]
history = [[content[2*i], content[2*i+1]] for i in range(len(content) // 2 - 1)]
conversations = [{
"from": "human" if i % 2 == 0 else "gpt",
"value": content[i]
} for i in range(len(content))]
yield key, {
"instruction": query,
"output": response,
"history": history
"conversations": conversations
}

166
evaluation/ceval/ceval.py Normal file
View File

@@ -0,0 +1,166 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{huang2023ceval,
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models},
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian},
journal={arXiv preprint arXiv:2305.08322},
year={2023}
}
"""
_DESCRIPTION = """\
C-Eval is a comprehensive Chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels.
"""
_HOMEPAGE = "https://cevalbenchmark.com"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "ceval.zip"
task_list = [
"computer_network",
"operating_system",
"computer_architecture",
"college_programming",
"college_physics",
"college_chemistry",
"advanced_mathematics",
"probability_and_statistics",
"discrete_mathematics",
"electrical_engineer",
"metrology_engineer",
"high_school_mathematics",
"high_school_physics",
"high_school_chemistry",
"high_school_biology",
"middle_school_mathematics",
"middle_school_biology",
"middle_school_physics",
"middle_school_chemistry",
"veterinary_medicine",
"college_economics",
"business_administration",
"marxism",
"mao_zedong_thought",
"education_science",
"teacher_qualification",
"high_school_politics",
"high_school_geography",
"middle_school_politics",
"middle_school_geography",
"modern_chinese_history",
"ideological_and_moral_cultivation",
"logic",
"law",
"chinese_language_and_literature",
"art_studies",
"professional_tour_guide",
"legal_professional",
"high_school_chinese",
"high_school_history",
"middle_school_history",
"civil_servant",
"sports_science",
"plant_protection",
"basic_medicine",
"clinical_medicine",
"urban_and_rural_planner",
"accountant",
"fire_engineer",
"environmental_impact_assessment_engineer",
"tax_accountant",
"physician",
]
class CevalConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class Ceval(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CevalConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
"explanation": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "test", f"{task_name}_test.csv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "val", f"{task_name}_val.csv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "dev", f"{task_name}_dev.csv"
),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
if "answer" not in instance.keys():
instance["answer"] = ""
if "explanation" not in instance.keys():
instance["explanation"] = ""
yield i, instance

167
evaluation/cmmlu/cmmlu.py Normal file
View File

@@ -0,0 +1,167 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{li2023cmmlu,
title={CMMLU: Measuring massive multitask language understanding in Chinese},
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
journal={arXiv preprint arXiv:2306.09212},
year={2023}
}
"""
_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
"""
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "cmmlu.zip"
task_list = [
'agronomy',
'anatomy',
'ancient_chinese',
'arts',
'astronomy',
'business_ethics',
'chinese_civil_service_exam',
'chinese_driving_rule',
'chinese_food_culture',
'chinese_foreign_policy',
'chinese_history',
'chinese_literature',
'chinese_teacher_qualification',
'clinical_knowledge',
'college_actuarial_science',
'college_education',
'college_engineering_hydrology',
'college_law',
'college_mathematics',
'college_medical_statistics',
'college_medicine',
'computer_science',
'computer_security',
'conceptual_physics',
'construction_project_management',
'economics',
'education',
'electrical_engineering',
'elementary_chinese',
'elementary_commonsense',
'elementary_information_and_technology',
'elementary_mathematics',
'ethnology',
'food_science',
'genetics',
'global_facts',
'high_school_biology',
'high_school_chemistry',
'high_school_geography',
'high_school_mathematics',
'high_school_physics',
'high_school_politics',
'human_sexuality',
'international_law',
'journalism',
'jurisprudence',
'legal_and_moral_basis',
'logical',
'machine_learning',
'management',
'marketing',
'marxist_theory',
'modern_chinese',
'nutrition',
'philosophy',
'professional_accounting',
'professional_law',
'professional_medicine',
'professional_psychology',
'public_relations',
'security_study',
'sociology',
'sports_science',
'traditional_chinese_medicine',
'virology',
'world_history',
'world_religions',
]
class CMMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class CMMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CMMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
question = instance.pop("Question", "")
answer = instance.pop("Answer", "")
instance["question"] = question
instance["answer"] = answer
yield i, instance

167
evaluation/mmlu/mmlu.py Normal file
View File

@@ -0,0 +1,167 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{hendryckstest2021,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
journal={Proceedings of the International Conference on Learning Representations (ICLR)},
year={2021}
}
"""
_DESCRIPTION = """\
Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021).
"""
_HOMEPAGE = "https://github.com/hendrycks/test"
_LICENSE = "MIT"
_URL = "mmlu.zip"
task_list = [
"high_school_european_history",
"business_ethics",
"clinical_knowledge",
"medical_genetics",
"high_school_us_history",
"high_school_physics",
"high_school_world_history",
"virology",
"high_school_microeconomics",
"econometrics",
"college_computer_science",
"high_school_biology",
"abstract_algebra",
"professional_accounting",
"philosophy",
"professional_medicine",
"nutrition",
"global_facts",
"machine_learning",
"security_studies",
"public_relations",
"professional_psychology",
"prehistory",
"anatomy",
"human_sexuality",
"college_medicine",
"high_school_government_and_politics",
"college_chemistry",
"logical_fallacies",
"high_school_geography",
"elementary_mathematics",
"human_aging",
"college_mathematics",
"high_school_psychology",
"formal_logic",
"high_school_statistics",
"international_law",
"high_school_mathematics",
"high_school_computer_science",
"conceptual_physics",
"miscellaneous",
"high_school_chemistry",
"marketing",
"professional_law",
"management",
"college_physics",
"jurisprudence",
"world_religions",
"sociology",
"us_foreign_policy",
"high_school_macroeconomics",
"computer_security",
"moral_scenarios",
"moral_disputes",
"electrical_engineering",
"astronomy",
"college_biology",
]
class MMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "test", f"{task_name}_test.csv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "val", f"{task_name}_val.csv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "data", "dev", f"{task_name}_dev.csv"
),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
df.columns = ["question", "A", "B", "C", "D", "answer"]
for i, instance in enumerate(df.to_dict(orient="records")):
yield i, instance

View File

@@ -1,18 +1,19 @@
torch>=1.13.1
transformers>=4.29.1
datasets>=2.12.0
transformers>=4.31.0,<4.35.0
datasets>=2.14.0
accelerate>=0.21.0
peft>=0.4.0
trl>=0.5.0
peft>=0.6.0
trl>=0.7.4
gradio>=3.38.0,<4.0.0
scipy
sentencepiece
protobuf
tiktoken
jieba
rouge-chinese
nltk
gradio>=3.36.0
uvicorn
pydantic==1.10.11
fastapi==0.95.1
pydantic
fastapi
sse-starlette
matplotlib

View File

@@ -25,12 +25,12 @@ def main():
version=get_version(),
author="hiyouga",
author_email="hiyouga" "@" "buaa.edu.cn",
description="Easy-to-use fine-tuning framework using PEFT",
description="Easy-to-use LLM fine-tuning framework",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords=["LLaMA", "BLOOM", "Falcon", "LLM", "ChatGPT", "transformer", "pytorch", "deep learning"],
license="Apache 2.0 License",
url="https://github.com/hiyouga/LLaMA-Efficient-Tuning",
url="https://github.com/hiyouga/LLaMA-Factory",
package_dir={"": "src"},
packages=find_packages("src"),
python_requires=">=3.8.0",

View File

@@ -6,8 +6,8 @@ from llmtuner import ChatModel, create_app
def main():
chat_model = ChatModel()
app = create_app(chat_model)
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
print("Visit http://localhost:8000/docs for API document.")
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
if __name__ == "__main__":

View File

@@ -1,3 +1,4 @@
import readline
from llmtuner import ChatModel

10
src/evaluate.py Normal file
View File

@@ -0,0 +1,10 @@
from llmtuner import Evaluator
def main():
evaluator = Evaluator()
evaluator.eval()
if __name__ == "__main__":
main()

View File

@@ -1,9 +1,10 @@
# Level: api, webui > chat > tuner > dsets > extras, hparams
# Level: api, webui > chat, eval > tuner > dsets > extras, hparams
from llmtuner.api import create_app
from llmtuner.chat import ChatModel
from llmtuner.eval import Evaluator
from llmtuner.tuner import export_model, run_exp
from llmtuner.webui import create_ui, create_web_demo
__version__ = "0.1.7"
__version__ = "0.2.2"

View File

@@ -1,9 +1,11 @@
import json
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi import FastAPI, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from sse_starlette import EventSourceResponse
from typing import List, Tuple
from pydantic import BaseModel
from llmtuner.extras.misc import torch_gc
from llmtuner.chat import ChatModel
@@ -29,6 +31,13 @@ async def lifespan(app: FastAPI): # collects GPU memory
torch_gc()
def to_json(data: BaseModel) -> str:
try: # pydantic v2
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False)
except: # pydantic v1
return data.json(exclude_unset=True, ensure_ascii=False)
def create_app(chat_model: ChatModel) -> FastAPI:
app = FastAPI(lifespan=lifespan)
@@ -45,10 +54,10 @@ def create_app(chat_model: ChatModel) -> FastAPI:
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK)
async def create_chat_completion(request: ChatCompletionRequest):
if len(request.messages) < 1 or request.messages[-1].role != Role.USER:
raise HTTPException(status_code=400, detail="Invalid request")
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
@@ -62,13 +71,20 @@ def create_app(chat_model: ChatModel) -> FastAPI:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT:
history.append([prev_messages[i].content, prev_messages[i+1].content])
else:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
if request.stream:
generate = predict(query, history, system, request)
return EventSourceResponse(generate, media_type="text/event-stream")
response, (prompt_length, response_length) = chat_model.chat(
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
query, history, system,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens,
num_return_sequences=request.n
)
usage = ChatCompletionResponseUsage(
@@ -77,13 +93,13 @@ def create_app(chat_model: ChatModel) -> FastAPI:
total_tokens=prompt_length+response_length
)
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role=Role.ASSISTANT, content=response),
choices = [ChatCompletionResponseChoice(
index=i,
message=ChatMessage(role=Role.ASSISTANT, content=choice),
finish_reason=Finish.STOP
)
) for i, choice in enumerate(response)]
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
choice_data = ChatCompletionResponseStreamChoice(
@@ -92,10 +108,14 @@ def create_app(chat_model: ChatModel) -> FastAPI:
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield to_json(chunk)
for new_text in chat_model.stream_chat(
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
query, history, system,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
max_new_tokens=request.max_tokens
):
if len(new_text) == 0:
continue
@@ -106,7 +126,7 @@ def create_app(chat_model: ChatModel) -> FastAPI:
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield to_json(chunk)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
@@ -114,7 +134,7 @@ def create_app(chat_model: ChatModel) -> FastAPI:
finish_reason=Finish.STOP
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield to_json(chunk)
yield "[DONE]"
return app

View File

@@ -20,9 +20,6 @@ class ModelCard(BaseModel):
object: Optional[str] = "model"
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
owned_by: Optional[str] = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = []
class ModelList(BaseModel):
@@ -43,6 +40,7 @@ class DeltaMessage(BaseModel):
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
do_sample: Optional[bool] = True
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = 1

View File

@@ -1,7 +1,7 @@
import torch
from typing import Any, Dict, Generator, List, Optional, Tuple
from threading import Thread
from transformers import TextIteratorStreamer
from transformers import GenerationConfig, TextIteratorStreamer
from llmtuner.extras.misc import dispatch_model, get_logits_processor
from llmtuner.extras.template import get_template_and_fix_tokenizer
@@ -13,8 +13,8 @@ class ChatModel:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
self.tokenizer.padding_side = "left"
self.model = dispatch_model(self.model)
self.model = self.model.eval() # enable evaluation mode
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
self.system_prompt = data_args.system_prompt
@@ -26,41 +26,49 @@ class ChatModel:
**input_kwargs
) -> Tuple[Dict[str, Any], int]:
system = system or self.system_prompt
prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp="", history=history, system=system
)
prompt_length = len(prompt)
input_ids = torch.tensor([prompt], device=self.model.device)
prompt_length = len(input_ids[0])
do_sample = input_kwargs.pop("do_sample", None)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
gen_kwargs = self.generating_args.to_dict()
gen_kwargs.update(dict(
input_ids=input_ids,
do_sample=do_sample if do_sample is not None else gen_kwargs["do_sample"],
temperature=temperature or gen_kwargs["temperature"],
top_p=top_p or gen_kwargs["top_p"],
top_k=top_k or gen_kwargs["top_k"],
repetition_penalty=repetition_penalty or gen_kwargs["repetition_penalty"],
eos_token_id=list(set([self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids)),
pad_token_id=self.tokenizer.pad_token_id,
logits_processor=get_logits_processor()
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id
))
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True
if max_length:
gen_kwargs.pop("max_new_tokens", None)
gen_kwargs["max_length"] = max_length
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = max_new_tokens
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=input_ids,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor()
)
return gen_kwargs, prompt_length
@@ -71,12 +79,16 @@ class ChatModel:
history: Optional[List[Tuple[str, str]]] = None,
system: Optional[str] = None,
**input_kwargs
) -> Tuple[str, Tuple[int, int]]:
) -> Tuple[List[str], Tuple[int, int]]:
gen_kwargs, prompt_length = self.process_args(query, history, system, **input_kwargs)
generation_output = self.model.generate(**gen_kwargs)
outputs = generation_output.tolist()[0][prompt_length:]
response = self.tokenizer.decode(outputs, skip_special_tokens=True)
response_length = len(outputs)
generate_output = self.model.generate(**gen_kwargs)
response_ids = generate_output[:, prompt_length:]
response = self.tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
response_length = 0
for i in range(len(response_ids)):
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero()
response_length += eos_index[0].item() if len(eos_index) else len(response_ids[i])
return response, (prompt_length, response_length)
@torch.inference_mode()

View File

@@ -1,5 +1,5 @@
import os
from typing import TYPE_CHECKING, List, Union
from typing import TYPE_CHECKING, Any, Dict, List, Union
from datasets import concatenate_datasets, interleave_datasets, load_dataset
@@ -26,22 +26,23 @@ def get_dataset(
if dataset_attr.load_from == "hf_hub":
data_path = dataset_attr.dataset_name
data_name = dataset_attr.subset
data_files = None
elif dataset_attr.load_from == "script":
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
data_name = dataset_attr.subset
data_files = None
elif dataset_attr.load_from == "file":
data_path = None
data_path, data_name = None, None
data_files: List[str] = []
if os.path.isdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # directory
if os.path.isdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is directory
for file_name in os.listdir(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)):
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name, file_name))
if data_path is None:
data_path = EXT2TYPE.get(file_name.split(".")[-1], None)
else:
assert data_path == EXT2TYPE.get(file_name.split(".")[-1], None), "file type does not match."
elif os.path.isfile(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # single file
assert data_path == EXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical."
elif os.path.isfile(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)): # is file
data_files.append(os.path.join(data_args.dataset_dir, dataset_attr.dataset_name))
data_path = EXT2TYPE.get(dataset_attr.dataset_name.split(".")[-1], None)
else:
@@ -53,27 +54,75 @@ def get_dataset(
raise NotImplementedError
dataset = load_dataset(
data_path,
path=data_path,
name=data_name,
data_files=data_files,
split=data_args.split,
cache_dir=model_args.cache_dir,
streaming=data_args.streaming,
use_auth_token=True if model_args.use_auth_token else None
token=model_args.hf_hub_token,
streaming=data_args.streaming
)
if max_samples is not None:
max_samples_temp = min(len(dataset), max_samples)
dataset = dataset.select(range(max_samples_temp))
if max_samples is not None: # truncate dataset
dataset = dataset.select(range(min(len(dataset), max_samples)))
for column_name in ["prompt", "query", "response", "history"]: # align datasets
def convert_format(examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
# convert dataset from sharegpt format to alpaca format
outputs = {"prompt": [], "query": [], "response": [], "history": []}
for msg_list in examples[dataset_attr.messages]:
msg_list = msg_list[:len(msg_list) // 2 * 2] # should be multiples of 2
if len(msg_list) == 0:
continue
msg_pairs = []
user_role, assistant_role = None, None
for idx in range(0, len(msg_list), 2):
if user_role is None and assistant_role is None:
user_role = msg_list[idx][dataset_attr.role]
assistant_role = msg_list[idx + 1][dataset_attr.role]
else:
if (
msg_list[idx][dataset_attr.role] != user_role
or msg_list[idx+1][dataset_attr.role] != assistant_role
):
raise ValueError("Only accepts conversation in u/a/u/a/u/a order.")
msg_pairs.append((msg_list[idx][dataset_attr.content], msg_list[idx + 1][dataset_attr.content]))
if len(msg_pairs) != 0:
outputs["prompt"].append(msg_pairs[-1][0])
outputs["query"].append("")
outputs["response"].append(msg_pairs[-1][1])
outputs["history"].append(msg_pairs[:-1])
return outputs
if dataset_attr.formatting == "sharegpt": # convert format
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Converting format of dataset"
)
dataset = dataset.map(
convert_format,
batched=True,
remove_columns=column_names,
**kwargs
)
else:
for column_name in ["prompt", "query", "response", "history"]: # align dataset
if getattr(dataset_attr, column_name) and getattr(dataset_attr, column_name) != column_name:
dataset = dataset.rename_column(getattr(dataset_attr, column_name), column_name)
if dataset_attr.system_prompt: # add system prompt
system_prompt = dataset_attr.system_prompt
if data_args.streaming:
dataset = dataset.map(lambda _: {"system": dataset_attr.system_prompt})
dataset = dataset.map(lambda _: {"system": system_prompt})
else:
dataset = dataset.add_column("system", [dataset_attr.system_prompt] * len(dataset))
dataset = dataset.add_column("system", [system_prompt] * len(dataset))
all_datasets.append(dataset)
@@ -86,7 +135,11 @@ def get_dataset(
elif data_args.mix_strategy.startswith("interleave"):
if not data_args.streaming:
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
stopping_strategy = "first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted"
return interleave_datasets(all_datasets, data_args.interleave_probs, stopping_strategy=stopping_strategy)
return interleave_datasets(
datasets=all_datasets,
probabilities=data_args.interleave_probs,
seed=data_args.seed,
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted"
)
else:
raise ValueError("Unknown mixing strategy.")

View File

@@ -1,8 +1,12 @@
import os
import tiktoken
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal, Union
from itertools import chain
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal, Union
from datasets import load_from_disk
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
from llmtuner.extras.template import get_template_and_fix_tokenizer
if TYPE_CHECKING:
@@ -12,6 +16,9 @@ if TYPE_CHECKING:
from llmtuner.hparams import DataArguments
logger = get_logger(__name__)
def preprocess_dataset(
dataset: Union["Dataset", "IterableDataset"],
tokenizer: "PreTrainedTokenizer",
@@ -19,9 +26,11 @@ def preprocess_dataset(
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"]
) -> Union["Dataset", "IterableDataset"]:
column_names = list(next(iter(dataset)).keys())
template = get_template_and_fix_tokenizer(data_args.template, tokenizer)
if data_args.train_on_prompt and template.efficient_eos:
raise ValueError("Current template does not support `train_on_prompt`.")
def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]:
for i in range(len(examples["prompt"])):
query, response = examples["prompt"][i], examples["response"][i]
@@ -30,46 +39,72 @@ def preprocess_dataset(
system = examples["system"][i] if "system" in examples else None
yield query, response, history, system
def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
# build grouped texts with format `X1 X2 X3 ...` (without <eos>)
def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...`
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
kwargs = dict(add_special_tokens=True)
if hasattr(tokenizer, "add_eos_token"): # for LLaMA tokenizer
add_eos_token_flag = getattr(tokenizer, "add_eos_token")
setattr(tokenizer, "add_eos_token", True)
tokenized_examples = tokenizer(examples["prompt"], **kwargs)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.max_source_length
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of max_source_length
# split by chunks of cutoff_len
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
# make sure the saved tokenizer is the same as the original one
if hasattr(tokenizer, "add_eos_token"):
setattr(tokenizer, "add_eos_token", add_eos_token_flag)
return result
def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
max_length = data_args.max_source_length + data_args.max_target_length
for query, response, history, system in construct_example(examples):
if not (isinstance(query, str) and isinstance(response, str) and query != "" and response != ""):
continue
input_ids, labels = [], []
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, query, response, history, system
)):
total_len = len(source_ids) + len(target_ids)
max_source_len = int(data_args.cutoff_len * (len(source_ids) / total_len))
max_target_len = int(data_args.cutoff_len * (len(target_ids) / total_len))
for source_ids, target_ids in template.encode_multiturn(tokenizer, query, response, history, system):
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
if len(target_ids) > data_args.max_target_length:
target_ids = target_ids[:data_args.max_target_length]
if len(source_ids) > max_source_len:
source_ids = source_ids[:max_source_len]
if len(target_ids) > max_target_len:
target_ids = target_ids[:max_target_len]
if len(input_ids) + len(source_ids) + len(target_ids) > max_length:
break
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += [IGNORE_INDEX] * len(source_ids) + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
if len(input_ids) > data_args.cutoff_len:
input_ids = input_ids[:data_args.cutoff_len]
labels = labels[:data_args.cutoff_len]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
@@ -77,52 +112,107 @@ def preprocess_dataset(
return model_inputs
def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
def preprocess_packed_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
input_ids, labels = [], []
for query, response, history, system in construct_example(examples):
if not (isinstance(query, str) and isinstance(response, str) and query != "" and response != ""):
continue
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, query, response, history, system
)):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
total_length = len(input_ids)
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
model_inputs["input_ids"].append(input_ids[i: i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i: i + block_size])
return model_inputs
def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for query, response, history, system in construct_example(examples):
source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, system)
if not (isinstance(query, str) and query != ""):
continue
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
if len(target_ids) > data_args.max_target_length:
target_ids = target_ids[:data_args.max_target_length]
input_ids, labels = template.encode_oneturn(tokenizer, query, response, history, system)
model_inputs["input_ids"].append(source_ids)
model_inputs["attention_mask"].append([1] * len(source_ids))
model_inputs["labels"].append(target_ids)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
if len(input_ids) > data_args.cutoff_len:
input_ids = input_ids[:data_args.cutoff_len]
if len(labels) > data_args.cutoff_len:
labels = labels[:data_args.cutoff_len]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_pairwise_dataset(examples):
def preprocess_pairwise_dataset(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]:
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
for query, response, history, system in construct_example(examples):
if not (isinstance(query, str) and isinstance(response, list) and query != "" and len(response) > 1):
continue
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, system)
_, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, system)
if len(prompt_ids) > data_args.max_source_length:
prompt_ids = prompt_ids[:data_args.max_source_length]
if len(chosen_ids) > data_args.max_target_length:
chosen_ids = chosen_ids[:data_args.max_target_length]
if len(rejected_ids) > data_args.max_target_length:
rejected_ids = rejected_ids[:data_args.max_target_length]
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
total_len = len(prompt_ids) + max(len(chosen_ids), len(rejected_ids))
max_source_len = int(data_args.cutoff_len * (len(prompt_ids) / total_len))
max_target_len = int(data_args.cutoff_len * (max(len(chosen_ids), len(rejected_ids)) / total_len))
if len(prompt_ids) > max_source_len:
prompt_ids = prompt_ids[:max_source_len]
if len(chosen_ids) > max_target_len:
chosen_ids = chosen_ids[:max_target_len]
if len(rejected_ids) > max_target_len:
rejected_ids = rejected_ids[:max_target_len]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)
return model_inputs
def print_supervised_dataset_example(example):
def print_supervised_dataset_example(example: Dict[str, List[int]]) -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(tokenizer.decode([
token_id if token_id != IGNORE_INDEX else tokenizer.pad_token_id for token_id in example["labels"]
], skip_special_tokens=False)))
print("labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
))
def print_pairwise_dataset_example(example):
def print_pairwise_dataset_example(example: Dict[str, List[int]]) -> None:
print("prompt_ids:\n{}".format(example["prompt_ids"]))
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
print("chosen_ids:\n{}".format(example["chosen_ids"]))
@@ -130,42 +220,53 @@ def preprocess_dataset(
print("rejected_ids:\n{}".format(example["rejected_ids"]))
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))
def print_unsupervised_dataset_example(example):
def print_unsupervised_dataset_example(example: Dict[str, List[int]]) -> None:
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
if stage == "pt":
dataset = dataset.filter(lambda example: example["prompt"])
preprocess_function = preprocess_pretrain_dataset
preprocess_func = preprocess_pretrain_dataset
print_function = print_unsupervised_dataset_example
elif stage == "sft" and not training_args.predict_with_generate:
dataset = dataset.filter(lambda example: example["prompt"] and example["response"])
preprocess_function = preprocess_supervised_dataset
preprocess_func = preprocess_packed_supervised_dataset if data_args.sft_packing else preprocess_supervised_dataset
print_function = print_supervised_dataset_example
elif stage == "rm":
dataset = dataset.filter(lambda example: example["prompt"] and len(example["response"]) > 1)
preprocess_function = preprocess_pairwise_dataset
preprocess_func = preprocess_pairwise_dataset
print_function = print_pairwise_dataset_example
else:
dataset = dataset.filter(lambda example: example["prompt"])
preprocess_function = preprocess_unsupervised_dataset
preprocess_func = preprocess_unsupervised_dataset
print_function = print_unsupervised_dataset_example
if data_args.cache_path is not None and os.path.exists(data_args.cache_path):
logger.warning("Loading dataset from disk will ignore other data arguments.")
return load_from_disk(data_args.cache_path)
with training_args.main_process_first(desc="dataset map pre-processing"):
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Running tokenizer on dataset"
)
dataset = dataset.map(
preprocess_function,
preprocess_func,
batched=True,
remove_columns=column_names,
**kwargs
)
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
if training_args.should_save:
dataset.save_to_disk(data_args.cache_path)
raise SystemExit("Dataset saved, rerun this script with the same `--cache_path`.")
if training_args.should_log:
try:
print_function(next(iter(dataset)))
except StopIteration:
raise RuntimeError("Empty dataset!")
return dataset

View File

@@ -13,9 +13,11 @@ logger = get_logger(__name__)
EXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text"
}

View File

@@ -0,0 +1 @@
from llmtuner.eval.engine import Evaluator

View File

@@ -0,0 +1,3 @@
CHOICES = ["A", "B", "C", "D"]
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]

110
src/llmtuner/eval/engine.py Normal file
View File

@@ -0,0 +1,110 @@
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
import os
import json
import torch
import tiktoken
import numpy as np
from tqdm import tqdm, trange
from datasets import load_dataset
from typing import Any, Dict, List, Optional
from llmtuner.eval.constants import CHOICES, SUBJECTS
from llmtuner.eval.parser import get_eval_args
from llmtuner.eval.template import get_eval_template
from llmtuner.extras.misc import dispatch_model
from llmtuner.extras.template import get_template_and_fix_tokenizer
from llmtuner.tuner.core import load_model_and_tokenizer
class Evaluator:
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
self.model = dispatch_model(self.model)
self.template = get_template_and_fix_tokenizer(self.data_args.template, self.tokenizer)
self.eval_template = get_eval_template(self.eval_args.lang)
self.choice_inputs = self._encode_choices()
def _encode_choices(self) -> List[int]:
if isinstance(getattr(self.tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
return [self.tokenizer.encode(self.eval_template.prefix + ch, **kwargs)[-1] for ch in CHOICES]
@torch.inference_mode()
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:
logits = self.model(**batch_input).logits
lengths = torch.sum(batch_input["attention_mask"], dim=-1)
word_probs = torch.stack([logits[i, lengths[i] - 1] for i in range(len(lengths))], dim=0)
choice_probs = torch.nn.functional.softmax(word_probs[:, self.choice_inputs], dim=-1).detach()
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
def eval(self) -> None:
mapping = os.path.join(self.eval_args.task_dir, self.eval_args.task, "mapping.json")
with open(mapping, "r", encoding="utf-8") as f:
categorys: Dict[str, Dict[str, str]] = json.load(f)
category_corrects = {subj: np.array([], dtype="bool") for subj in SUBJECTS}
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
results = {}
for subject in pbar:
dataset = load_dataset(
path=os.path.join(self.eval_args.task_dir, self.eval_args.task),
name=subject,
download_mode="force_redownload"
)
pbar.set_postfix_str(categorys[subject]["name"])
inputs, outputs, labels = [], [], []
for i in trange(len(dataset[self.data_args.split]), desc="Formatting batches", position=1, leave=False):
support_set = dataset["train"].shuffle().select(range(min(self.eval_args.n_shot, len(dataset["train"]))))
query, resp, history = self.eval_template.format_example(
target_data=dataset[self.data_args.split][i],
support_set=support_set,
subject_name=categorys[subject]["name"],
use_history=self.template.use_history
)
input_ids, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp=resp, history=history
)
inputs.append({"input_ids": input_ids, "attention_mask": [1] * len(input_ids)})
labels.append(resp)
for i in trange(0, len(inputs), self.eval_args.batch_size, desc="Predicting batches", position=1, leave=False):
batch_input = self.tokenizer.pad(
inputs[i : i + self.eval_args.batch_size], return_attention_mask=True, return_tensors="pt"
).to(self.model.device)
preds = self.batch_inference(batch_input)
outputs += preds
corrects = (np.array(outputs) == np.array(labels))
category_name = categorys[subject]["category"]
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
category_corrects["Average"] = np.concatenate([category_corrects["Average"], corrects], axis=0)
results[subject] = {str(i): outputs[i] for i in range(len(outputs))}
pbar.close()
self._save_results(category_corrects, results)
def _save_results(self, category_corrects: Dict[str, np.ndarray], results: Dict[str, Dict[int, str]]) -> None:
score_info = "\n".join([
"{:>15}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
for category_name, category_correct in category_corrects.items() if len(category_correct)
])
print(score_info)
if self.eval_args.save_dir is not None:
os.makedirs(self.eval_args.save_dir, exist_ok=False)
with open(os.path.join(self.eval_args.save_dir, "results.json"), "w", encoding="utf-8", newline="\n") as f:
json.dump(results, f, indent=2)
with open(os.path.join(self.eval_args.save_dir, "results.log"), "w", encoding="utf-8", newline="\n") as f:
f.write(score_info)
if __name__ == "__main__":
evaluator = Evaluator()
evaluator.eval()

View File

@@ -0,0 +1,49 @@
import transformers
from typing import Any, Dict, Optional, Tuple
from transformers import HfArgumentParser
from llmtuner.extras.misc import parse_args
from llmtuner.hparams import (
ModelArguments,
DataArguments,
EvaluationArguments,
FinetuningArguments
)
def parse_eval_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
EvaluationArguments,
FinetuningArguments
]:
parser = HfArgumentParser((
ModelArguments,
DataArguments,
EvaluationArguments,
FinetuningArguments
))
return parse_args(parser, args)
def get_eval_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
ModelArguments,
DataArguments,
EvaluationArguments,
FinetuningArguments
]:
model_args, data_args, eval_args, finetuning_args = parse_eval_args(args)
if data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
transformers.set_seed(eval_args.seed)
return model_args, data_args, eval_args, finetuning_args

View File

@@ -0,0 +1,86 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Tuple
from llmtuner.eval.constants import CHOICES
if TYPE_CHECKING:
from datasets import Dataset
@dataclass
class EvalTemplate:
system: str
choice: str
answer: str
prefix: str
def parse_example(
self,
example: Dict[str, str]
) -> Tuple[str, str]:
candidates = [self.choice.format(choice=ch, content=example[ch]) for ch in CHOICES if ch in example]
return "".join([example["question"]] + candidates + [self.answer]), example["answer"]
def format_example(
self,
target_data: Dict[str, str],
support_set: "Dataset",
subject_name: str,
use_history: bool
) -> Tuple[str, str, List[Tuple[str, str]]]:
query, resp = self.parse_example(target_data)
history = [self.parse_example(support_set[k]) for k in range(len(support_set))]
if len(history):
temp = history.pop(0)
history.insert(0, (self.system.format(subject=subject_name) + temp[0], temp[1]))
else:
query = self.system.format(subject=subject_name) + query
if not use_history:
query = "\n\n".join(["".join(item) for item in history] + [query])
history = []
return query.strip(), resp, history
eval_templates: Dict[str, EvalTemplate] = {}
def register_eval_template(
name: str,
system: str,
choice: str,
answer: str,
prefix: str
) -> None:
eval_templates[name] = EvalTemplate(
system=system,
choice=choice,
answer=answer,
prefix=prefix
)
def get_eval_template(name: str) -> EvalTemplate:
eval_template = eval_templates.get(name, None)
assert eval_template is not None, "Template {} does not exist.".format(name)
return eval_template
register_eval_template(
name="en",
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
choice="\n{choice}. {content}",
answer="\nAnswer: ",
prefix=" "
)
register_eval_template(
name="zh",
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
choice="\n{choice}. {content}",
answer="\n答案:",
prefix="\n"
)

View File

@@ -5,7 +5,7 @@ from typing import TYPE_CHECKING
from datetime import timedelta
from transformers import TrainerCallback
from transformers.trainer_utils import has_length
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.logging import get_logger
@@ -17,6 +17,28 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class SavePeftModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step))
model = kwargs.pop("model")
if getattr(model, "is_peft_model", False):
getattr(model, "pretrained_model").save_pretrained(output_dir)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
model = kwargs.pop("model")
if getattr(model, "is_peft_model", False):
getattr(model, "pretrained_model").save_pretrained(args.output_dir)
class LogCallback(TrainerCallback):
def __init__(self, runner=None):
@@ -44,7 +66,7 @@ class LogCallback(TrainerCallback):
self.in_training = True
self.start_time = time.time()
self.max_steps = state.max_steps
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)):
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
logger.warning("Previous log file in this folder will be deleted.")
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
@@ -112,6 +134,11 @@ class LogCallback(TrainerCallback):
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time
)
if self.runner is not None:
logger.info("{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0
))
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n")

View File

@@ -1,78 +1,237 @@
from collections import defaultdict, OrderedDict
from typing import Dict, Optional
IGNORE_INDEX = -100
LOG_FILE_NAME = "trainer_log.jsonl"
VALUE_HEAD_FILE_NAME = "value_head.bin"
FINETUNING_ARGS_NAME = "finetuning_args.json"
LAYERNORM_NAMES = ["norm", "ln_f", "ln_attn", "ln_mlp"]
METHODS = ["full", "freeze", "lora"]
STAGES = [
"SFT",
"Reward Modeling",
"PPO",
"DPO",
"Pre-Training"
]
TRAINING_STAGES = {
"Supervised Fine-Tuning": "sft",
"Reward Modeling": "rm",
"PPO": "ppo",
"DPO": "dpo",
"Pre-Training": "pt"
}
SUPPORTED_MODELS = {
LAYERNORM_NAMES = {"norm", "ln"}
SUPPORTED_MODELS = OrderedDict()
DEFAULT_MODULE = defaultdict(str)
DEFAULT_TEMPLATE = defaultdict(str)
def register_model_group(
models: Dict[str, str],
module: Optional[str] = None,
template: Optional[str] = None
) -> None:
prefix = None
for name, path in models.items():
if prefix is None:
prefix = name.split("-")[0]
else:
assert prefix == name.split("-")[0], "prefix should be identical."
SUPPORTED_MODELS[name] = path
if module is not None:
DEFAULT_MODULE[prefix] = module
if template is not None:
DEFAULT_TEMPLATE[prefix] = template
register_model_group(
models={
"Baichuan-7B-Base": "baichuan-inc/Baichuan-7B",
"Baichuan-13B-Base": "baichuan-inc/Baichuan-13B-Base",
"Baichuan-13B-Chat": "baichuan-inc/Baichuan-13B-Chat"
},
module="W_pack",
template="baichuan"
)
register_model_group(
models={
"Baichuan2-7B-Base": "baichuan-inc/Baichuan2-7B-Base",
"Baichuan2-13B-Base": "baichuan-inc/Baichuan2-13B-Base",
"Baichuan2-7B-Chat": "baichuan-inc/Baichuan2-7B-Chat",
"Baichuan2-13B-Chat": "baichuan-inc/Baichuan2-13B-Chat"
},
module="W_pack",
template="baichuan2"
)
register_model_group(
models={
"BLOOM-560M": "bigscience/bloom-560m",
"BLOOM-3B": "bigscience/bloom-3b",
"BLOOM-7B1": "bigscience/bloom-7b1"
},
module="query_key_value"
)
register_model_group(
models={
"BLOOMZ-560M": "bigscience/bloomz-560m",
"BLOOMZ-3B": "bigscience/bloomz-3b",
"BLOOMZ-7B1-mt": "bigscience/bloomz-7b1-mt"
},
module="query_key_value"
)
register_model_group(
models={
"BlueLM-7B-Base": "vivo-ai/BlueLM-7B-Base",
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
},
template="bluelm"
)
register_model_group(
models={
"ChatGLM2-6B-Chat": "THUDM/chatglm2-6b"
},
module="query_key_value",
template="chatglm2"
)
register_model_group(
models={
"ChatGLM3-6B-Base": "THUDM/chatglm3-6b-base",
"ChatGLM3-6B-Chat": "THUDM/chatglm3-6b"
},
module="query_key_value",
template="chatglm3"
)
register_model_group(
models={
"ChineseLLaMA2-7B": "ziqingyang/chinese-llama-2-7b",
"ChineseLLaMA2-13B": "ziqingyang/chinese-llama-2-13b",
"ChineseLLaMA2-7B-Chat": "ziqingyang/chinese-alpaca-2-7b",
"ChineseLLaMA2-13B-Chat": "ziqingyang/chinese-alpaca-2-13b"
},
template="llama2_zh"
)
register_model_group(
models={
"Falcon-7B": "tiiuae/falcon-7b",
"Falcon-40B": "tiiuae/falcon-40b",
"Falcon-180B": "tiiuae/falcon-180B",
"Falcon-7B-Chat": "tiiuae/falcon-7b-instruct",
"Falcon-40B-Chat": "tiiuae/falcon-40b-instruct",
"Falcon-180B-Chat": "tiiuae/falcon-180B-chat"
},
module="query_key_value",
template="falcon"
)
register_model_group(
models={
"InternLM-7B": "internlm/internlm-7b",
"InternLM-20B": "internlm/internlm-20b",
"InternLM-7B-Chat": "internlm/internlm-chat-7b",
"InternLM-20B-Chat": "internlm/internlm-chat-20b"
},
template="intern"
)
register_model_group(
models={
"LingoWhale-8B": "deeplang-ai/LingoWhale-8B"
},
module="qkv_proj"
)
register_model_group(
models={
"LLaMA-7B": "huggyllama/llama-7b",
"LLaMA-13B": "huggyllama/llama-13b",
"LLaMA-30B": "huggyllama/llama-30b",
"LLaMA-65B": "huggyllama/llama-65b",
"LLaMA-65B": "huggyllama/llama-65b"
}
)
register_model_group(
models={
"LLaMA2-7B": "meta-llama/Llama-2-7b-hf",
"LLaMA2-13B": "meta-llama/Llama-2-13b-hf",
"LLaMA2-70B": "meta-llama/Llama-2-70b-hf",
"LLaMA2-7B-Chat": "meta-llama/Llama-2-7b-chat-hf",
"LLaMA2-13B-Chat": "meta-llama/Llama-2-13b-chat-hf",
"LLaMA2-70B-Chat": "meta-llama/Llama-2-70b-chat-hf",
"ChineseLLaMA2-7B": "ziqingyang/chinese-llama-2-7b",
"ChineseLLaMA2-13B": "ziqingyang/chinese-llama-2-13b",
"ChineseLLaMA2-7B-Chat": "ziqingyang/chinese-alpaca-2-7b",
"ChineseLLaMA2-13B-Chat": "ziqingyang/chinese-alpaca-2-13b",
"BLOOM-560M": "bigscience/bloom-560m",
"BLOOM-3B": "bigscience/bloom-3b",
"BLOOM-7B1": "bigscience/bloom-7b1",
"BLOOMZ-560M": "bigscience/bloomz-560m",
"BLOOMZ-3B": "bigscience/bloomz-3b",
"BLOOMZ-7B1-mt": "bigscience/bloomz-7b1-mt",
"Falcon-7B": "tiiuae/falcon-7b",
"Falcon-7B-Chat": "tiiuae/falcon-7b-instruct",
"Falcon-40B": "tiiuae/falcon-40b",
"Falcon-40B-Chat": "tiiuae/falcon-40b-instruct",
"Baichuan-7B": "baichuan-inc/Baichuan-7B",
"Baichuan-13B": "baichuan-inc/Baichuan-13B-Base",
"Baichuan-13B-Chat": "baichuan-inc/Baichuan-13B-Chat",
"InternLM-7B": "internlm/internlm-7b",
"InternLM-7B-Chat": "internlm/internlm-chat-7b",
"LLaMA2-70B-Chat": "meta-llama/Llama-2-70b-chat-hf"
},
template="llama2"
)
register_model_group(
models={
"Mistral-7B": "mistralai/Mistral-7B-v0.1",
"Mistral-7B-Chat": "mistralai/Mistral-7B-Instruct-v0.1"
},
template="mistral"
)
register_model_group(
models={
"Phi1.5-1.3B": "microsoft/phi-1_5"
},
module="Wqkv"
)
register_model_group(
models={
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
},
module="c_attn",
template="qwen"
)
register_model_group(
models={
"Skywork-13B-Base": "Skywork/Skywork-13B-base"
}
)
register_model_group(
models={
"XVERSE-7B": "xverse/XVERSE-7B",
"XVERSE-13B": "xverse/XVERSE-13B",
"ChatGLM2-6B-Chat": "THUDM/chatglm2-6b"
}
"XVERSE-65B": "xverse/XVERSE-65B",
"XVERSE-7B-Chat": "xverse/XVERSE-7B-Chat",
"XVERSE-13B-Chat": "xverse/XVERSE-13B-Chat"
},
template="xverse"
)
DEFAULT_MODULE = {
"LLaMA": "q_proj,v_proj",
"LLaMA2": "q_proj,v_proj",
"ChineseLLaMA2": "q_proj,v_proj",
"BLOOM": "query_key_value",
"BLOOMZ": "query_key_value",
"Falcon": "query_key_value",
"Baichuan": "W_pack",
"InternLM": "q_proj,v_proj",
"Qwen": "c_attn",
"XVERSE": "q_proj,v_proj",
"ChatGLM2": "query_key_value"
}
DEFAULT_TEMPLATE = {
"LLaMA2": "llama2",
"ChineseLLaMA2": "llama2_zh",
"Baichuan": "baichuan",
"InternLM": "intern",
"Qwen": "chatml",
"ChatGLM2": "chatglm2"
}
register_model_group(
models={
"Yi-6B": "01-ai/Yi-6B",
"Yi-34B": "01-ai/Yi-34B"
}
)

View File

@@ -1,10 +1,25 @@
import gc
import os
import sys
import torch
from typing import TYPE_CHECKING, List, Optional, Tuple
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
from llmtuner.extras.constants import LAYERNORM_NAMES
try:
from transformers.utils import (
is_torch_bf16_cpu_available,
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_npu_available
)
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
_is_bf16_available = is_torch_bf16_gpu_available() or is_torch_bf16_cpu_available
except ImportError:
_is_fp16_available = torch.cuda.is_available()
_is_bf16_available = torch.cuda.is_bf16_supported()
if TYPE_CHECKING:
from transformers import HfArgumentParser
from transformers.modeling_utils import PreTrainedModel
@@ -28,12 +43,6 @@ class AverageMeter:
self.avg = self.sum / self.count
def get_logits_processor() -> LogitsProcessorList:
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
@@ -56,53 +65,48 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param
# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35
def prepare_model_for_training(
model: "PreTrainedModel",
finetuning_type: str,
output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel":
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
r"""
Infers the optimal dtype according to the model_dtype and device compatibility.
"""
if _is_bf16_available and model_dtype == torch.bfloat16:
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
return torch.float32
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
if finetuning_type != "full" and hasattr(model, output_layer_name):
output_layer: torch.nn.Linear = getattr(model, output_layer_name)
input_dtype = output_layer.weight.dtype
class CastOutputToFloat(torch.nn.Sequential):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return super().forward(x.to(input_dtype)).to(torch.float32)
setattr(model, output_layer_name, CastOutputToFloat(output_layer))
return model
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.
"""
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def torch_gc() -> None:
r"""
Collects GPU memory.
"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
else:
return parser.parse_args_into_dataclasses()
def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel":
r"""
Dispatches a pre-trained model to GPUs with balanced memory.

View File

View File

@@ -0,0 +1,221 @@
import math
import torch
import torch.nn as nn
from typing import Optional, Tuple
from transformers.utils import logging
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
is_flash_attn_2_available = False
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func # type: ignore
from flash_attn.bert_padding import pad_input, unpad_input # type: ignore
is_flash_attn_2_available = True
except ImportError:
is_flash_attn_2_available = False
logger = logging.get_logger(__name__)
# Modified from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
class LlamaShiftShortAttention(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None: # reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
if getattr(self, "num_key_value_groups"):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim).transpose(1, 2)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask[:, :, :groupsz, :groupsz].repeat(num_groups, 1, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :)
attn_output = attn_output.transpose(1, 2).contiguous()
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat((
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class LlamaFlashAttention2(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None: # reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# cast to half precision
input_dtype = query_states.dtype
if input_dtype == torch.float32:
logger.warning_once("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(self.config.torch_dtype)
key_states = key_states.to(self.config.torch_dtype)
value_states = value_states.to(self.config.torch_dtype)
if getattr(self, "num_key_value_groups", None):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift
groupsz = int(q_len * getattr(self.config, "group_size_ratio"))
assert q_len % groupsz == 0, "q_len {} should be divisible by group size {}.".format(q_len, groupsz)
num_groups = q_len // groupsz
def shift(state: torch.Tensor) -> torch.Tensor:
state = torch.cat((
state[:, :, :self.num_heads//2], state[:, :, self.num_heads//2:].roll(-groupsz//2, dims=1)
), dim=2)
return state.reshape(bsz * num_groups, groupsz, self.num_heads, self.head_dim)
query_states, key_states, value_states = shift(query_states), shift(key_states), shift(value_states)
if attention_mask is not None:
attention_mask = attention_mask.reshape(bsz * num_groups, groupsz)
if attention_mask is not None:
logger.warning_once("Padded sequences are less efficient in FlashAttention.")
# -q_len: assumes left padding when q_len != kv_len
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query_states, attention_mask[:, -q_len:])
unpadded_k, _, cu_seqlens_k, max_seqlen_k = unpad_input(key_states, attention_mask)
unpadded_v, _, _, _ = unpad_input(value_states, attention_mask)
attn_output_unpad = flash_attn_varlen_func(
unpadded_q,
unpadded_k,
unpadded_v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
softmax_scale=None,
causal=True,
)
attn_output = pad_input(attn_output_unpad, indices_q, bsz, q_len)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, 0.0, softmax_scale=None, causal=True
)
if getattr(self.config, "group_size_ratio", None) and self.training: # shift back
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
attn_output = torch.cat((
attn_output[:, :, :self.num_heads//2], attn_output[:, :, self.num_heads//2:].roll(groupsz//2, dims=1)
))
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Disable the transformation of the attention mask in LlamaModel as flash attention
# takes a boolean padding_mask. Fills in the past kv length for use in forward.
def _prepare_decoder_attention_mask(
self,
attention_mask: torch.Tensor,
input_shape: torch.Tensor,
inputs_embeds: torch.Tensor,
past_key_values_length: int
) -> torch.Tensor:
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask

View File

@@ -1,49 +0,0 @@
import os
import torch
from typing import Dict
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from transformers.modeling_utils import load_sharded_checkpoint
from llmtuner.extras.constants import VALUE_HEAD_FILE_NAME
from llmtuner.extras.logging import get_logger
logger = get_logger(__name__)
def get_state_dict(model: torch.nn.Module) -> Dict[str, torch.Tensor]:
state_dict: Dict[str, torch.Tensor] = model.state_dict()
filtered_state_dict = {}
for k, v in model.named_parameters():
if v.requires_grad:
filtered_state_dict[k] = state_dict[k].cpu().clone().detach()
return filtered_state_dict
def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
if os.path.exists(weights_file):
model_state_dict = torch.load(weights_file, map_location="cpu")
model.load_state_dict(model_state_dict, strict=False) # skip missing keys
elif os.path.exists(os.path.join(checkpoint_dir, WEIGHTS_INDEX_NAME)):
load_sharded_checkpoint(model, checkpoint_dir, strict=False)
else:
logger.warning("Provided path ({}) does not contain pre-trained weights.".format(checkpoint_dir))
return False
return True
def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
valuehead_file = os.path.join(checkpoint_dir, VALUE_HEAD_FILE_NAME)
if not os.path.exists(valuehead_file):
logger.warning("Provided path ({}) does not contain valuehead weights.".format(checkpoint_dir))
return False
valuehead_state_dict = torch.load(valuehead_file, map_location="cpu")
model.register_buffer("reward_head_weight", valuehead_state_dict["summary.weight"])
model.register_buffer("reward_head_bias", valuehead_state_dict["summary.bias"])
model.register_buffer("default_head_weight", torch.zeros_like(valuehead_state_dict["summary.weight"]))
model.register_buffer("default_head_bias", torch.zeros_like(valuehead_state_dict["summary.bias"]))
return True

View File

@@ -20,6 +20,7 @@ class Template:
sep: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
efficient_eos: bool
def encode_oneturn(
self,
@@ -74,19 +75,19 @@ class Template:
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if (
tokenizer.bos_token_id is not None
and getattr(tokenizer, "add_bos_token", True)
): # baichuan-13b has no bos token
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else:
bos_ids = [] # bos token is optional
else: # baichuan, qwen and gpt2 models have no bos token
bos_ids = []
if tokenizer.eos_token_id is not None:
eos_ids = [tokenizer.eos_token_id]
else:
if tokenizer.eos_token_id is None:
raise ValueError("EOS token is required.")
if self.efficient_eos: # used in baichuan, qwen, chatglm, etc.
eos_ids = []
else:
eos_ids = [tokenizer.eos_token_id]
return bos_ids, eos_ids
def _encode(
@@ -140,11 +141,12 @@ class Template:
elem = elem.replace("{{system}}", system, 1) if system is not None else elem
elem = elem.replace("{{query}}", query, 1) if query is not None else elem
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem
if len(elem) != 0:
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
else:
raise NotImplementedError
raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem)))
return token_ids
@@ -184,7 +186,8 @@ def register_template(
system: str,
sep: List[Union[str, Dict[str, str]]],
stop_words: Optional[List[str]] = [],
use_history: Optional[bool] = True
use_history: Optional[bool] = True,
efficient_eos: Optional[bool] = False
) -> None:
template_class = Llama2Template if "llama2" in name else Template
templates[name] = template_class(
@@ -193,7 +196,8 @@ def register_template(
system=system,
sep=sep,
stop_words=stop_words,
use_history=use_history
use_history=use_history,
efficient_eos=efficient_eos
)
@@ -201,116 +205,28 @@ def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
additional_special_tokens = template.stop_words
if len(template.stop_words): # inplace method
if tokenizer.eos_token_id is not None:
additional_special_tokens.append(tokenizer.eos_token)
tokenizer.eos_token = additional_special_tokens[0] # use the first stop word as eos token
additional_special_tokens.pop(0)
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
if tokenizer.eos_token_id is None:
tokenizer.eos_token = "<|endoftext|>"
logger.info("Add eos token: {}".format(tokenizer.eos_token))
if tokenizer.pad_token_id is None:
if tokenizer.unk_token_id is not None:
tokenizer.pad_token = tokenizer.unk_token
else:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
tokenizer.add_special_tokens(dict(additional_special_tokens=additional_special_tokens))
if name is None:
return None
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
tokenizer.add_special_tokens(
dict(additional_special_tokens=template.stop_words),
replace_additional_special_tokens=False
)
return template
r"""
Supports language model inference without histories.
"""
register_template(
name="vanilla",
prefix=[],
prompt=[
"{{query}}"
],
system="",
sep=[],
use_history=False
)
r"""
Default template.
"""
register_template(
name="default",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant: "
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[
"\n"
]
)
r"""
Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
"""
register_template(
name="llama2",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST] "
],
system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[]
)
r"""
Supports: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
"""
register_template(
name="llama2_zh",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST] "
],
system="You are a helpful assistant. 你是一个乐于助人的助手。",
sep=[]
)
r"""
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://github.com/ymcui/Chinese-LLaMA-Alpaca
"""
register_template(
name="alpaca",
@@ -331,22 +247,68 @@ register_template(
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1
Supports: https://huggingface.co/BAAI/AquilaChat-7B
https://huggingface.co/BAAI/AquilaChat2-7B
https://huggingface.co/BAAI/AquilaChat2-34B
"""
register_template(
name="vicuna",
name="aquila",
prefix=[
"{{system}}"
],
prompt=[
"USER: {{query}} ASSISTANT: "
"Human: {{query}}###Assistant:"
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
sep=[]
sep=[
"###"
],
stop_words=[
"</s>"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
"""
register_template(
name="baichuan",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_102>"}, # user token
"{{query}}",
{"token": "<reserved_103>"} # assistant token
],
system="",
sep=[],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
"""
register_template(
name="baichuan2",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<reserved_106>"}, # user token
"{{query}}",
{"token": "<reserved_107>"} # assistant token
],
system="",
sep=[],
efficient_eos=True
)
@@ -369,181 +331,20 @@ register_template(
r"""
Supports: https://github.com/CVI-SZU/Linly
Supports: https://huggingface.co/vivo-ai/BlueLM-7B-Chat
"""
register_template(
name="linly",
name="bluelm",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\nBot: "
],
system="",
sep=[
"\n"
]
)
r"""
Supports: https://github.com/Neutralzz/BiLLa
"""
register_template(
name="billa",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant: "
],
system="",
sep=[
"\n"
]
)
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
register_template(
name="ziya",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<human>"},
":{{query}}\n",
{"token": "<bot>"},
":"
],
system="",
sep=[
"\n"
]
)
r"""
Supports: https://huggingface.co/qhduan/aquilachat-7b
"""
register_template(
name="aquila",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}###Assistant: "
],
system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
sep=[
"###"
]
)
r"""
Supports: https://huggingface.co/internlm/internlm-chat-7b
"""
register_template(
name="intern",
prefix=[
"{{system}}"
],
prompt=[
"<|User|>:{{query}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
system="",
sep=[
"\n"
],
stop_words=[
"</s>", # internlm cannot replace eos token
"<eoa>"
]
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
"""
register_template(
name="baichuan",
prefix=[
"{{system}}",
{"token": "<reserved_102>"} # user token
],
prompt=[
{"token": "[|Human|]:"},
"{{query}}",
{"token": "<reserved_103>"} # assistant token
{"token": "[|AI|]:"}
],
system="",
sep=[],
stop_words=[
"<reserved_102>" # user token
]
)
r"""
Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha
https://huggingface.co/HuggingFaceH4/starchat-beta
"""
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
{"token": "<|end|>"}
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
system="",
sep=[
"\n"
],
stop_words=[
"<|end|>"
]
)
r"""
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat
"""
register_template(
name="chatml",
prefix=[
{"token": "<|im_start|>"},
"system\n{{system}}",
{"token": "<|im_end|>"}
],
prompt=[
{"token": "<|im_start|>"},
"user\n{{query}}",
{"token": "<|im_end|>"},
"\n",
{"token": "<|im_start|>"},
"assistant\n"
],
system="You are a helpful assistant.",
sep=[
"\n"
],
stop_words=[
"<|im_end|>"
]
sep=[]
)
@@ -563,5 +364,406 @@ register_template(
system="",
sep=[
"\n\n"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/THUDM/chatglm3-6b
"""
register_template(
name="chatglm3",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{system}}"
],
prompt=[
{"token": "<|user|>"},
"\n",
"{{query}}",
{"token": "<|assistant|>"}
],
system="",
sep=[],
stop_words=[
"<|user|>",
"<|observation|>"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
"""
register_template(
name="deepseek",
prefix=[
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n\n### Response:\n"
],
system=(
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
"developed by Deepseek Company, and you only answer questions related to computer science. "
"For politically sensitive questions, security and privacy issues, "
"and other non-computer science questions, you will refuse to answer."
),
sep=[
"\n",
{"token": "<|EOT|>"},
"\n\n"
],
stop_words=[
"<|EOT|>"
],
efficient_eos=True
)
r"""
Default template.
"""
register_template(
name="default",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant:"
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[
"\n"
]
)
r"""
Supports: https://huggingface.co/tiiuae/falcon-180B-chat
"""
register_template(
name="falcon",
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\nFalcon:"
],
system="",
sep=[
"\n"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/internlm/internlm-chat-7b
https://huggingface.co/internlm/internlm-chat-20b
"""
register_template(
name="intern",
prefix=[
"{{system}}"
],
prompt=[
"<|User|>:{{query}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
system="",
sep=[
{"token": "<eoa>"},
"\n"
],
stop_words=[
"<eoa>"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
"""
register_template(
name="llama2",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[]
)
r"""
Supports: https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
https://huggingface.co/ziqingyang/chinese-alpaca-2-13b
"""
register_template(
name="llama2_zh",
prefix=[
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="You are a helpful assistant. 你是一个乐于助人的助手。",
sep=[]
)
r"""
Supports: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
"""
register_template(
name="mistral",
prefix=[
"{{system}}"
],
prompt=[
"[INST] {{query}} [/INST]"
],
system="",
sep=[]
)
r"""
Supports: https://huggingface.co/openchat/openchat_3.5
"""
register_template(
name="openchat",
prefix=[
"{{system}}"
],
prompt=[
"GPT4 Correct User: {{query}}",
{"token": "<|end_of_turn|>"},
"GPT4 Correct Assistant:"
],
system="",
sep=[
{"token": "<|end_of_turn|>"}
],
stop_words=[
"<|end_of_turn|>"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat
https://huggingface.co/Qwen/Qwen-14B-Chat
"""
register_template(
name="qwen",
prefix=[
{"token": "<|im_start|>"},
"system\n{{system}}"
],
prompt=[
{"token": "<|im_start|>"},
"user\n{{query}}",
{"token": "<|im_end|>"},
"\n",
{"token": "<|im_start|>"},
"assistant\n"
],
system="You are a helpful assistant.",
sep=[
{"token": "<|im_end|>"},
"\n"
],
stop_words=[
"<|im_end|>"
],
efficient_eos=True
)
r"""
Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha
https://huggingface.co/HuggingFaceH4/starchat-beta
"""
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
system="",
sep=[
{"token": "<|end|>"},
"\n"
],
stop_words=[
"<|end|>"
],
efficient_eos=True
)
r"""
Supports language model inference without histories.
"""
register_template(
name="vanilla",
prefix=[],
prompt=[
"{{query}}"
],
system="",
sep=[],
use_history=False
)
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-13b-v1.5
"""
register_template(
name="vicuna",
prefix=[
"{{system}}"
],
prompt=[
"USER: {{query}} ASSISTANT:"
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[]
)
r"""
Supports: https://huggingface.co/xverse/XVERSE-7B-Chat
https://huggingface.co/xverse/XVERSE-13B-Chat
"""
register_template(
name="xverse",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nAssistant: "
],
system="",
sep=[]
)
r"""
Supports: https://huggingface.co/wenge-research/yayi-7b
https://huggingface.co/wenge-research/yayi-7b-llama2
https://huggingface.co/wenge-research/yayi-13b-llama2
"""
register_template(
name="yayi",
prefix=[
{"token": "<|System|>"},
":\n{{system}}"
],
prompt=[
{"token": "<|Human|>"},
":\n{{query}}\n\n",
{"token": "<|YaYi|>"},
":"
],
system=(
"You are a helpful, respectful and honest assistant named YaYi "
"developed by Beijing Wenge Technology Co.,Ltd. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[
"\n\n"
],
stop_words=[
"<|End|>"
]
)
r"""
Supports: https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
"""
register_template(
name="zephyr",
prefix=[
{"token": "<|system|>"},
"\n{{system}}",
{"token": "</s>"}
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "</s>"},
{"token": "<|assistant|>"}
],
system="You are a friendly chatbot who always responds in the style of a pirate",
sep=[]
)
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1.1
https://huggingface.co/IDEA-CCNL/Ziya2-13B-Chat
"""
register_template(
name="ziya",
prefix=[
"{{system}}"
],
prompt=[
{"token": "<human>"},
":{{query}}\n",
{"token": "<bot>"},
":"
],
system="",
sep=[
"\n"
]
)

View File

@@ -1,5 +1,5 @@
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .general_args import GeneralArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments

View File

@@ -11,48 +11,62 @@ class DatasetAttr:
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
system_prompt: Optional[str] = None
subset: Optional[str] = None
ranking: Optional[bool] = False
formatting: Optional[Literal["alpaca", "sharegpt"]] = "alpaca"
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
messages: Optional[str] = "conversations"
role: Optional[str] = "from"
content: Optional[str] = "value"
def __repr__(self) -> str:
return self.dataset_name
def __post_init__(self):
self.prompt = "instruction"
self.query = "input"
self.response = "output"
self.history = None
@dataclass
class DataArguments:
r"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
template: str = field(
template: Optional[str] = field(
default=None,
metadata={"help": "Which template to use for constructing prompts in training and inference."}
)
dataset: Optional[str] = field(
default="alpaca_en",
default=None,
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}
)
dataset_dir: Optional[str] = field(
default="data",
metadata={"help": "The name of the folder containing datasets."}
metadata={"help": "Path to the folder containing the datasets."}
)
split: Optional[str] = field(
default="train",
metadata={"help": "Which dataset split to use for training and evaluation."}
)
cutoff_len: Optional[int] = field(
default=1024,
metadata={"help": "The maximum length of the model inputs after tokenization."}
)
train_on_prompt: Optional[bool] = field(
default=False,
metadata={"help": "Whether to disable the mask on the prompt or not."}
)
streaming: Optional[bool] = field(
default=False,
metadata={"help": "Enable streaming mode."}
metadata={"help": "Enable dataset streaming."}
)
buffer_size: Optional[int] = field(
default=16384,
metadata={"help": "Size of the buffer to randomly sample examples from in streaming mode."}
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
)
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
default="concat",
metadata={"help": "Strategy to use in dataset mixing."}
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}
)
interleave_probs: Optional[str] = field(
default=None,
@@ -66,14 +80,6 @@ class DataArguments:
default=None,
metadata={"help": "The number of processes to use for the preprocessing."}
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total input sequence length after tokenization."}
)
max_target_length: Optional[int] = field(
default=512,
metadata={"help": "The maximum total output sequence length after tokenization."}
)
max_samples: Optional[int] = field(
default=None,
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
@@ -94,11 +100,35 @@ class DataArguments:
default=0,
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
)
sft_packing: Optional[bool] = field(
default=False,
metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
)
cache_path: Optional[str] = field(
default=None,
metadata={"help": "Path to save or load the preprocessed datasets."}
)
def init_for_training(self): # support mixing multiple datasets
dataset_names = [ds.strip() for ds in self.dataset.split(",")]
def __post_init__(self):
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
raise ValueError("Streaming mode should have an integer val size.")
if self.streaming and self.max_samples is not None:
raise ValueError("`max_samples` is incompatible with `streaming`.")
if self.streaming and self.cache_path:
raise ValueError("`cache_path` is incompatible with `streaming`.")
def init_for_training(self, seed: int): # support mixing multiple datasets
self.seed = seed
dataset_names = [ds.strip() for ds in self.dataset.split(",")] if self.dataset is not None else []
try:
with open(os.path.join(self.dataset_dir, "dataset_info.json"), "r") as f:
dataset_info = json.load(f)
except Exception:
if self.dataset is not None:
raise ValueError("Cannot find dataset_info.json in `dataset_dir`.")
dataset_info = None
prompt_list = self.system_prompt.split("|") if self.system_prompt else [None]
prompt_list = prompt_list * (len(dataset_names) // len(prompt_list))
@@ -128,6 +158,12 @@ class DataArguments:
dataset_attr.query = dataset_info[name]["columns"].get("query", None)
dataset_attr.response = dataset_info[name]["columns"].get("response", None)
dataset_attr.history = dataset_info[name]["columns"].get("history", None)
dataset_attr.messages = dataset_info[name]["columns"].get("messages", None)
dataset_attr.role = dataset_info[name]["columns"].get("role", None)
dataset_attr.content = dataset_info[name]["columns"].get("content", None)
dataset_attr.subset = dataset_info[name].get("subset", None)
dataset_attr.ranking = dataset_info[name].get("ranking", False)
dataset_attr.formatting = dataset_info[name].get("formatting", "alpaca")
dataset_attr.system_prompt = prompt_list[i]
self.dataset_list.append(dataset_attr)

View File

@@ -0,0 +1,55 @@
import os
from typing import Literal, Optional
from dataclasses import dataclass, field
from datasets import DownloadMode
@dataclass
class EvaluationArguments:
r"""
Arguments pertaining to specify the evaluation parameters.
"""
task: str = field(
metadata={"help": "Name of the evaluation task."}
)
task_dir: Optional[str] = field(
default="evaluation",
metadata={"help": "Path to the folder containing the evaluation datasets."}
)
batch_size: Optional[int] = field(
default=4,
metadata={"help": "The batch size per GPU for evaluation."}
)
seed: Optional[int] = field(
default=42,
metadata={"help": "Random seed to be used with data loaders."}
)
lang: Optional[Literal["en", "zh"]] = field(
default="en",
metadata={"help": "Language used at evaluation."}
)
n_shot: Optional[int] = field(
default=5,
metadata={"help": "Number of examplars for few-shot learning."}
)
save_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to save the evaluation results."}
)
download_mode: Optional[DownloadMode] = field(
default=DownloadMode.REUSE_DATASET_IF_EXISTS,
metadata={"help": "Download mode used for the evaluation datasets."}
)
def __post_init__(self):
task_available = []
for folder in os.listdir(self.task_dir):
if os.path.isdir(os.path.join(self.task_dir, folder)):
task_available.append(folder)
if self.task not in task_available:
raise ValueError("Task {} not found in {}.".format(self.task, self.task_dir))
if self.save_dir is not None and os.path.exists(self.save_dir):
raise ValueError("`save_dir` already exists, use another one.")

View File

@@ -8,21 +8,14 @@ class FinetuningArguments:
r"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
finetuning_type: Optional[Literal["lora", "freeze", "full", "none"]] = field(
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."}
)
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
)
num_hidden_layers: Optional[int] = field(
default=32,
metadata={"help": "Number of decoder blocks in the model for partial-parameter (freeze) fine-tuning. \
LLaMA choices: [\"32\", \"40\", \"60\", \"80\"], \
LLaMA-2 choices: [\"32\", \"40\", \"80\"], \
BLOOM choices: [\"24\", \"30\", \"70\"], \
Falcon choices: [\"32\", \"60\"], \
Baichuan choices: [\"32\", \"40\"] \
Qwen choices: [\"32\"], \
XVERSE choices: [\"40\"]"}
)
num_layer_trainable: Optional[int] = field(
default=3,
metadata={"help": "Number of trainable layers for partial-parameter (freeze) fine-tuning."}
@@ -31,10 +24,10 @@ class FinetuningArguments:
default="mlp",
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM & Falcon choices: [\"mlp\", \"self_attention\"], \
Baichuan choices: [\"mlp\", \"self_attn\"], \
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \
Qwen choices: [\"mlp\", \"attn\"], \
LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
Phi-1.5 choices: [\"mlp\", \"mixer\"], \
LLaMA-2, BlueLM, Baichuan, InternLM, Mistral, Skywork, XVERSE, Yi choices: the same as LLaMA."}
)
lora_rank: Optional[int] = field(
default=8,
@@ -52,10 +45,15 @@ class FinetuningArguments:
default=None,
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
Phi-1.5 choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \
LLaMA-2, BlueLM, InternLM, Mistral, Skywork, XVERSE, Yi choices: the same as LLaMA."}
)
additional_target: Optional[str] = field(
default=None,
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."}
)
resume_lora_training: Optional[bool] = field(
default=True,
@@ -63,25 +61,45 @@ class FinetuningArguments:
)
ppo_score_norm: Optional[bool] = field(
default=False,
metadata={"help": "Use score normalization in PPO Training."}
metadata={"help": "Use score normalization in PPO training."}
)
ppo_logger: Optional[str] = field(
default=None,
metadata={"help": "Log with either 'wandb' or 'tensorboard' in PPO training."}
)
ppo_target: Optional[float] = field(
default=6.0,
metadata={"help": "Target KL value for adaptive KL control in PPO training."}
)
dpo_beta: Optional[float] = field(
default=0.1,
metadata={"help": "The beta parameter for the DPO loss."}
)
dpo_ref_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reference model used for the DPO training."}
)
dpo_ref_model_checkpoint: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the model checkpoints of the reference model."}
)
upcast_layernorm: Optional[bool] = field(
default=False,
metadata={"help": "Whether to upcast the layernorm weights in fp32."}
)
neft_alpha: Optional[float] = field(
default=0,
metadata={"help": "The alpha parameter to control the noise magnitude in NEFTune."}
)
def __post_init__(self):
if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
self.lora_target = [target.strip() for target in self.lora_target.split(",")]
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [self.num_hidden_layers - k - 1 for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
if isinstance(self.additional_target, str):
self.additional_target = [target.strip() for target in self.additional_target.split(",")]
self.trainable_layers = ["{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
assert self.finetuning_type in ["lora", "freeze", "full", "none"], "Invalid fine-tuning method."
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`."""

View File

@@ -1,13 +0,0 @@
from typing import Literal, Optional
from dataclasses import dataclass, field
@dataclass
class GeneralArguments:
r"""
Arguments pertaining to which stage we are going to perform.
"""
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."}
)

View File

@@ -28,7 +28,7 @@ class GeneratingArguments:
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
)
max_length: Optional[int] = field(
default=None,
default=512,
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}
)
max_new_tokens: Optional[int] = field(
@@ -46,6 +46,8 @@ class GeneratingArguments:
def to_dict(self) -> Dict[str, Any]:
args = asdict(self)
if args.get("max_new_tokens", None):
if args.get("max_new_tokens", -1) > 0:
args.pop("max_length", None)
else:
args.pop("max_new_tokens", None)
return args

View File

@@ -1,6 +1,5 @@
import torch
from typing import Literal, Optional
from dataclasses import dataclass, field
from typing import Any, Dict, Literal, Optional
from dataclasses import asdict, dataclass, field
@dataclass
@@ -16,21 +15,17 @@ class ModelArguments:
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
)
use_fast_tokenizer: Optional[bool] = field(
default=False,
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
)
use_auth_token: Optional[bool] = field(
split_special_tokens: Optional[bool] = field(
default=False,
metadata={"help": "Will use the token generated when running `huggingface-cli login`."}
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}
)
model_revision: Optional[str] = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
)
padding_side: Optional[Literal["left", "right"]] = field(
default="left",
metadata={"help": "The side on which the model should have padding applied."}
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."}
@@ -49,32 +44,39 @@ class ModelArguments:
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
metadata={"help": "Path to the directory(s) containing the model checkpoints as well as the configurations."}
)
reward_model: Optional[str] = field(
flash_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enable FlashAttention-2 for faster training."}
)
shift_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
)
reward_model: Optional[str] = field( # TODO: move it to FinetuningArguments
default=None,
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
)
plot_loss: Optional[bool] = field(
plot_loss: Optional[bool] = field( # TODO: move it to FinetuningArguments
default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
)
hf_auth_token: Optional[str] = field(
hf_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."}
)
compute_dtype: Optional[torch.dtype] = field(
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
)
model_max_length: Optional[int] = field(
default=None,
metadata={"help": "Used in rope scaling. Do not specify this argument manually."}
metadata={"help": "Path to the directory to save the exported model."}
)
def __post_init__(self):
if self.compute_dtype is not None or self.model_max_length is not None:
raise ValueError("These arguments cannot be specified.")
self.compute_dtype = None
self.model_max_length = None
if self.split_special_tokens and self.use_fast_tokenizer:
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
if self.checkpoint_dir is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
@@ -82,6 +84,5 @@ class ModelArguments:
if self.quantization_bit is not None:
assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization."
if self.use_auth_token == True and self.hf_auth_token is not None:
from huggingface_hub.hf_api import HfFolder # lazy load
HfFolder.save_token(self.hf_auth_token)
def to_dict(self) -> Dict[str, Any]:
return asdict(self)

View File

@@ -1,2 +1,3 @@
from llmtuner.tuner.core.parser import get_train_args, get_infer_args
from llmtuner.tuner.core.loader import load_model_and_tokenizer
from llmtuner.tuner.core.utils import generate_model_card

View File

@@ -2,16 +2,17 @@ import os
import torch
from typing import TYPE_CHECKING
from transformers.utils import cached_file
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from peft import (
PeftModel,
TaskType,
LoraConfig,
get_peft_model
)
from peft.utils import CONFIG_NAME, WEIGHTS_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import load_trainable_params
from llmtuner.tuner.core.utils import find_all_linear_modules
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
@@ -25,8 +26,7 @@ def init_adapter(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
is_mergeable: bool
is_trainable: bool
) -> "PreTrainedModel":
r"""
Initializes the adapters.
@@ -36,37 +36,36 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if finetuning_args.finetuning_type == "none" and is_trainable:
raise ValueError("You cannot use finetuning_type=none while training.")
if (not is_trainable) and model_args.checkpoint_dir is None:
logger.info("Checkpoint is not found at evaluation, load the original model.")
return model
if finetuning_args.finetuning_type == "full" and is_trainable:
logger.info("Fine-tuning method: Full")
model = model.float()
if finetuning_args.finetuning_type == "freeze":
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
num_layers = getattr(model.config, "num_layers")
if finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [num_layers - k - 1 for k in range(finetuning_args.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-finetuning_args.num_layer_trainable)]
trainable_layers = ["{:d}.{}".format(idx, finetuning_args.name_module_trainable) for idx in trainable_layer_ids]
for name, param in model.named_parameters():
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
if not any(trainable_layer in name for trainable_layer in trainable_layers):
param.requires_grad_(False)
else:
param.data = param.data.to(torch.float32)
if model_args.checkpoint_dir is not None:
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
latest_checkpoint = None
checkpoint_to_resume = None
if model_args.checkpoint_dir is not None:
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)), \
"Provided path ({}) does not contain a LoRA weight.".format(model_args.checkpoint_dir[0])
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
"The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): # continually fine-tuning
checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
if is_trainable and finetuning_args.resume_lora_training:
checkpoints_to_merge, checkpoint_to_resume = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir
@@ -77,17 +76,23 @@ def init_adapter(
if len(checkpoints_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
if latest_checkpoint is not None: # resume lora training or quantized inference
model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable)
if checkpoint_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(model, checkpoint_to_resume, is_trainable=is_trainable)
if is_trainable and checkpoint_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, model_args.quantization_bit)
else:
target_modules = finetuning_args.lora_target
if is_trainable and latest_checkpoint is None: # create new lora weights while training
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetuning_args.lora_rank,
lora_alpha=finetuning_args.lora_alpha,
lora_dropout=finetuning_args.lora_dropout,
target_modules=finetuning_args.lora_target
target_modules=target_modules,
modules_to_save=finetuning_args.additional_target
)
model = get_peft_model(model, lora_config)
@@ -95,3 +100,30 @@ def init_adapter(
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir)))
return model
def load_valuehead_params(
model: "PreTrainedModel",
model_args: "ModelArguments"
) -> bool:
kwargs = {
"path_or_repo_id": model_args.reward_model,
"cache_dir": model_args.cache_dir,
"token": model_args.hf_hub_token,
"revision": model_args.model_revision
}
try:
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
except:
try:
vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs)
except:
logger.warning("Provided path ({}) does not contain valuehead weights.".format(model_args.reward_model))
return False
vhead_params = torch.load(vhead_file, map_location="cpu")
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer("default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False)
model.register_buffer("default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False)
return True

View File

@@ -13,16 +13,22 @@ from transformers import (
PreTrainedModel,
PreTrainedTokenizerBase
)
from transformers.utils import check_min_version
from transformers.models.llama import modeling_llama as LlamaModule
from transformers.utils.versions import require_version
from transformers.deepspeed import is_deepspeed_zero3_enabled
from peft import PeftModel
from trl import AutoModelForCausalLMWithValueHead
try:
from transformers.integrations import is_deepspeed_zero3_enabled
except ImportError: # https://github.com/huggingface/transformers/releases/tag/v4.33.1
from transformers.deepspeed import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import reset_logging, get_logger
from llmtuner.extras.misc import count_parameters, prepare_model_for_training
from llmtuner.extras.save_and_load import load_valuehead_params
from llmtuner.extras.misc import count_parameters, infer_optim_dtype
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments
from llmtuner.tuner.core.adapter import init_adapter
from llmtuner.tuner.core.adapter import init_adapter, load_valuehead_params
from llmtuner.tuner.core.utils import prepare_model_for_training
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
@@ -32,11 +38,11 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
check_min_version("4.29.1")
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
require_version("transformers>=4.31.0,<4.35.0", "To fix: pip install \"transformers>=4.31.0,<4.35.0\"")
require_version("datasets>=2.14.0", "To fix: pip install datasets>=2.14.0")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.4.0", "To fix: pip install peft>=0.4.0")
require_version("trl>=0.5.0", "To fix: pip install trl>=0.5.0")
require_version("peft>=0.6.0", "To fix: pip install peft>=0.6.0")
require_version("trl>=0.7.4", "To fix: pip install trl>=0.7.4")
def load_model_and_tokenizer(
@@ -50,50 +56,49 @@ def load_model_and_tokenizer(
Support both training and inference.
"""
if (not is_trainable) and model_args.checkpoint_dir is None:
logger.warning("Checkpoint is not found at evaluation, load the original model.")
finetuning_args = FinetuningArguments(finetuning_type="none")
config_kwargs = {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
"token": model_args.hf_hub_token
}
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
padding_side=model_args.padding_side,
split_special_tokens=model_args.split_special_tokens,
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
**config_kwargs
)
if finetuning_args.finetuning_type == "full" and model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None:
model_to_load = model_args.checkpoint_dir[0]
else:
model_to_load = model_args.model_name_or_path
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs)
if hasattr(config, "fp16") and hasattr(config, "bf16"): # fix Qwen config
if model_args.compute_dtype == torch.bfloat16:
setattr(config, "bf16", True)
else:
setattr(config, "fp16", True)
# Fix tokenizer (for ChatGLM2 and ChatGLM3)
if getattr(config, "model_type", None) == "chatglm":
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
# Set model dtype
if model_args.compute_dtype is not None: # for training
setattr(config, "torch_dtype", model_args.compute_dtype)
else: # for evaluation, priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
# Fix config (for Qwen)
if getattr(config, "model_type", None) == "qwen":
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
# Set RoPE scaling
if model_args.rope_scaling is not None:
if hasattr(config, "use_dynamic_ntk"): # for Qwen models
if is_trainable:
logger.warning("Qwen model does not support RoPE scaling in training.")
if not hasattr(config, "rope_scaling"):
logger.warning("Current model does not support RoPE scaling.")
else:
setattr(config, "use_dynamic_ntk", True)
setattr(config, "use_logn_attn", True)
logger.info("Using dynamic NTK scaling.")
elif hasattr(config, "rope_scaling"): # for LLaMA models
require_version("transformers>=4.31.0", "RoPE scaling requires transformers>=4.31.0")
if is_trainable:
if model_args.rope_scaling == "dynamic":
logger.warning(
@@ -115,11 +120,32 @@ def load_model_and_tokenizer(
model_args.rope_scaling, scaling_factor
))
# Set FlashAttention-2
if model_args.flash_attn:
if getattr(config, "model_type", None) == "llama":
if LlamaPatches.is_flash_attn_2_available:
LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2
LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask
logger.info("Using FlashAttention-2 for faster training and inference.")
else:
logger.warning("Current model does not support RoPE scaling.")
logger.warning("FlashAttention-2 is not installed.")
elif getattr(config, "model_type", None) in ["qwen", "Yi"]:
logger.info("Current model automatically enables FlashAttention if installed.")
else:
logger.warning("Current model does not support FlashAttention-2.")
elif is_trainable and model_args.shift_attn and getattr(config, "model_type", None) == "llama":
LlamaModule.LlamaAttention = LlamaPatches.LlamaShiftShortAttention
logger.warning("Using `--flash_attn` for faster training in large context length.")
# Set shift short attention (S^2-Attn)
if is_trainable and model_args.shift_attn:
if getattr(config, "model_type", None) == "llama":
setattr(config, "group_size_ratio", 0.25)
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")
# Quantization configurations (using bitsandbytes library).
is_mergeable = True
if model_args.quantization_bit is not None:
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
@@ -129,7 +155,7 @@ def load_model_and_tokenizer(
config_kwargs["load_in_8bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
elif model_args.quantization_bit == 4:
if model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["load_in_4bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
@@ -139,7 +165,6 @@ def load_model_and_tokenizer(
bnb_4bit_quant_type=model_args.quantization_type
)
is_mergeable = False
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} if is_trainable else "auto"
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
@@ -152,13 +177,14 @@ def load_model_and_tokenizer(
**config_kwargs
)
# Disable custom generate method (for Qwen)
if "GenerationMixin" not in str(model.generate.__func__):
# Disable custom generate method (for Qwen and Baichuan2)
if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
# Fix LM head (for ChatGLM2)
if not hasattr(model, "lm_head") and hasattr(model, "transformer"):
# Fix LM head (for ChatGLM2 and ChatGLM3)
if getattr(config, "model_type", None) == "chatglm":
setattr(model, "lm_head", model.transformer.output_layer)
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])
# Register auto class to save the custom code files.
if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}):
@@ -169,16 +195,17 @@ def load_model_and_tokenizer(
tokenizer.__class__.register_for_auto_class()
# Initialize adapters
model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable)
model = model.train() if is_trainable else model.eval()
# Prepare model with valuehead for RLHF
if stage == "rm" or stage == "ppo":
model: AutoModelForCausalLMWithValueHead = AutoModelForCausalLMWithValueHead.from_pretrained(model)
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
reset_logging()
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
logger.warning("Only the last checkpoint containing valuehead will be loaded.")
if load_valuehead_params(model, model_args):
model.v_head.load_state_dict({
"summary.weight": getattr(model, "reward_head_weight"),
"summary.bias": getattr(model, "reward_head_bias")
@@ -186,18 +213,24 @@ def load_model_and_tokenizer(
if stage == "ppo": # load reward model
logger.info("Load reward model from {}".format(model_args.reward_model))
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
if isinstance(model.pretrained_model, PeftModel):
model.pretrained_model.load_adapter(model_args.reward_model, "reward")
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
if "default" in name:
param.data = param.data.to(torch.float32) # trainable params should in fp32
assert load_valuehead_params(model, model_args), "Reward model is not correctly loaded."
# Prepare model for inference
if not is_trainable:
model.requires_grad_(False) # fix all model params
infer_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 # detect cuda capability
model = model.to(infer_dtype) if model_args.quantization_bit is None else model
model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model
trainable_params, all_param = count_parameters(model)
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
))
if not is_trainable:
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
return model, tokenizer

View File

@@ -1,5 +1,4 @@
import os
import sys
import torch
import datasets
import transformers
@@ -8,29 +7,18 @@ from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.trainer_utils import get_last_checkpoint
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import parse_args
from llmtuner.hparams import (
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
GeneratingArguments
)
logger = get_logger(__name__)
def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
return parser.parse_json_file(os.path.abspath(sys.argv[1]))
else:
return parser.parse_args_into_dataclasses()
def parse_train_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[
@@ -38,18 +26,16 @@ def parse_train_args(
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
GeneratingArguments
]:
parser = HfArgumentParser((
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
GeneratingArguments
))
return _parse_args(parser, args)
return parse_args(parser, args)
def parse_infer_args(
@@ -66,7 +52,7 @@ def parse_infer_args(
FinetuningArguments,
GeneratingArguments
))
return _parse_args(parser, args)
return parse_args(parser, args)
def get_train_args(
@@ -76,10 +62,9 @@ def get_train_args(
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
GeneratingArguments
]:
model_args, data_args, training_args, finetuning_args, generating_args, general_args = parse_train_args(args)
model_args, data_args, training_args, finetuning_args, generating_args = parse_train_args(args)
# Setup logging
if training_args.should_log:
@@ -92,36 +77,43 @@ def get_train_args(
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
data_args.init_for_training()
# Check arguments
data_args.init_for_training(training_args.seed)
if general_args.stage != "sft" and training_args.predict_with_generate:
if finetuning_args.stage != "pt" and data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if finetuning_args.stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True except SFT.")
if general_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if general_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type != "lora":
if finetuning_args.stage in ["rm", "ppo"]:
if finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO stages can only be performed with the LoRA method.")
if general_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None:
if training_args.resume_from_checkpoint is not None:
raise ValueError("RM and PPO stages do not support `resume_from_checkpoint`.")
if training_args.load_best_model_at_end:
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")
if general_args.stage in ["ppo", "dpo"] and not training_args.do_train:
raise ValueError("PPO and DPO stages can only be performed at training.")
if finetuning_args.stage == "ppo" and not training_args.do_train:
raise ValueError("PPO training does not support evaluation.")
if general_args.stage == "ppo" and model_args.reward_model is None:
if finetuning_args.stage in ["rm", "dpo"]:
for dataset_attr in data_args.dataset_list:
if not dataset_attr.ranking:
raise ValueError("Please use ranked datasets for reward modeling or DPO training.")
if finetuning_args.stage == "ppo" and model_args.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.")
if general_args.stage == "ppo" and data_args.streaming:
raise ValueError("Streaming mode does not suppport PPO training currently.")
if finetuning_args.stage == "ppo" and model_args.shift_attn:
raise ValueError("PPO training is incompatible with S^2-Attn.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
if data_args.val_size > 1e-6 and data_args.val_size < 1 and data_args.streaming:
raise ValueError("Streaming mode should have an integer val size.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
@@ -131,23 +123,21 @@ def get_train_args(
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
if len(model_args.checkpoint_dir) != 1:
if (
model_args.checkpoint_dir is not None
and len(model_args.checkpoint_dir) != 1
and finetuning_args.finetuning_type != "lora"
):
raise ValueError("Only LoRA tuning accepts multiple checkpoints.")
elif model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1:
raise ValueError("Quantized model only accepts a single checkpoint.")
if model_args.quantization_bit is not None and (not training_args.do_train):
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
if training_args.do_train and model_args.quantization_bit is not None and (not finetuning_args.upcast_layernorm):
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
logger.warning("We recommend enable mixed precision training.")
# postprocess data_args
if data_args.max_samples is not None and data_args.streaming:
logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.")
data_args.max_samples = None
if (not training_args.do_train) and model_args.quantization_bit is not None:
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
# postprocess training_args
if (
@@ -156,10 +146,9 @@ def get_train_args(
and finetuning_args.finetuning_type == "lora"
):
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
training_args.ddp_find_unused_parameters = False
if training_args.optim == "adamw_hf":
training_args.optim = "adamw_torch" # suppress warning
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(ddp_find_unused_parameters=False))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
if (
training_args.resume_from_checkpoint is None
@@ -169,23 +158,21 @@ def get_train_args(
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError("Output directory already exists and is not empty. Use `overwrite_output_dir`.")
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
if last_checkpoint is not None:
training_args.resume_from_checkpoint = last_checkpoint
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
logger.info(
"Resuming from checkpoint. Change `output_dir` or use `overwrite_output_dir` to avoid."
)
# postprocess model_args
if training_args.bf16:
if not torch.cuda.is_bf16_supported():
raise ValueError("Current device does not support bf16 training.")
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float16
model_args.model_max_length = data_args.max_source_length + data_args.max_target_length
model_args.compute_dtype = (
torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None)
)
model_args.model_max_length = data_args.cutoff_len
# Log on each process the small summary:
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
@@ -197,7 +184,7 @@ def get_train_args(
# Set seed before initializing model.
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args, generating_args, general_args
return model_args, data_args, training_args, finetuning_args, generating_args
def get_infer_args(
@@ -210,14 +197,17 @@ def get_infer_args(
]:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args)
if data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
if len(model_args.checkpoint_dir) != 1:
if (
model_args.checkpoint_dir is not None
and len(model_args.checkpoint_dir) != 1
and finetuning_args.finetuning_type != "lora"
):
raise ValueError("Only LoRA tuning accepts multiple checkpoints.")
elif model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1:
raise ValueError("Quantized model only accepts a single checkpoint.")
return model_args, data_args, finetuning_args, generating_args

View File

@@ -1,107 +0,0 @@
import os
import torch
from typing import TYPE_CHECKING, Dict, Optional
from transformers import Seq2SeqTrainer
from transformers.trainer import TRAINING_ARGS_NAME, WEIGHTS_NAME
from transformers.modeling_utils import PreTrainedModel, unwrap_model
from peft import PeftModel
from trl import PreTrainedModelWrapper
from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, Seq2SeqTrainingArguments, TrainerState
from llmtuner.hparams import FinetuningArguments
logger = get_logger(__name__)
class PeftModelMixin:
r"""
Patches the save and load methods in Hugging Face Trainer for PeftModel and ModelWithValueHead.
"""
def __init__(self) -> None: # for type checking
self.model: PreTrainedModel = None
self.tokenizer: "PreTrainedTokenizer" = None
self.args: "Seq2SeqTrainingArguments" = None
self.finetuning_args: "FinetuningArguments" = None
self.state: "TrainerState" = None
raise AssertionError("Mixin should not be initialized.")
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, torch.Tensor]] = None) -> None:
r"""
Saves trainable parameters as model checkpoint.
This function will only be executed at the process zero.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
"""
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
model = unwrap_model(self.model)
if isinstance(model, PreTrainedModelWrapper):
# Custom state dict: https://github.com/lvwerra/trl/blob/v0.4.7/trl/models/modeling_value_head.py#L200
model_state_dict = state_dict or model.state_dict()
v_head_state_dict = {
name.replace("v_head.", ""): model_state_dict[name].cpu().clone().detach()
for name in model_state_dict.keys() if name.startswith("v_head.")
}
torch.save(v_head_state_dict, os.path.join(output_dir, VALUE_HEAD_FILE_NAME))
model = model.pretrained_model
state_dict = state_dict or get_state_dict(model)
if isinstance(model, (PeftModel, PreTrainedModel)):
model.config.use_cache = True
model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors)
model.config.use_cache = False
else:
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
if self.finetuning_args.finetuning_type == "full" and self.tokenizer is not None:
try:
self.tokenizer.save_pretrained(output_dir)
except:
logger.warning("Cannot save tokenizer, copy the files manually.")
with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f:
f.write(self.args.to_json_string() + "\n")
self.finetuning_args.save_to_json(os.path.join(output_dir, FINETUNING_ARGS_NAME))
def _load_best_model(self):
r"""
Loads trainable parameters from model checkpoint.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
"""
logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
model = unwrap_model(self.model)
if isinstance(model, PreTrainedModelWrapper):
model.v_head.load_state_dict(torch.load(
os.path.join(self.state.best_model_checkpoint, VALUE_HEAD_FILE_NAME), map_location="cpu"
))
model = model.pretrained_model
if isinstance(model, PeftModel):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
else: # freeze/full-tuning
load_trainable_params(model, self.state.best_model_checkpoint)
class PeftTrainer(PeftModelMixin, Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to support parameter-efficient checkpoints.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs):
Seq2SeqTrainer.__init__(self, **kwargs)
self.finetuning_args = finetuning_args

View File

@@ -0,0 +1,107 @@
import torch
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple
from llmtuner.extras.constants import LAYERNORM_NAMES
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
logger = get_logger(__name__)
def find_all_linear_modules(
model: "PreTrainedModel",
quantization_bit: Optional[int] = None
) -> List[str]:
if quantization_bit is not None:
import bitsandbytes as bnb
linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt
else:
linear_cls = torch.nn.Linear
output_layer_names = ["lm_head"]
if model.config.model_type == "chatglm":
output_layer_names.append("output_layer")
module_names = set()
for name, module in model.named_modules():
if (
isinstance(module, linear_cls)
and not any([output_layer in name for output_layer in output_layer_names])
):
module_names.add(name.split(".")[-1])
logger.info("Found linear modules: {}".format(",".join(module_names)))
return list(module_names)
def generate_model_card(
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments"
) -> Dict[str, Any]:
return {
"tasks": "text-generation",
"finetuned_from": model_args.model_name_or_path,
"dataset": [dataset.strip() for dataset in data_args.dataset.split(",")],
"tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else [])
}
def prepare_model_for_training(
model: "PreTrainedModel",
finetuning_args: "FinetuningArguments",
output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True,
layernorm_names: Optional[Set[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel":
r"""
Includes:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) upcast the lm_head to fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
"""
if finetuning_args.upcast_layernorm:
for name, param in model.named_parameters():
if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names):
param.data = param.data.to(torch.float32)
logger.info("Upcasting weights in layernorm in float32.")
if finetuning_args.neft_alpha > 1e-6:
def neftune_forward_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = finetuning_args.neft_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
model.get_input_embeddings().register_forward_hook(neftune_forward_hook)
logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha))
if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
logger.info("Gradient checkpointing enabled.")
if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name):
output_layer = getattr(model, output_layer_name)
if isinstance(output_layer, torch.nn.Linear):
def fp32_forward_pre_hook(module: torch.nn.Module, args: Tuple[torch.Tensor]):
return args[0].to(output_layer.weight.dtype)
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
return output.to(torch.float32)
output_layer.register_forward_pre_hook(fp32_forward_pre_hook)
output_layer.register_forward_hook(fp32_forward_post_hook)
return model

View File

@@ -16,7 +16,7 @@ class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
if self.tokenizer.padding_side == "left":
start, end = feature.size(0) - answer_len, feature.size(0)
else:
start, end = prompt_len, answer_len
start, end = prompt_len, prompt_len + answer_len
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor)

View File

@@ -1,41 +1,50 @@
import torch
from collections import defaultdict
from peft import PeftModel
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.tuner.core.trainer import PeftModelMixin
if TYPE_CHECKING:
from transformers import PreTrainedModel
from llmtuner.hparams import FinetuningArguments, GeneratingArguments
class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
class CustomDPOTrainer(DPOTrainer):
def __init__(
self,
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
beta: float,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: Optional[bool] = True,
loss_type: Optional[Literal["sigmoid", "hinge"]] = "sigmoid",
**kwargs
):
self.finetuning_args = finetuning_args
self.generating_args = generating_args
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.is_encoder_decoder = model.config.is_encoder_decoder
self.ref_model = ref_model
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.beta = finetuning_args.dpo_beta
self.beta = beta
self.loss_type = loss_type
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, **kwargs)
Trainer.__init__(self, model=model, **kwargs)
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
if ref_model is not None:
if self.is_deepspeed_enabled:
self.ref_model = self._prepare_deepspeed(self.ref_model)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def concatenated_forward(
@@ -44,28 +53,13 @@ class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
batch: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_disable()
if model is None and isinstance(unwrapped_model, PeftModel): # peft model has no ref_model
with unwrapped_model.disable_adapter():
all_logits = self.model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
else:
all_logits = model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_enable()
all_logps = self._get_batch_logps(
all_logits,
batch["labels"],

View File

@@ -1,19 +1,24 @@
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
from copy import deepcopy
from peft import PeftModel
from typing import TYPE_CHECKING, Optional, List
from transformers import Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.hparams import ModelArguments
from llmtuner.tuner.core import generate_model_card, load_model_and_tokenizer
from llmtuner.tuner.dpo.collator import DPODataCollatorWithPadding
from llmtuner.tuner.dpo.trainer import DPOPeftTrainer
from llmtuner.tuner.dpo.trainer import CustomDPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
from transformers import TrainerCallback
from llmtuner.hparams import DataArguments, FinetuningArguments
logger = get_logger(__name__)
def run_dpo(
@@ -21,7 +26,6 @@ def run_dpo(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None
):
dataset = get_dataset(model_args, data_args)
@@ -29,18 +33,39 @@ def run_dpo(
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = DPODataCollatorWithPadding(
tokenizer=tokenizer,
pad_to_multiple_of=4,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
training_args.remove_unused_columns = False # important for pairwise dataset
ref_model = deepcopy(model) if not isinstance(model, PeftModel) else None
# Create reference model
if finetuning_args.dpo_ref_model is not None:
ref_model_args_dict = model_args.to_dict()
ref_model_args_dict.update(dict(
model_name_or_path=finetuning_args.dpo_ref_model,
checkpoint_dir=finetuning_args.dpo_ref_model_checkpoint
))
ref_model_args = ModelArguments(**ref_model_args_dict)
ref_model, _ = load_model_and_tokenizer(ref_model_args, finetuning_args, is_trainable=False, stage="sft")
logger.info("Created reference model from {}".format(finetuning_args.dpo_ref_model))
elif training_args.do_train:
if isinstance(model, PeftModel):
ref_model = None
else:
ref_model, _ = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft")
logger.info("Created reference model from the model itself.")
else:
ref_model = model
# Update arguments
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = DPOPeftTrainer(
finetuning_args=finetuning_args,
generating_args=generating_args,
ref_model=ref_model,
trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta,
model=model,
ref_model=ref_model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
@@ -51,9 +76,27 @@ def run_dpo(
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
if id(model) == id(ref_model): # unable to compute rewards without a reference model
logger.warning("Pass `dpo_ref_model` for computing rewards at evaluation.")
remove_keys = [key for key in metrics.keys() if "rewards" in key]
for key in remove_keys:
metrics.pop(key)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Create model card
if training_args.do_train:
if training_args.push_to_hub:
trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args))
else:
trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))

View File

@@ -1,63 +1,78 @@
import os
import sys
import math
import torch
from tqdm import tqdm
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from transformers import TrainerState, TrainerControl
from transformers import BatchEncoding, GenerationConfig, Trainer, TrainerState, TrainerControl
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from trl import PPOTrainer
from trl.core import LengthSampler, PPODecorators, logprobs_from_logits
from trl.core import PPODecorators, logprobs_from_logits
from llmtuner.extras.callbacks import LogCallback, SavePeftModelCallback
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.tuner.core.trainer import PeftTrainer
from llmtuner.tuner.ppo.utils import replace_model
from llmtuner.tuner.ppo.utils import dump_layernorm, restore_layernorm, replace_model
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.extras.callbacks import LogCallback
from llmtuner.hparams import FinetuningArguments, GeneratingArguments
from llmtuner.hparams import ModelArguments, FinetuningArguments, GeneratingArguments
logger = get_logger(__name__)
class PPOPeftTrainer(PPOTrainer, PeftTrainer):
class CustomPPOTrainer(PPOTrainer, Trainer):
r"""
Inherits PPOTrainer.
"""
def __init__(
self,
model_args: "ModelArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: List["LogCallback"],
compute_dtype: torch.dtype,
callbacks: List["TrainerCallback"],
**kwargs
):
PPOTrainer.__init__(self, **kwargs)
self.args = training_args
self.model_args = model_args
self.finetuning_args = finetuning_args
self.generating_args = generating_args
self.log_callback = callbacks[0]
self.compute_dtype = compute_dtype
self.generation_config = GenerationConfig(
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
**generating_args.to_dict()
)
self.state = TrainerState()
self.control = TrainerControl()
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, SavePeftModelCallback)
if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
def ppo_train(self, max_target_length: int) -> None:
def ppo_train(self) -> None:
r"""
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
"""
total_train_batch_size = (
self.args.per_device_train_batch_size * self.args.gradient_accumulation_steps * self.args.world_size
)
if self.args.max_steps > 0:
num_examples = total_train_batch_size * self.args.max_steps
num_train_epochs = sys.maxsize
max_steps = self.args.max_steps
steps_in_epoch = self.args.max_steps * self.args.gradient_accumulation_steps
else:
len_dataloader = len(self.dataloader)
num_examples = len(self.dataset)
num_train_epochs = self.args.num_train_epochs
max_steps = math.ceil(num_train_epochs * len_dataloader)
steps_in_epoch = len_dataloader
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
@@ -74,42 +89,53 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
logger.info(f" Total optimization steps = {max_steps}")
logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}")
# Keyword arguments for `model.generate`
gen_kwargs = self.generating_args.to_dict()
gen_kwargs["eos_token_id"] = list(set([self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids))
gen_kwargs["pad_token_id"] = self.tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
length_sampler = LengthSampler(max_target_length // 2, max_target_length)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
dataiter = iter(self.dataloader)
steps_trained = 0
loss_meter = AverageMeter()
reward_meter = AverageMeter()
self.log_callback.on_train_begin(self.args, self.state, self.control)
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
try:
batch = next(dataiter)
except StopIteration:
dataiter = iter(self.dataloader)
batch = next(dataiter)
steps_trained += 1
# Cast to inference mode
unwrapped_model.gradient_checkpointing_disable()
unwrapped_model.config.use_cache = True
self.model.eval()
# Get inputs
queries, responses = self.get_inputs(batch, length_sampler, **gen_kwargs)
rewards = self.get_rewards(queries, responses, unwrapped_model)
self.tokenizer.padding_side = "right" # change padding side
queries, responses, rewards = [], [], []
for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
mini_batch_queries, mini_batch_responses = self.get_inputs(batch[idx:idx+self.config.mini_batch_size])
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model)
queries.extend(mini_batch_queries)
responses.extend(mini_batch_responses)
rewards.extend(mini_batch_rewards)
# Cast to training mode
unwrapped_model.gradient_checkpointing_enable()
unwrapped_model.config.use_cache = False
self.model.train()
# Run PPO step
stats = self.step(queries, responses, rewards)
loss_meter.update(stats["ppo/loss/total"], n=len(rewards))
self.tokenizer.padding_side = "left" # restore padding side
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
if self.config.log_with is not None:
try:
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
self.log_stats(stats, batch, rewards)
except:
logger.warning("Failed to save stats due to unknown errors.")
self.state.global_step += 1
self.log_callback.on_step_end(self.args, self.state, self.control)
@@ -118,7 +144,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
loss=round(loss_meter.avg, 4),
reward=round(reward_meter.avg, 4),
learning_rate=stats["ppo/learning_rate"],
epoch=round(step / len_dataloader, 2)
epoch=round(step / steps_in_epoch, 2)
)
tqdm.write(str(logs))
logs["step"] = step
@@ -128,43 +154,50 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
reward_meter.reset()
if (step+1) % self.args.save_steps == 0: # save checkpoint
self.save_model(os.path.join(self.args.output_dir, f"checkpoint-{step+1}"))
self.save_model(os.path.join(
self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step)
))
self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
if steps_trained == len_dataloader:
dataiter = iter(self.dataloader)
steps_trained = 0
self.log_callback.on_train_end(self.args, self.state, self.control)
self.save_callback.on_train_end(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
@torch.no_grad()
def get_inputs(
self,
batch: Dict[str, torch.Tensor],
length_sampler: Optional[Callable] = None,
**generation_kwargs
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
def get_inputs(self, batch: BatchEncoding) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
r"""
Generates model's responses given queries.
"""
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
if self.finetuning_args.upcast_layernorm:
layernorm_params = dump_layernorm(self.model)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
response: torch.Tensor = unwrapped_model.generate(**batch, **generation_kwargs)
response: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config,
logits_processor=get_logits_processor(),
**batch
)
# Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop
# Inspired by: https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_seq2seq.py#L273
if unwrapped_model.pretrained_model.generation_config._from_model_config:
unwrapped_model.pretrained_model.generation_config._from_model_config = False
if self.finetuning_args.upcast_layernorm:
restore_layernorm(self.model, layernorm_params)
queries, responses = [], []
query, response = batch["input_ids"].detach().cpu(), response[:, batch["input_ids"].size(-1):].detach().cpu()
queries, responses = [], []
for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0]
response_length = (response[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0:
response_length = 1 # allow empty response
else:
response_length = response_index[-1].item() + 1
queries.append(query[i, query_length:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right
@@ -183,24 +216,30 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
replace_model(unwrapped_model, target="reward")
batch = self.prepare_model_inputs(queries, responses)
with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
_, _, values = self.model(**batch, output_hidden_states=True, return_dict=True)
if values.size(0) != batch["input_ids"].size(0): # adapt to chatglm2
values = torch.transpose(values, 0, 1)
rewards = [reward for reward in values[:, -1].float().detach().cpu()] # use fp32 type
rewards = []
for i in range(values.size(0)):
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
end_index = end_indexes[-1].item() if len(end_indexes) else 0
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
replace_model(unwrapped_model, target="default")
return rewards
@PPODecorators.empty_cuda_cache()
@PPODecorators.empty_device_cache()
def batched_forward_pass(
self,
model: "AutoModelForCausalLMWithValueHead",
queries: torch.Tensor,
responses: torch.Tensor,
model_inputs: dict,
return_logits: Optional[bool] = False
return_logits: Optional[bool] = False,
response_masks: Optional[torch.Tensor] = None
):
r"""
Calculates model outputs in multiple batches.
@@ -218,10 +257,12 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
logits, _, values = model(**input_kwargs)
if values.size(0) != input_ids.size(0): # adapt to chatglm2
@@ -234,11 +275,18 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
for j in range(len(query_batch)):
start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0]
start += attention_mask[j, :].nonzero()[0].item()
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch = torch.cat(
(torch.zeros_like(query_batch[j]), response_masks_batch[j])
)[1:]
masks[j, :start] = 0
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)

View File

@@ -1,17 +1,35 @@
from typing import TYPE_CHECKING, Literal
import torch
from typing import TYPE_CHECKING, Dict, Literal, Optional
if TYPE_CHECKING:
from transformers import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
if target == "reward": # save default head temporarily
valuehead_state_dict = model.v_head.state_dict()
setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"])
setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"])
valuehead_state_dict: Dict[str, torch.Tensor] = model.v_head.state_dict()
setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone())
setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone())
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
model.v_head.load_state_dict({
"summary.weight": getattr(model, "{}_head_weight".format(target)),
"summary.bias": getattr(model, "{}_head_bias".format(target))
"summary.weight": model.get_buffer("{}_head_weight".format(target)).detach().clone(),
"summary.bias": model.get_buffer("{}_head_bias".format(target)).detach().clone()
})
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
layer_norm_params = {}
for name, param in model.named_parameters():
if param.data.dtype == torch.float32:
layer_norm_params[name] = param.data.detach().clone()
param.data = param.data.to(model.config.torch_dtype)
return layer_norm_params
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
for name, param in model.named_parameters():
if name in layernorm_params:
param.data = layernorm_params[name]

View File

@@ -4,14 +4,14 @@ import math
from trl import PPOConfig
from torch.optim import AdamW
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
from transformers import DataCollatorWithPadding
from transformers.optimization import get_scheduler
from transformers.utils.versions import require_version
from llmtuner.dsets import get_dataset, preprocess_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.ppo.trainer import PPOPeftTrainer
from llmtuner.tuner.ppo.trainer import CustomPPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
@@ -29,7 +29,9 @@ def run_ppo(
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="ppo")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="ppo")
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=tokenizer.pad_token_id)
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
ppo_config = PPOConfig(
model_name=model_args.model_name_or_path,
@@ -40,19 +42,23 @@ def run_ppo(
ppo_epochs=1,
max_grad_norm=training_args.max_grad_norm,
seed=training_args.seed,
optimize_cuda_cache=True
optimize_device_cache=True,
target=finetuning_args.ppo_target,
log_with=finetuning_args.ppo_logger,
use_score_scaling=finetuning_args.ppo_score_norm,
use_score_norm=finetuning_args.ppo_score_norm,
accelerator_kwargs={"step_scheduler_with_optimizer": False}
)
if finetuning_args.ppo_score_norm:
require_version("trl>=0.5.1.dev0", "To fix: pip install git+https://github.com/huggingface/trl.git")
ppo_config.use_score_scaling = True
ppo_config.use_score_norm = True
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate)
if training_args.max_steps > 0:
num_training_steps = training_args.max_steps
else:
total_train_batch_size = (
training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
optimizer=optimizer,
@@ -61,12 +67,12 @@ def run_ppo(
)
# Initialize our Trainer
ppo_trainer = PPOPeftTrainer(
ppo_trainer = CustomPPOTrainer(
model_args=model_args,
training_args=training_args,
finetuning_args=finetuning_args,
generating_args=generating_args,
callbacks=callbacks,
compute_dtype=model_args.compute_dtype,
callbacks=callbacks + [SavePeftModelCallback()],
config=ppo_config,
model=model,
ref_model=None,
@@ -79,7 +85,7 @@ def run_ppo(
# Training
if training_args.do_train:
ppo_trainer.ppo_train(max_target_length=data_args.max_target_length)
ppo_trainer.ppo_train()
ppo_trainer.save_model()
ppo_trainer.save_state() # must be called after save_model to have a folder
if ppo_trainer.is_world_process_zero() and model_args.plot_loss:

View File

@@ -1,13 +1,12 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/language-modeling/run_clm.py
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py
import math
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForLanguageModeling
from transformers import DataCollatorForLanguageModeling, Trainer
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.core.trainer import PeftTrainer
from llmtuner.tuner.core import generate_model_card, load_model_and_tokenizer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
@@ -27,8 +26,7 @@ def run_pt(
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Initialize our Trainer
trainer = PeftTrainer(
finetuning_args=finetuning_args,
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
@@ -40,10 +38,10 @@ def run_pt(
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
@@ -58,3 +56,10 @@ def run_pt(
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Create model card
if training_args.do_train:
if training_args.push_to_hub:
trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args))
else:
trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))

View File

@@ -2,9 +2,9 @@ import os
import json
import torch
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from transformers import Trainer
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.trainer import PeftTrainer
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
@@ -14,7 +14,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class PairwisePeftTrainer(PeftTrainer):
class PairwiseTrainer(Trainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
"""
@@ -32,21 +32,51 @@ class PairwisePeftTrainer(PeftTrainer):
r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
We use score on the EOS token to represent reward of the whole sentence.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
Subclass and override to inject custom behavior.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
batch_size = inputs["input_ids"].size(0) // 2
# Compute rewards
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
if values.size(0) != inputs["input_ids"].size(0): # adapt to chatglm2
values = torch.transpose(values, 0, 1)
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss
# Split the inputs and rewards into two parts, chosen and rejected
batch_size = inputs["input_ids"].size(0) // 2
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
chosen_scores, rejected_scores = [], []
# Compute pairwise loss. Only backprop on the different tokens before padding
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
loss = 0
for i in range(batch_size):
chosen_length = (chosen_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
rejected_length = (rejected_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
if len(check_divergence) == 0:
end_index = chosen_length
div_index = end_index - 1
else:
end_index = max(chosen_length, rejected_length)
div_index = check_divergence[0]
assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
if return_outputs: # use the score on the last token except pad token for inference
chosen_scores.append(chosen_rewards[i, chosen_length-1])
rejected_scores.append(rejected_rewards[i, rejected_length-1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
loss = loss / batch_size
if return_outputs:
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
return loss, [loss, chosen_scores, rejected_scores]
return loss
def save_predictions(
self,
@@ -62,11 +92,10 @@ class PairwisePeftTrainer(PeftTrainer):
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
acc_scores, rej_scores = predict_results.predictions
chosen_scores, rejected_scores = predict_results.predictions
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for acc_score, rej_score in zip(acc_scores, rej_scores):
res.append(json.dumps({"accept": round(float(acc_score), 2), "reject": round(float(rej_score), 2)}))
for c_score, r_score in zip(chosen_scores, rejected_scores):
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
writer.write("\n".join(res))

View File

@@ -1,18 +1,18 @@
# Inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from typing import TYPE_CHECKING, Optional, List
from transformers import Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.core import generate_model_card, load_model_and_tokenizer
from llmtuner.tuner.rm.metric import compute_accuracy
from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding
from llmtuner.tuner.rm.trainer import PairwisePeftTrainer
from llmtuner.tuner.rm.trainer import PairwiseTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
@@ -26,18 +26,20 @@ def run_rm(
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorWithPadding(tokenizer)
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=4)
training_args.remove_unused_columns = False # important for pairwise dataset
# Update arguments
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = PairwisePeftTrainer(
finetuning_args=finetuning_args,
trainer = PairwiseTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
callbacks=callbacks + [SavePeftModelCallback()],
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args)
)
@@ -45,10 +47,10 @@ def run_rm(
# Training
if training_args.do_train:
train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
@@ -64,3 +66,10 @@ def run_rm(
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
if training_args.do_train:
if training_args.push_to_hub:
trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args))
else:
trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))

View File

@@ -4,10 +4,10 @@ import torch
import numpy as np
import torch.nn as nn
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from transformers import Seq2SeqTrainer
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.trainer import PeftTrainer
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
@@ -16,7 +16,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class Seq2SeqPeftTrainer(PeftTrainer):
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
"""
@@ -33,49 +33,34 @@ class Seq2SeqPeftTrainer(PeftTrainer):
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len:
inputs["input_ids"] = self._pad_tensors_to_target_len(inputs["input_ids"], inputs["labels"])
if "attention_mask" in inputs:
inputs["attention_mask"] = self._pad_tensors_to_target_len(
inputs["attention_mask"], inputs["labels"], pad_token_id=0
)
if "position_ids" in inputs:
inputs["position_ids"] = self._pad_tensors_to_target_len(
inputs["position_ids"], inputs["labels"], pad_token_id=0
)
inputs["labels"] = inputs["labels"][:, :prompt_len] # truncate the labels instead of padding the inputs
loss, generated_tokens, labels = super().prediction_step(
loss, generated_tokens, _ = super().prediction_step(
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None:
generated_tokens[:, :max(prompt_len, label_len)] = (
self.tokenizer.pad_token_id * torch.ones_like(generated_tokens[:, :max(prompt_len, label_len)])
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(
self,
src_tensor: torch.Tensor,
tgt_tensor: torch.Tensor,
pad_token_id: Optional[int] = None
tgt_tensor: torch.Tensor
) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
Should only be called when predict_with_generate=True.
"""
if pad_token_id is None:
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
pad_token_id = self.tokenizer.pad_token_id
else:
raise ValueError("PAD token is required.")
padded_tensor = pad_token_id * torch.ones_like(tgt_tensor)
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory

View File

@@ -1,18 +1,18 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.misc import get_logits_processor
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.core import generate_model_card, load_model_and_tokenizer
from llmtuner.tuner.sft.metric import ComputeMetrics
from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer
from llmtuner.tuner.sft.trainer import CustomSeq2SeqTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
@@ -27,20 +27,26 @@ def run_sft(
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft")
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=4 if tokenizer.padding_side == "right" else None, # for shift short attention
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length if \
training_args.generation_max_length is not None else data_args.max_target_length
training_args.generation_num_beams = data_args.eval_num_beams if \
data_args.eval_num_beams is not None else training_args.generation_num_beams
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(
generation_max_length=training_args.generation_max_length or data_args.cutoff_len,
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams
))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = Seq2SeqPeftTrainer(
finetuning_args=finetuning_args,
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
@@ -52,17 +58,17 @@ def run_sft(
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = list(set([tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids))
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
@@ -82,3 +88,10 @@ def run_sft(
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
if training_args.do_train:
if training_args.push_to_hub:
trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args))
else:
trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))

View File

@@ -2,7 +2,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core import get_train_args, load_model_and_tokenizer
from llmtuner.tuner.core import get_train_args, get_infer_args, load_model_and_tokenizer
from llmtuner.tuner.pt import run_pt
from llmtuner.tuner.sft import run_sft
from llmtuner.tuner.rm import run_rm
@@ -17,29 +17,32 @@ logger = get_logger(__name__)
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
model_args, data_args, training_args, finetuning_args, generating_args, general_args = get_train_args(args)
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
callbacks = [LogCallback()] if callbacks is None else callbacks
if general_args.stage == "pt":
if finetuning_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif general_args.stage == "sft":
elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif general_args.stage == "rm":
elif finetuning_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
elif general_args.stage == "ppo":
elif finetuning_args.stage == "ppo":
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif general_args.stage == "dpo":
elif finetuning_args.stage == "dpo":
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
else:
raise ValueError("Unknown task.")
def export_model(args: Optional[Dict[str, Any]] = None, max_shard_size: Optional[str] = "10GB"):
model_args, _, training_args, finetuning_args, _, _ = get_train_args(args)
model_args, _, finetuning_args, _ = get_infer_args(args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
model.save_pretrained(training_args.output_dir, max_shard_size=max_shard_size)
model.config.use_cache = True
model.save_pretrained(model_args.export_dir, max_shard_size=max_shard_size)
try:
tokenizer.save_pretrained(training_args.output_dir)
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
tokenizer.save_pretrained(model_args.export_dir)
except:
logger.warning("Cannot save tokenizer, please copy the files manually.")

View File

@@ -1,97 +0,0 @@
import os
from typing import Any, Dict, List, Optional, Tuple
from llmtuner.chat.stream_chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.hparams import GeneratingArguments
from llmtuner.webui.common import get_model_path, get_save_dir
from llmtuner.webui.locales import ALERTS
class WebChatModel(ChatModel):
def __init__(self, args: Optional[Dict[str, Any]] = None, lazy_init: Optional[bool] = True) -> None:
if lazy_init:
self.model = None
self.tokenizer = None
self.generating_args = GeneratingArguments()
else:
super().__init__(args)
def load_model(
self,
lang: str,
model_name: str,
checkpoints: List[str],
finetuning_type: str,
quantization_bit: str,
template: str,
system_prompt: str
):
if self.model is not None:
yield ALERTS["err_exists"][lang]
return
if not model_name:
yield ALERTS["err_no_model"][lang]
return
model_name_or_path = get_model_path(model_name)
if not model_name_or_path:
yield ALERTS["err_no_path"][lang]
return
if checkpoints:
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
)
else:
checkpoint_dir = None
yield ALERTS["info_loading"][lang]
args = dict(
model_name_or_path=model_name_or_path,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit != "None" else None,
template=template,
system_prompt=system_prompt
)
super().__init__(args)
yield ALERTS["info_loaded"][lang]
def unload_model(self, lang: str):
yield ALERTS["info_unloading"][lang]
self.model = None
self.tokenizer = None
torch_gc()
yield ALERTS["info_unloaded"][lang]
def predict(
self,
chatbot: List[Tuple[str, str]],
query: str,
history: List[Tuple[str, str]],
system: str,
max_new_tokens: int,
top_p: float,
temperature: float
):
chatbot.append([query, ""])
response = ""
for new_text in self.stream_chat(
query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
):
response += new_text
response = self.postprocess(response)
new_history = history + [(query, response)]
chatbot[-1] = [query, response]
yield chatbot, new_history
def postprocess(self, response: str) -> str:
blocks = response.split("```")
for i, block in enumerate(blocks):
if i % 2 == 0:
blocks[i] = block.replace("<", "&lt;").replace(">", "&gt;")
return "```".join(blocks)

View File

@@ -0,0 +1,101 @@
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple
from llmtuner.chat.stream_chat import ChatModel
from llmtuner.extras.misc import torch_gc
from llmtuner.hparams import GeneratingArguments
from llmtuner.webui.common import get_save_dir
from llmtuner.webui.locales import ALERTS
if TYPE_CHECKING:
from llmtuner.webui.manager import Manager
class WebChatModel(ChatModel):
def __init__(self, manager: "Manager", lazy_init: Optional[bool] = True) -> None:
self.manager = manager
self.model = None
self.tokenizer = None
self.generating_args = GeneratingArguments()
if not lazy_init:
super().__init__()
@property
def loaded(self) -> bool:
return self.model is not None
def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
get = lambda name: data[self.manager.get_elem_by_name(name)]
lang = get("top.lang")
error = ""
if self.loaded:
error = ALERTS["err_exists"][lang]
elif not get("top.model_name"):
error = ALERTS["err_no_model"][lang]
elif not get("top.model_path"):
error = ALERTS["err_no_path"][lang]
if error:
gr.Warning(error)
yield error
return
if get("top.checkpoints"):
checkpoint_dir = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints")
])
else:
checkpoint_dir = None
yield ALERTS["info_loading"][lang]
args = dict(
model_name_or_path=get("top.model_path"),
checkpoint_dir=checkpoint_dir,
finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None
)
super().__init__(args)
yield ALERTS["info_loaded"][lang]
def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]:
lang = data[self.manager.get_elem_by_name("top.lang")]
yield ALERTS["info_unloading"][lang]
self.model = None
self.tokenizer = None
torch_gc()
yield ALERTS["info_unloaded"][lang]
def predict(
self,
chatbot: List[Tuple[str, str]],
query: str,
history: List[Tuple[str, str]],
system: str,
max_new_tokens: int,
top_p: float,
temperature: float
) -> Generator[Tuple[List[Tuple[str, str]], List[Tuple[str, str]]], None, None]:
chatbot.append([query, ""])
response = ""
for new_text in self.stream_chat(
query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
):
response += new_text
new_history = history + [(query, response)]
chatbot[-1] = [query, self.postprocess(response)]
yield chatbot, new_history
def postprocess(self, response: str) -> str:
blocks = response.split("```")
for i, block in enumerate(blocks):
if i % 2 == 0:
blocks[i] = block.replace("<", "&lt;").replace(">", "&gt;")
return "```".join(blocks)

View File

@@ -1,12 +1,17 @@
import json
import os
from typing import Any, Dict, Optional
import json
import gradio as gr
from peft.utils import WEIGHTS_NAME as PEFT_WEIGHTS_NAME
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from typing import Any, Dict, Optional
from transformers.utils import (
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
)
from llmtuner.extras.constants import DEFAULT_TEMPLATE, SUPPORTED_MODELS
from llmtuner.extras.constants import DEFAULT_MODULE, DEFAULT_TEMPLATE, SUPPORTED_MODELS, TRAINING_STAGES
DEFAULT_CACHE_DIR = "cache"
@@ -14,10 +19,18 @@ DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user.config"
DATA_CONFIG = "dataset_info.json"
CKPT_NAMES = [
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME
]
def get_save_dir(model_name: str) -> str:
return os.path.join(DEFAULT_SAVE_DIR, os.path.split(model_name)[-1])
def get_save_dir(*args) -> os.PathLike:
return os.path.join(DEFAULT_SAVE_DIR, *args)
def get_config_path() -> os.PathLike:
@@ -29,10 +42,10 @@ def load_config() -> Dict[str, Any]:
with open(get_config_path(), "r", encoding="utf-8") as f:
return json.load(f)
except:
return {"lang": "", "last_model": "", "path_dict": {}}
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
def save_config(lang: str, model_name: str, model_path: str) -> None:
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None:
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
user_config = load_config()
user_config["lang"] = lang or user_config["lang"]
@@ -45,26 +58,32 @@ def save_config(lang: str, model_name: str, model_path: str) -> None:
def get_model_path(model_name: str) -> str:
user_config = load_config()
return user_config["path_dict"].get(model_name, SUPPORTED_MODELS.get(model_name, ""))
return user_config["path_dict"].get(model_name, None) or SUPPORTED_MODELS.get(model_name, "")
def get_prefix(model_name: str) -> str:
return model_name.split("-")[0]
def get_module(model_name: str) -> str:
return DEFAULT_MODULE.get(get_prefix(model_name), "q_proj,v_proj")
def get_template(model_name: str) -> str:
if model_name.endswith("Chat") and model_name.split("-")[0] in DEFAULT_TEMPLATE:
return DEFAULT_TEMPLATE[model_name.split("-")[0]]
if model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE:
return DEFAULT_TEMPLATE[get_prefix(model_name)]
return "default"
def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]:
checkpoints = []
save_dir = os.path.join(get_save_dir(model_name), finetuning_type)
if model_name:
save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir):
for checkpoint in os.listdir(save_dir):
if (
os.path.isdir(os.path.join(save_dir, checkpoint))
and any([
os.path.isfile(os.path.join(save_dir, checkpoint, name))
for name in (WEIGHTS_NAME, WEIGHTS_INDEX_NAME, PEFT_WEIGHTS_NAME)
])
and any([os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CKPT_NAMES])
):
checkpoints.append(checkpoint)
return gr.update(value=[], choices=checkpoints)
@@ -75,9 +94,14 @@ def load_dataset_info(dataset_dir: str) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
return json.load(f)
except:
print("Cannot find {} in {}.".format(DATA_CONFIG, dataset_dir))
return {}
def list_dataset(dataset_dir: Optional[str] = None) -> Dict[str, Any]:
def list_dataset(
dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0]
) -> Dict[str, Any]:
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
return gr.update(value=[], choices=list(dataset_info.keys()))
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"]
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
return gr.update(value=[], choices=datasets)

View File

@@ -1,20 +1,19 @@
from typing import TYPE_CHECKING, Dict, Optional, Tuple
import gradio as gr
from typing import TYPE_CHECKING, Dict, Optional, Tuple
if TYPE_CHECKING:
from gradio.blocks import Block
from gradio.components import Component
from llmtuner.webui.chat import WebChatModel
from llmtuner.webui.engine import Engine
def create_chat_box(
chat_model: "WebChatModel",
engine: "Engine",
visible: Optional[bool] = False
) -> Tuple["Block", "Component", "Component", Dict[str, "Component"]]:
with gr.Box(visible=visible) as chat_box:
chatbot = gr.Chatbot()
history = gr.State([])
with gr.Row():
with gr.Column(scale=4):
system = gr.Textbox(show_label=False)
@@ -23,14 +22,13 @@ def create_chat_box(
with gr.Column(scale=1):
clear_btn = gr.Button()
max_new_tokens = gr.Slider(10, 2048, value=chat_model.generating_args.max_new_tokens, step=1)
top_p = gr.Slider(0.01, 1, value=chat_model.generating_args.top_p, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=chat_model.generating_args.temperature, step=0.01)
history = gr.State([])
gen_kwargs = engine.chatter.generating_args
max_new_tokens = gr.Slider(10, 2048, value=gen_kwargs.max_new_tokens, step=1)
top_p = gr.Slider(0.01, 1, value=gen_kwargs.top_p, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=gen_kwargs.temperature, step=0.01)
submit_btn.click(
chat_model.predict,
engine.chatter.predict,
[chatbot, query, history, system, max_new_tokens, top_p, temperature],
[chatbot, history],
show_progress=True

View File

@@ -1,21 +1,103 @@
import os
import json
import gradio as gr
from typing import TYPE_CHECKING, Tuple
from typing import TYPE_CHECKING, Any, Dict, Tuple
from llmtuner.webui.common import DATA_CONFIG
if TYPE_CHECKING:
from gradio.blocks import Block
from gradio.components import Component
def create_preview_box() -> Tuple["Block", "Component", "Component", "Component"]:
with gr.Box(visible=False, elem_classes="modal-box") as preview_box:
PAGE_SIZE = 2
def prev_page(page_index: int) -> int:
return page_index - 1 if page_index > 0 else page_index
def next_page(page_index: int, total_num: int) -> int:
return page_index + 1 if (page_index + 1) * PAGE_SIZE < total_num else page_index
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
if (
len(dataset) > 0
and "file_name" in dataset_info[dataset[0]]
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"]))
):
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def get_preview(dataset_dir: str, dataset: list, page_index: int) -> Tuple[int, list, Dict[str, Any]]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
data_file: str = dataset_info[dataset[0]]["file_name"]
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
if data_file.endswith(".json"):
data = json.load(f)
elif data_file.endswith(".jsonl"):
data = [json.loads(line) for line in f]
else:
data = [line for line in f]
return len(data), data[PAGE_SIZE * page_index : PAGE_SIZE * (page_index + 1)], gr.update(visible=True)
def create_preview_box(dataset_dir: "gr.Textbox", dataset: "gr.Dropdown") -> Dict[str, "Component"]:
data_preview_btn = gr.Button(interactive=False, scale=1)
with gr.Column(visible=False, elem_classes="modal-box") as preview_box:
with gr.Row():
preview_count = gr.Number(interactive=False)
preview_count = gr.Number(value=0, interactive=False, precision=0)
page_index = gr.Number(value=0, interactive=False, precision=0)
with gr.Row():
prev_btn = gr.Button()
next_btn = gr.Button()
close_btn = gr.Button()
with gr.Row():
preview_samples = gr.JSON(interactive=False)
close_btn = gr.Button()
dataset.change(
can_preview, [dataset_dir, dataset], [data_preview_btn], queue=False
).then(
lambda: 0, outputs=[page_index], queue=False
)
data_preview_btn.click(
get_preview,
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
)
prev_btn.click(
prev_page, [page_index], [page_index], queue=False
).then(
get_preview,
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
)
next_btn.click(
next_page, [page_index, preview_count], [page_index], queue=False
).then(
get_preview,
[dataset_dir, dataset, page_index],
[preview_count, preview_samples, preview_box],
queue=False
)
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False)
return preview_box, preview_count, preview_samples, close_btn
return dict(
data_preview_btn=data_preview_btn,
preview_count=preview_count,
page_index=page_index,
prev_btn=prev_btn,
next_btn=next_btn,
close_btn=close_btn,
preview_samples=preview_samples
)

View File

@@ -1,90 +1,70 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from typing import TYPE_CHECKING, Dict
from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR
from llmtuner.webui.components.data import create_preview_box
from llmtuner.webui.utils import can_preview, get_preview
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.runner import Runner
from llmtuner.webui.engine import Engine
def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_elems = create_preview_box(dataset_dir, dataset)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
dataset_dir.change(list_dataset, [dataset_dir], [dataset], queue=False)
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
[preview_count, preview_samples, preview_box],
queue=False
)
input_elems.update({dataset_dir, dataset})
elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
with gr.Row():
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
max_target_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
max_samples = gr.Textbox(value="100000")
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
predict = gr.Checkbox(value=True)
input_elems.update({cutoff_len, max_samples, batch_size, predict})
elem_dict.update(dict(
cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict
))
with gr.Row():
max_new_tokens = gr.Slider(10, 2048, value=128, step=1)
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01)
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01)
input_elems.update({max_new_tokens, top_p, temperature})
elem_dict.update(dict(
max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
))
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
stop_btn = gr.Button()
with gr.Row():
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
process_bar = gr.Slider(visible=False, interactive=False)
with gr.Box():
output_box = gr.Markdown()
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
dataset_dir,
dataset,
max_source_length,
max_target_length,
max_samples,
batch_size,
predict
]
output_elems = [output_box, process_bar]
elem_dict.update(dict(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn,
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box
))
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems)
start_btn.click(engine.runner.run_eval, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
resume_btn.change(engine.runner.monitor, outputs=output_elems)
cmd_preview_btn.click(runner.preview_eval, input_components, output_components)
start_btn.click(runner.run_eval, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
return dict(
dataset_dir=dataset_dir,
dataset=dataset,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
max_source_length=max_source_length,
max_target_length=max_target_length,
max_samples=max_samples,
batch_size=batch_size,
predict=predict,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_box=output_box
)
return elem_dict

View File

@@ -1,15 +1,56 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from typing import TYPE_CHECKING, Dict, Generator, List
from llmtuner.webui.utils import save_model
from llmtuner.tuner import export_model
from llmtuner.webui.common import get_save_dir
from llmtuner.webui.locales import ALERTS
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.engine import Engine
def create_export_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"]:
def save_model(
lang: str,
model_name: str,
model_path: str,
checkpoints: List[str],
finetuning_type: str,
template: str,
max_shard_size: int,
export_dir: str
) -> Generator[str, None, None]:
error = ""
if not model_name:
error = ALERTS["err_no_model"][lang]
elif not model_path:
error = ALERTS["err_no_path"][lang]
elif not checkpoints:
error = ALERTS["err_no_checkpoint"][lang]
elif not export_dir:
error = ALERTS["err_no_export_dir"][lang]
if error:
gr.Warning(error)
yield error
return
args = dict(
model_name_or_path=model_path,
checkpoint_dir=",".join([get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]),
finetuning_type=finetuning_type,
template=template,
export_dir=export_dir
)
yield ALERTS["info_exporting"][lang]
export_model(args, max_shard_size="{}GB".format(max_shard_size))
yield ALERTS["info_exported"][lang]
def create_export_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Row():
save_dir = gr.Textbox()
export_dir = gr.Textbox()
max_shard_size = gr.Slider(value=10, minimum=1, maximum=100)
export_btn = gr.Button()
@@ -18,19 +59,20 @@ def create_export_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component
export_btn.click(
save_model,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["template"],
engine.manager.get_elem_by_name("top.lang"),
engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.model_path"),
engine.manager.get_elem_by_name("top.checkpoints"),
engine.manager.get_elem_by_name("top.finetuning_type"),
engine.manager.get_elem_by_name("top.template"),
max_shard_size,
save_dir
export_dir
],
[info_box]
)
return dict(
save_dir=save_dir,
export_dir=export_dir,
max_shard_size=max_shard_size,
export_btn=export_btn,
info_box=info_box

View File

@@ -1,51 +1,39 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict
import gradio as gr
from llmtuner.webui.chat import WebChatModel
from llmtuner.webui.components.chatbot import create_chat_box
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.engine import Engine
def create_infer_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"]:
def create_infer_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
load_btn = gr.Button()
unload_btn = gr.Button()
info_box = gr.Textbox(show_label=False, interactive=False)
elem_dict.update(dict(load_btn=load_btn, unload_btn=unload_btn, info_box=info_box))
chat_model = WebChatModel()
chat_box, chatbot, history, chat_elems = create_chat_box(chat_model)
chat_box, chatbot, history, chat_elems = create_chat_box(engine, visible=False)
elem_dict.update(dict(chat_box=chat_box, **chat_elems))
load_btn.click(
chat_model.load_model,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"]
],
[info_box]
engine.chatter.load_model, input_elems, [info_box]
).then(
lambda: gr.update(visible=(chat_model.model is not None)), outputs=[chat_box]
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
unload_btn.click(
chat_model.unload_model, [top_elems["lang"]], [info_box]
engine.chatter.unload_model, input_elems, [info_box]
).then(
lambda: ([], []), outputs=[chatbot, history]
).then(
lambda: gr.update(visible=(chat_model.model is not None)), outputs=[chat_box]
lambda: gr.update(visible=engine.chatter.loaded), outputs=[chat_box]
)
return dict(
info_box=info_box,
load_btn=load_btn,
unload_btn=unload_btn,
**chat_elems
)
return elem_dict

View File

@@ -1,10 +1,9 @@
from typing import TYPE_CHECKING, Dict
import gradio as gr
from typing import TYPE_CHECKING, Dict
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
from llmtuner.extras.template import templates
from llmtuner.webui.common import list_checkpoint, get_model_path, get_template, save_config
from llmtuner.webui.common import get_model_path, get_template, list_checkpoint, save_config
from llmtuner.webui.utils import can_quantize
if TYPE_CHECKING:
@@ -26,26 +25,31 @@ def create_top() -> Dict[str, "Component"]:
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row():
quantization_bit = gr.Dropdown(choices=["None", "8", "4"], value="None", scale=1)
quantization_bit = gr.Dropdown(choices=["none", "8", "4"], value="none", scale=1)
template = gr.Dropdown(choices=list(templates.keys()), value="default", scale=1)
system_prompt = gr.Textbox(scale=2)
lang.change(save_config, [lang, model_name, model_path])
with gr.Accordion(label="Model config (LLaMA only)", open=False) as llama_tab:
with gr.Row():
with gr.Column():
flash_attn = gr.Checkbox(value=False)
shift_attn = gr.Checkbox(value=False)
rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none")
model_name.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
).then(
get_model_path, [model_name], [model_path]
get_model_path, [model_name], [model_path], queue=False
).then(
get_template, [model_name], [template]
get_template, [model_name], [template], queue=False
) # do not save config since the below line will save
model_path.change(save_config, [lang, model_name, model_path])
model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False)
finetuning_type.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
).then(
can_quantize, [finetuning_type], [quantization_bit]
can_quantize, [finetuning_type], [quantization_bit], queue=False
)
refresh_btn.click(
@@ -62,5 +66,9 @@ def create_top() -> Dict[str, "Component"]:
advanced_tab=advanced_tab,
quantization_bit=quantization_bit,
template=template,
system_prompt=system_prompt
system_prompt=system_prompt,
llama_tab=llama_tab,
flash_attn=flash_attn,
shift_attn=shift_attn,
rope_scaling=rope_scaling
)

View File

@@ -1,42 +1,49 @@
import gradio as gr
from typing import TYPE_CHECKING, Dict
from transformers.trainer_utils import SchedulerType
import gradio as gr
from llmtuner.extras.constants import STAGES
from llmtuner.extras.constants import TRAINING_STAGES
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR
from llmtuner.webui.components.data import create_preview_box
from llmtuner.webui.utils import can_preview, get_preview, gen_plot
from llmtuner.webui.utils import gen_plot
if TYPE_CHECKING:
from gradio.components import Component
from llmtuner.webui.runner import Runner
from llmtuner.webui.engine import Engine
def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
input_elems = engine.manager.get_base_elems()
elem_dict = dict()
with gr.Row():
training_stage = gr.Dropdown(choices=STAGES, value=STAGES[0], scale=2)
training_stage = gr.Dropdown(
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
)
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_elems = create_preview_box(dataset_dir, dataset)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
[preview_count, preview_samples, preview_box],
queue=False
)
input_elems.update({training_stage, dataset_dir, dataset})
elem_dict.update(dict(
training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems
))
with gr.Row():
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
max_target_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
learning_rate = gr.Textbox(value="5e-5")
num_train_epochs = gr.Textbox(value="3.0")
max_samples = gr.Textbox(value="100000")
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
elem_dict.update(dict(
cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs,
max_samples=max_samples, compute_type=compute_type
))
with gr.Row():
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
@@ -47,34 +54,59 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
max_grad_norm = gr.Textbox(value="1.0")
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
elem_dict.update(dict(
batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size
))
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row():
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
padding_side = gr.Radio(choices=["left", "right"], value="left")
neft_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)
with gr.Column():
train_on_prompt = gr.Checkbox(value=False)
upcast_layernorm = gr.Checkbox(value=False)
input_elems.update({logging_steps, save_steps, warmup_steps, neft_alpha, train_on_prompt, upcast_layernorm})
elem_dict.update(dict(
advanced_tab=advanced_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps,
neft_alpha=neft_alpha, train_on_prompt=train_on_prompt, upcast_layernorm=upcast_layernorm
))
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
with gr.Row():
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
lora_target = gr.Textbox(scale=2)
lora_target = gr.Textbox(scale=1)
additional_target = gr.Textbox(scale=1)
resume_lora_training = gr.Checkbox(value=True, scale=1)
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, resume_lora_training})
elem_dict.update(dict(
lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target,
additional_target=additional_target, resume_lora_training=resume_lora_training,
))
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=2)
reward_model = gr.Dropdown(scale=2)
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
reward_model = gr.Dropdown(scale=3)
refresh_btn = gr.Button(scale=1)
refresh_btn.click(
list_checkpoint,
[top_elems["model_name"], top_elems["finetuning_type"]],
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
[reward_model],
queue=False
)
input_elems.update({dpo_beta, reward_model})
elem_dict.update(dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, reward_model=reward_model, refresh_btn=refresh_btn))
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
@@ -86,6 +118,7 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
output_dir = gr.Textbox()
with gr.Row():
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
process_bar = gr.Slider(visible=False, interactive=False)
with gr.Box():
@@ -94,91 +127,28 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
with gr.Column(scale=1):
loss_viewer = gr.Plot()
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
training_stage,
dataset_dir,
dataset,
max_source_length,
max_target_length,
learning_rate,
num_train_epochs,
max_samples,
batch_size,
gradient_accumulation_steps,
lr_scheduler_type,
max_grad_norm,
val_size,
logging_steps,
save_steps,
warmup_steps,
compute_type,
padding_side,
lora_rank,
lora_dropout,
lora_target,
resume_lora_training,
dpo_beta,
reward_model,
input_elems.add(output_dir)
output_elems = [output_box, process_bar]
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort, queue=False)
resume_btn.change(engine.runner.monitor, outputs=output_elems)
elem_dict.update(dict(
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir,
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box, loss_viewer=loss_viewer
))
output_box.change(
gen_plot,
[
engine.manager.get_elem_by_name("top.model_name"),
engine.manager.get_elem_by_name("top.finetuning_type"),
output_dir
]
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(runner.preview_train, input_components, output_components)
start_btn.click(runner.run_train, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
process_bar.change(
gen_plot, [top_elems["model_name"], top_elems["finetuning_type"], output_dir], loss_viewer, queue=False
],
loss_viewer,
queue=False
)
return dict(
training_stage=training_stage,
dataset_dir=dataset_dir,
dataset=dataset,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
max_source_length=max_source_length,
max_target_length=max_target_length,
learning_rate=learning_rate,
num_train_epochs=num_train_epochs,
max_samples=max_samples,
batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type,
max_grad_norm=max_grad_norm,
val_size=val_size,
advanced_tab=advanced_tab,
logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
compute_type=compute_type,
padding_side=padding_side,
lora_tab=lora_tab,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target,
resume_lora_training=resume_lora_training,
rlhf_tab=rlhf_tab,
dpo_beta=dpo_beta,
reward_model=reward_model,
refresh_btn=refresh_btn,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_dir=output_dir,
output_box=output_box,
loss_viewer=loss_viewer
)
return elem_dict

View File

@@ -6,10 +6,12 @@ CSS = r"""
transform: translate(-50%, -50%); /* center horizontally */
max-width: 1000px;
max-height: 750px;
overflow-y: scroll !important;
overflow-y: auto;
background-color: var(--input-background-fill);
flex-wrap: nowrap !important;
border: 2px solid black !important;
z-index: 1000;
padding: 10px;
}
.dark .modal-box {

View File

@@ -0,0 +1,57 @@
import gradio as gr
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import Any, Dict, Generator, Optional
from llmtuner.webui.chatter import WebChatModel
from llmtuner.webui.common import get_model_path, list_dataset, load_config
from llmtuner.webui.locales import LOCALES
from llmtuner.webui.manager import Manager
from llmtuner.webui.runner import Runner
from llmtuner.webui.utils import get_time
class Engine:
def __init__(self, pure_chat: Optional[bool] = False) -> None:
self.pure_chat = pure_chat
self.manager: "Manager" = Manager()
self.runner: "Runner" = Runner(self.manager)
self.chatter: "WebChatModel" = WebChatModel(manager=self.manager, lazy_init=(not pure_chat))
def _form_dict(self, resume_dict: Dict[str, Dict[str, Any]]):
return {self.manager.get_elem_by_name(k): gr.update(**v) for k, v in resume_dict.items()}
def resume(self) -> Generator[Dict[Component, Dict[str, Any]], None, None]:
user_config = load_config()
lang = user_config.get("lang", None) or "en"
init_dict = {
"top.lang": {"value": lang},
"infer.chat_box": {"visible": self.chatter.loaded}
}
if not self.pure_chat:
init_dict["train.dataset"] = {"choices": list_dataset()["choices"]}
init_dict["eval.dataset"] = {"choices": list_dataset()["choices"]}
if user_config.get("last_model", None):
init_dict["top.model_name"] = {"value": user_config["last_model"]}
init_dict["top.model_path"] = {"value": get_model_path(user_config["last_model"])}
yield self._form_dict(init_dict)
if not self.pure_chat:
if self.runner.alive:
yield {elem: gr.update(value=value) for elem, value in self.runner.running_data.items()}
if self.runner.do_train:
yield self._form_dict({"train.resume_btn": {"value": True}})
else:
yield self._form_dict({"eval.resume_btn": {"value": True}})
else:
yield self._form_dict({"train.output_dir": {"value": get_time()}})
def change_lang(self, lang: str) -> Dict[Component, Dict[str, Any]]:
return {
component: gr.update(**LOCALES[name][lang])
for elems in self.manager.all_elems.values() for name, component in elems.items() if name in LOCALES
}

View File

@@ -9,65 +9,53 @@ from llmtuner.webui.components import (
create_export_tab,
create_chat_box
)
from llmtuner.webui.chat import WebChatModel
from llmtuner.webui.common import save_config
from llmtuner.webui.css import CSS
from llmtuner.webui.manager import Manager
from llmtuner.webui.runner import Runner
from llmtuner.webui.engine import Engine
require_version("gradio>=3.36.0", "To fix: pip install gradio>=3.36.0")
require_version("gradio>=3.38.0,<4.0.0", "To fix: pip install \"gradio>=3.38.0,<4.0.0\"")
def create_ui() -> gr.Blocks:
runner = Runner()
engine = Engine(pure_chat=False)
with gr.Blocks(title="Web Tuner", css=CSS) as demo:
top_elems = create_top()
with gr.Blocks(title="LLaMA Board", css=CSS) as demo:
engine.manager.all_elems["top"] = create_top()
lang: "gr.Dropdown" = engine.manager.get_elem_by_name("top.lang")
with gr.Tab("Train"):
train_elems = create_train_tab(top_elems, runner)
engine.manager.all_elems["train"] = create_train_tab(engine)
with gr.Tab("Evaluate"):
eval_elems = create_eval_tab(top_elems, runner)
engine.manager.all_elems["eval"] = create_eval_tab(engine)
with gr.Tab("Chat"):
infer_elems = create_infer_tab(top_elems)
engine.manager.all_elems["infer"] = create_infer_tab(engine)
with gr.Tab("Export"):
export_elems = create_export_tab(top_elems)
engine.manager.all_elems["export"] = create_export_tab(engine)
elem_list = [top_elems, train_elems, eval_elems, infer_elems, export_elems]
manager = Manager(elem_list)
demo.load(
manager.gen_label,
[top_elems["lang"]],
[elem for elems in elem_list for elem in elems.values()],
)
top_elems["lang"].change(
manager.gen_label,
[top_elems["lang"]],
[elem for elems in elem_list for elem in elems.values()],
queue=False
)
demo.load(engine.resume, outputs=engine.manager.list_elems())
lang.change(engine.change_lang, [lang], engine.manager.list_elems(), queue=False)
lang.input(save_config, inputs=[lang], queue=False)
return demo
def create_web_demo() -> gr.Blocks:
chat_model = WebChatModel(lazy_init=False)
engine = Engine(pure_chat=True)
with gr.Blocks(title="Web Demo", css=CSS) as demo:
lang = gr.Dropdown(choices=["en", "zh"])
engine.manager.all_elems["top"] = dict(lang=lang)
_, _, _, chat_elems = create_chat_box(chat_model, visible=True)
chat_box, _, _, chat_elems = create_chat_box(engine, visible=True)
engine.manager.all_elems["infer"] = dict(chat_box=chat_box, **chat_elems)
manager = Manager([{"lang": lang}, chat_elems])
demo.load(manager.gen_label, [lang], [lang] + list(chat_elems.values()))
lang.select(manager.gen_label, [lang], [lang] + list(chat_elems.values()), queue=False)
demo.load(engine.resume, outputs=engine.manager.list_elems())
lang.change(engine.change_lang, [lang], engine.manager.list_elems(), queue=False)
lang.input(save_config, inputs=[lang], queue=False)
return demo

View File

@@ -59,12 +59,12 @@ LOCALES = {
},
"quantization_bit": {
"en": {
"label": "Quantization bit (optional)",
"info": "Enable 4/8-bit model quantization."
"label": "Quantization bit",
"info": "Enable 4/8-bit model quantization (QLoRA)."
},
"zh": {
"label": "量化等级(非必填)",
"info": "启用 4/8 比特模型量化。"
"label": "量化等级",
"info": "启用 4/8 比特模型量化QLoRA"
}
},
"template": {
@@ -87,6 +87,38 @@ LOCALES = {
"info": "默认使用的系统提示词"
}
},
"llama_tab": {
"en": {
"label": "Model configurations (LLaMA only)"
},
"zh": {
"label": "模型设置仅LLaMA"
}
},
"flash_attn": {
"en": {
"label": "Use FlashAttention-2"
},
"zh": {
"label": "使用 FlashAttention-2"
}
},
"shift_attn": {
"en": {
"label": "Use shift short attention (S^2-Attn)"
},
"zh": {
"label": "使用 shift short attention (S^2-Attn)"
}
},
"rope_scaling": {
"en": {
"label": "RoPE scaling"
},
"zh": {
"label": "RoPE 插值方法"
}
},
"training_stage": {
"en": {
"label": "Stage",
@@ -131,12 +163,28 @@ LOCALES = {
"label": "数量"
}
},
"preview_samples": {
"page_index": {
"en": {
"label": "Samples"
"label": "Page"
},
"zh": {
"label": "样例"
"label": "页数"
}
},
"prev_btn": {
"en": {
"value": "Prev"
},
"zh": {
"value": "上一页"
}
},
"next_btn": {
"en": {
"value": "Next"
},
"zh": {
"value": "下一页"
}
},
"close_btn": {
@@ -147,24 +195,22 @@ LOCALES = {
"value": "关闭"
}
},
"max_source_length": {
"preview_samples": {
"en": {
"label": "Max source length",
"info": "Max tokens in source sequence."
"label": "Samples"
},
"zh": {
"label": "输入序列最大长度",
"info": "输入序列分词后的最大长度。"
"label": "样例"
}
},
"max_target_length": {
"cutoff_len": {
"en": {
"label": "Max target length",
"info": "Max tokens in target sequence."
"label": "Cutoff length",
"info": "Max tokens in input sequence."
},
"zh": {
"label": "输出序列最大长度",
"info": "序列分词后的最大长度。"
"label": "截断长度",
"info": "序列分词后的最大长度。"
}
},
"learning_rate": {
@@ -197,6 +243,16 @@ LOCALES = {
"info": "每个数据集最多使用的样本数。"
}
},
"compute_type": {
"en": {
"label": "Compute type",
"info": "Whether to use fp16 or bf16 mixed precision training."
},
"zh": {
"label": "计算类型",
"info": "是否启用 FP16 或 BF16 混合精度训练。"
}
},
"batch_size": {
"en": {
"label": "Batch size",
@@ -277,24 +333,34 @@ LOCALES = {
"info": "学习率预热采用的步数。"
}
},
"compute_type": {
"neft_alpha": {
"en": {
"label": "Compute type",
"info": "Whether to use fp16 or bf16 mixed precision training."
"label": "NEFTune Alpha",
"info": "Magnitude of noise adding to embedding vectors."
},
"zh": {
"label": "计算类型",
"info": "是否启用 FP16 或 BF16 混合精度训练"
"label": "NEFTune 噪声参数",
"info": "嵌入向量所添加的噪声大小"
}
},
"padding_side": {
"train_on_prompt": {
"en": {
"label": "Padding side",
"info": "The side on which the model should have padding applied."
"label": "Train on prompt",
"info": "Compute loss on the prompt tokens in supervised fine-tuning."
},
"zh": {
"label": "填充位置",
"info": "使用左填充或右填充"
"label": "计算输入损失",
"info": "在监督微调时候计算输入序列的损失"
}
},
"upcast_layernorm": {
"en": {
"label": "Upcast LayerNorm",
"info": "Upcast weights of layernorm in float32."
},
"zh": {
"label": "缩放归一化层",
"info": "将归一化层权重缩放至 32 位浮点数。"
}
},
"lora_tab": {
@@ -328,11 +394,21 @@ LOCALES = {
"lora_target": {
"en": {
"label": "LoRA modules (optional)",
"info": "The name(s) of target modules to apply LoRA. Use commas to separate multiple modules."
"info": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules."
},
"zh": {
"label": "LoRA 作用(非必填)",
"info": "应用 LoRA 的线性层名称。使用英文逗号分隔多个名称。"
"label": "LoRA 作用模块(非必填)",
"info": "应用 LoRA 的目标模块名称。使用英文逗号分隔多个名称。"
}
},
"additional_target": {
"en": {
"label": "Additional modules (optional)",
"info": "Name(s) of modules apart from LoRA layers to be set as trainable. Use commas to separate multiple modules."
},
"zh": {
"label": "附加模块(非必填)",
"info": "除 LoRA 层以外的可训练模块名称。使用英文逗号分隔多个名称。"
}
},
"resume_lora_training": {
@@ -366,11 +442,11 @@ LOCALES = {
"reward_model": {
"en": {
"label": "Reward model",
"info": "Checkpoint of the reward model for PPO training."
"info": "Checkpoint of the reward model for PPO training. (Needs to refresh checkpoints)"
},
"zh": {
"label": "奖励模型",
"info": "PPO 训练中奖励模型的断点路径。"
"info": "PPO 训练中奖励模型的断点路径。(需要刷新断点)"
}
},
"cmd_preview_btn": {
@@ -519,7 +595,7 @@ LOCALES = {
"label": "温度系数"
}
},
"save_dir": {
"export_dir": {
"en": {
"label": "Export dir",
"info": "Directory to save exported model."
@@ -575,7 +651,7 @@ ALERTS = {
"en": "Please select a checkpoint.",
"zh": "请选择断点。"
},
"err_no_save_dir": {
"err_no_export_dir": {
"en": "Please provide export dir.",
"zh": "请填写导出目录"
},

View File

@@ -1,43 +1,35 @@
import gradio as gr
from gradio.components import Component
from typing import Any, Dict, List
from typing import TYPE_CHECKING, Dict, List, Set
from llmtuner.webui.common import get_model_path, list_dataset, load_config
from llmtuner.webui.locales import LOCALES
from llmtuner.webui.utils import get_time
if TYPE_CHECKING:
from gradio.components import Component
class Manager:
def __init__(self, elem_list: List[Dict[str, Component]]):
self.elem_list = elem_list
def __init__(self) -> None:
self.all_elems: Dict[str, Dict[str, "Component"]] = {}
def gen_refresh(self, lang: str) -> Dict[str, Any]:
refresh_dict = {
"dataset": {"choices": list_dataset()["choices"]},
"output_dir": {"value": get_time()}
def get_elem_by_name(self, name: str) -> "Component":
r"""
Example: top.lang, train.dataset
"""
tab_name, elem_name = name.split(".")
return self.all_elems[tab_name][elem_name]
def get_base_elems(self) -> Set["Component"]:
return {
self.all_elems["top"]["lang"],
self.all_elems["top"]["model_name"],
self.all_elems["top"]["model_path"],
self.all_elems["top"]["checkpoints"],
self.all_elems["top"]["finetuning_type"],
self.all_elems["top"]["quantization_bit"],
self.all_elems["top"]["template"],
self.all_elems["top"]["system_prompt"],
self.all_elems["top"]["flash_attn"],
self.all_elems["top"]["shift_attn"],
self.all_elems["top"]["rope_scaling"]
}
user_config = load_config()
if lang:
refresh_dict["lang"] = {"value": lang}
else:
refresh_dict["lang"] = {"value": user_config["lang"] if user_config["lang"] else "en"}
if user_config["last_model"]:
refresh_dict["model_name"] = {"value": user_config["last_model"]}
refresh_dict["model_path"] = {"value": get_model_path(user_config["last_model"])}
return refresh_dict
def gen_label(self, lang: str) -> Dict[Component, Dict[str, Any]]: # cannot use TYPE_CHECKING
update_dict = {}
refresh_dict = self.gen_refresh(lang)
for elems in self.elem_list:
for name, component in elems.items():
update_dict[component] = gr.update(
**LOCALES[name][refresh_dict["lang"]["value"]], **refresh_dict.get(name, {})
)
return update_dict
def list_elems(self) -> List["Component"]:
return [elem for elems in self.all_elems.values() for elem in elems.values()]

View File

@@ -1,46 +1,65 @@
import gradio as gr
import logging
import os
import threading
import time
import logging
import gradio as gr
from threading import Thread
from gradio.components import Component # cannot use TYPE_CHECKING here
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Tuple
import transformers
from transformers.trainer import TRAINING_ARGS_NAME
from typing import Any, Dict, Generator, List, Tuple
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.constants import DEFAULT_MODULE
from llmtuner.extras.constants import TRAINING_STAGES
from llmtuner.extras.logging import LoggerHandler
from llmtuner.extras.misc import torch_gc
from llmtuner.tuner import run_exp
from llmtuner.webui.common import get_model_path, get_save_dir
from llmtuner.webui.common import get_module, get_save_dir, load_config
from llmtuner.webui.locales import ALERTS
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar
if TYPE_CHECKING:
from llmtuner.webui.manager import Manager
class Runner:
def __init__(self):
def __init__(self, manager: "Manager") -> None:
self.manager = manager
""" Resume """
self.thread: "Thread" = None
self.do_train = True
self.running_data: Dict["Component", Any] = None
self.monitor_inputs: Dict[str, str] = None
""" State """
self.aborted = False
self.running = False
""" Handler """
self.logger_handler = LoggerHandler()
self.logger_handler.setLevel(logging.INFO)
logging.root.addHandler(self.logger_handler)
transformers.logging.add_handler(self.logger_handler)
def set_abort(self):
@property
def alive(self) -> bool:
return self.thread is not None
def set_abort(self) -> None:
self.aborted = True
self.running = False
def _initialize(
self, lang: str, model_name: str, dataset: List[str]
) -> str:
def _initialize(self, data: Dict[Component, Any], do_train: bool) -> str:
get = lambda name: data[self.manager.get_elem_by_name(name)]
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
dataset = get("train.dataset") if do_train else get("eval.dataset")
if self.running:
return ALERTS["err_conflict"][lang]
if not model_name:
return ALERTS["err_no_model"][lang]
if not get_model_path(model_name):
if not model_path:
return ALERTS["err_no_path"][lang]
if len(dataset) == 0:
@@ -51,9 +70,8 @@ class Runner:
self.trainer_callback = LogCallback(self)
return ""
def _finalize(
self, lang: str, finish_info: str
) -> str:
def _finalize(self, lang: str, finish_info: str) -> str:
self.thread = None
self.running = False
torch_gc()
if self.aborted:
@@ -61,220 +79,173 @@ class Runner:
else:
return finish_info
def _parse_train_args(
self,
lang: str,
model_name: str,
checkpoints: List[str],
finetuning_type: str,
quantization_bit: str,
template: str,
system_prompt: str,
training_stage: str,
dataset_dir: str,
dataset: List[str],
max_source_length: int,
max_target_length: int,
learning_rate: str,
num_train_epochs: str,
max_samples: str,
batch_size: int,
gradient_accumulation_steps: int,
lr_scheduler_type: str,
max_grad_norm: str,
val_size: float,
logging_steps: int,
save_steps: int,
warmup_steps: int,
compute_type: str,
padding_side: str,
lora_rank: int,
lora_dropout: float,
lora_target: str,
resume_lora_training: bool,
dpo_beta: float,
reward_model: str,
output_dir: str
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
if checkpoints:
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, ckpt) for ckpt in checkpoints]
)
def _parse_train_args(self, data: Dict[Component, Any]) -> Dict[str, Any]:
get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config()
if get("top.checkpoints"):
checkpoint_dir = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints")
])
else:
checkpoint_dir = None
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
args = dict(
stage="sft",
model_name_or_path=get_model_path(model_name),
stage=TRAINING_STAGES[get("train.training_stage")],
model_name_or_path=get("top.model_path"),
do_train=True,
overwrite_cache=True,
cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit != "None" else None,
template=template,
system_prompt=system_prompt,
dataset_dir=dataset_dir,
dataset=",".join(dataset),
max_source_length=max_source_length,
max_target_length=max_target_length,
learning_rate=float(learning_rate),
num_train_epochs=float(num_train_epochs),
max_samples=int(max_samples),
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
lr_scheduler_type=lr_scheduler_type,
max_grad_norm=float(max_grad_norm),
logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
padding_side=padding_side,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target or DEFAULT_MODULE.get(model_name.split("-")[0], "q_proj,v_proj"),
resume_lora_training=resume_lora_training,
output_dir=output_dir
finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
dataset_dir=get("train.dataset_dir"),
dataset=",".join(get("train.dataset")),
cutoff_len=get("train.cutoff_len"),
learning_rate=float(get("train.learning_rate")),
num_train_epochs=float(get("train.num_train_epochs")),
max_samples=int(get("train.max_samples")),
per_device_train_batch_size=get("train.batch_size"),
gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
lr_scheduler_type=get("train.lr_scheduler_type"),
max_grad_norm=float(get("train.max_grad_norm")),
logging_steps=get("train.logging_steps"),
save_steps=get("train.save_steps"),
warmup_steps=get("train.warmup_steps"),
neft_alpha=get("train.neft_alpha"),
train_on_prompt=get("train.train_on_prompt"),
upcast_layernorm=get("train.upcast_layernorm"),
lora_rank=get("train.lora_rank"),
lora_dropout=get("train.lora_dropout"),
lora_target=get("train.lora_target") or get_module(get("top.model_name")),
additional_target=get("train.additional_target") if get("train.additional_target") else None,
resume_lora_training=get("train.resume_lora_training"),
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir"))
)
args[compute_type] = True
args[get("train.compute_type")] = True
args["disable_tqdm"] = True
if training_stage == "Reward Modeling":
args["stage"] = "rm"
args["resume_lora_training"] = False
elif training_stage == "PPO":
args["stage"] = "ppo"
args["resume_lora_training"] = False
args["reward_model"] = reward_model
args["padding_side"] = "left"
val_size = 0
elif training_stage == "DPO":
args["stage"] = "dpo"
args["resume_lora_training"] = False
args["dpo_beta"] = dpo_beta
elif training_stage == "Pre-Training":
args["stage"] = "pt"
if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]:
args["resume_lora_training"] = (args["quantization_bit"] is not None)
if val_size > 1e-6:
args["val_size"] = val_size
if args["quantization_bit"] is not None:
args["upcast_layernorm"] = True
if args["stage"] == "ppo":
args["reward_model"] = get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.reward_model"))
if args["stage"] == "dpo":
args["dpo_beta"] = get("train.dpo_beta")
if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
args["val_size"] = get("train.val_size")
args["evaluation_strategy"] = "steps"
args["eval_steps"] = save_steps
args["eval_steps"] = get("train.save_steps")
args["load_best_model_at_end"] = True
return lang, model_name, dataset, output_dir, args
return args
def _parse_eval_args(
self,
lang: str,
model_name: str,
checkpoints: List[str],
finetuning_type: str,
quantization_bit: str,
template: str,
system_prompt: str,
dataset_dir: str,
dataset: List[str],
max_source_length: int,
max_target_length: int,
max_samples: str,
batch_size: int,
predict: bool
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
if checkpoints:
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
def _parse_eval_args(self, data: Dict[Component, Any]) -> Dict[str, Any]:
get = lambda name: data[self.manager.get_elem_by_name(name)]
user_config = load_config()
if get("top.checkpoints"):
checkpoint_dir = ",".join([
get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints")
])
output_dir = get_save_dir(
get("top.model_name"), get("top.finetuning_type"), "eval_" + "_".join(get("top.checkpoints"))
)
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_" + "_".join(checkpoints))
else:
checkpoint_dir = None
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_base")
output_dir = get_save_dir(get("top.model_name"), get("top.finetuning_type"), "eval_base")
args = dict(
stage="sft",
model_name_or_path=get_model_path(model_name),
model_name_or_path=get("top.model_path"),
do_eval=True,
overwrite_cache=True,
predict_with_generate=True,
cache_dir=user_config.get("cache_dir", None),
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit != "None" else None,
template=template,
system_prompt=system_prompt,
dataset_dir=dataset_dir,
dataset=",".join(dataset),
max_source_length=max_source_length,
max_target_length=max_target_length,
max_samples=int(max_samples),
per_device_eval_batch_size=batch_size,
finetuning_type=get("top.finetuning_type"),
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
template=get("top.template"),
system_prompt=get("top.system_prompt"),
flash_attn=get("top.flash_attn"),
shift_attn=get("top.shift_attn"),
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
dataset_dir=get("eval.dataset_dir"),
dataset=",".join(get("eval.dataset")),
cutoff_len=get("eval.cutoff_len"),
max_samples=int(get("eval.max_samples")),
per_device_eval_batch_size=get("eval.batch_size"),
max_new_tokens=get("eval.max_new_tokens"),
top_p=get("eval.top_p"),
temperature=get("eval.temperature"),
output_dir=output_dir
)
if predict:
if get("eval.predict"):
args.pop("do_eval", None)
args["do_predict"] = True
return lang, model_name, dataset, output_dir, args
return args
def preview_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, _, args = self._parse_train_args(*args)
error = self._initialize(lang, model_name, dataset)
def _preview(self, data: Dict[Component, Any], do_train: bool) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
error = self._initialize(data, do_train)
if error:
gr.Warning(error)
yield error, gr.update(visible=False)
else:
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
yield gen_cmd(args), gr.update(visible=False)
def preview_eval(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, _, args = self._parse_eval_args(*args)
error = self._initialize(lang, model_name, dataset)
def _launch(self, data: Dict[Component, Any], do_train: bool) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
error = self._initialize(data, do_train)
if error:
gr.Warning(error)
yield error, gr.update(visible=False)
else:
yield gen_cmd(args), gr.update(visible=False)
def run_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, output_dir, args = self._parse_train_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
self.running = True
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
thread.start()
self.running = True
self.do_train, self.running_data = do_train, data
self.monitor_inputs = dict(lang=data[self.manager.get_elem_by_name("top.lang")], output_dir=args["output_dir"])
self.thread = Thread(target=run_exp, kwargs=run_kwargs)
self.thread.start()
yield from self.monitor()
while thread.is_alive():
def preview_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
yield from self._preview(data, do_train=True)
def preview_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
yield from self._preview(data, do_train=False)
def run_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
yield from self._launch(data, do_train=True)
def run_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
yield from self._launch(data, do_train=False)
def monitor(self) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, output_dir = self.monitor_inputs["lang"], self.monitor_inputs["output_dir"]
while self.thread.is_alive():
time.sleep(2)
if self.aborted:
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
else:
yield self.logger_handler.log, update_process_bar(self.trainer_callback)
if self.do_train:
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
finish_info = ALERTS["info_finished"][lang]
else:
finish_info = ALERTS["err_failed"][lang]
yield self._finalize(lang, finish_info), gr.update(visible=False)
def run_eval(self, *args) -> Generator[str, None, None]:
lang, model_name, dataset, output_dir, args = self._parse_eval_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
self.running = True
run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
thread.start()
while thread.is_alive():
time.sleep(2)
if self.aborted:
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
else:
yield self.logger_handler.log, update_process_bar(self.trainer_callback)
if os.path.exists(os.path.join(output_dir, "all_results.json")):
finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
else:

View File

@@ -3,13 +3,11 @@ import json
import gradio as gr
import matplotlib.figure
import matplotlib.pyplot as plt
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Tuple
from typing import TYPE_CHECKING, Any, Dict
from datetime import datetime
from llmtuner.extras.ploting import smooth
from llmtuner.tuner import export_model
from llmtuner.webui.common import get_model_path, get_save_dir, DATA_CONFIG
from llmtuner.webui.locales import ALERTS
from llmtuner.webui.common import get_save_dir
if TYPE_CHECKING:
from llmtuner.extras.callbacks import LogCallback
@@ -33,39 +31,17 @@ def get_time() -> str:
return datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
if (
len(dataset) > 0
and "file_name" in dataset_info[dataset[0]]
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"]))
):
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def get_preview(dataset_dir: str, dataset: list) -> Tuple[int, list, Dict[str, Any]]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
data_file = dataset_info[dataset[0]]["file_name"]
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
data = json.load(f)
return len(data), data[:2], gr.update(visible=True)
def can_quantize(finetuning_type: str) -> Dict[str, Any]:
if finetuning_type != "lora":
return gr.update(value="", interactive=False)
return gr.update(value="None", interactive=False)
else:
return gr.update(interactive=True)
def gen_cmd(args: Dict[str, Any]) -> str:
if args.get("do_train", None):
args["plot_loss"] = True
cmd_lines = ["CUDA_VISIBLE_DEVICES=0 python "]
args.pop("disable_tqdm", None)
args["plot_loss"] = args.get("do_train", None)
cmd_lines = ["CUDA_VISIBLE_DEVICES=0 python src/train_bash.py "]
for k, v in args.items():
if v is not None and v != "":
cmd_lines.append(" --{} {} ".format(k, str(v)))
@@ -81,9 +57,11 @@ def get_eval_results(path: os.PathLike) -> str:
def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotlib.figure.Figure:
log_file = os.path.join(get_save_dir(base_model), finetuning_type, output_dir, "trainer_log.jsonl")
if not base_model:
return
log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl")
if not os.path.isfile(log_file):
return None
return
plt.close("all")
fig = plt.figure()
@@ -105,46 +83,3 @@ def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotl
ax.set_xlabel("step")
ax.set_ylabel("loss")
return fig
def save_model(
lang: str,
model_name: str,
checkpoints: List[str],
finetuning_type: str,
template: str,
max_shard_size: int,
save_dir: str
) -> Generator[str, None, None]:
if not model_name:
yield ALERTS["err_no_model"][lang]
return
model_name_or_path = get_model_path(model_name)
if not model_name_or_path:
yield ALERTS["err_no_path"][lang]
return
if not checkpoints:
yield ALERTS["err_no_checkpoint"][lang]
return
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
)
if not save_dir:
yield ALERTS["err_no_save_dir"][lang]
return
args = dict(
model_name_or_path=model_name_or_path,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
template=template,
output_dir=save_dir
)
yield ALERTS["info_exporting"][lang]
export_model(args, max_shard_size="{}GB".format(max_shard_size))
yield ALERTS["info_exported"][lang]

44
tests/cal_flops.py Normal file
View File

@@ -0,0 +1,44 @@
# coding=utf-8
# Calculates the flops of pre-trained models.
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
import fire
import torch
from typing import Optional
from deepspeed.accelerator import get_accelerator # type: ignore
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
from llmtuner import ChatModel
def calculate(
model_name_or_path: str,
batch_size: Optional[int] = 1,
seq_length: Optional[int] = 256,
flash_attn: Optional[bool] = False
):
with get_accelerator().device(0):
chat_model = ChatModel(dict(
model_name_or_path=model_name_or_path,
template="vanilla",
flash_attn=flash_attn
))
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
input_dict = {
"input_ids": fake_input,
"labels": fake_input.clone()
}
flops, macs, params = get_model_profile(
chat_model.model,
kwargs=input_dict,
print_profile=True,
detailed=True
)
print("FLOPs:", flops)
print("MACs:", macs)
print("Params:", params)
if __name__ == "__main__":
fire.Fire(calculate)

View File

@@ -1,133 +0,0 @@
# coding=utf-8
# Evaluates fine-tuned models automatically.
# Usage: python evaluate_zh.py --evalset ceval/ceval-exam:law --split dev --output_file result.json
# --api_base http://localhost:8000/v1 --task_type choice --n_samples 100
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
import os
import fire
import json
import openai
from tqdm import tqdm
from typing import Literal, Optional
from datasets import load_dataset
def format_example_choice(examples):
model_inputs = {"query": [], "label": []}
task_template = "请从ABCD四个选项中选出正确的选项仅输出选项序号。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案:"
for i in range(len(examples["id"])):
query = task_template.format(
question=examples["question"][i],
A=examples["A"][i],
B=examples["B"][i],
C=examples["C"][i],
D=examples["D"][i]
)
label = examples["answer"][i]
model_inputs["query"].append(query)
model_inputs["label"].append(label)
return model_inputs
def format_example_cloze(examples):
model_inputs = {"query": [], "label": []}
task_template = "请选择正确的答案填空,仅输出正确的选项。\n{question}\n选项:{A}\n{B}\n{C}\n{D}\n答案:"
for i in range(len(examples["id"])):
query = task_template.format(
question=examples["question"][i],
A=examples["A"][i],
B=examples["B"][i],
C=examples["C"][i],
D=examples["D"][i]
)
label = examples[examples["answer"][i]][i]
model_inputs["query"].append(query)
model_inputs["label"].append(label)
return model_inputs
def format_example_openqa(examples):
model_inputs = {"query": [], "label": []}
task_template = "回答以下问题:{question}\n答案:"
for i in range(len(examples["id"])):
query = task_template.format(question=examples["question"][i])
label = examples[examples["answer"][i]][i]
model_inputs["query"].append(query)
model_inputs["label"].append(label)
return model_inputs
TASK_DICT = {
"choice": format_example_choice,
"cloze": format_example_cloze,
"openqa": format_example_openqa
}
EXT2TYPE = {
"csv": "csv",
"json": "json",
"jsonl": "json"
}
def evaluate(
evalset: str,
api_base: str,
output_file: str,
split: Optional[str] = "val",
task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice",
n_samples: Optional[int] = 20
):
openai.api_base = api_base
openai.api_key = "none"
if os.path.isfile(evalset):
dataset = load_dataset(EXT2TYPE[evalset.split(".")[-1]], data_files=evalset)["train"]
elif ":" in evalset:
evalset, subset = evalset.split(":")
dataset = load_dataset(evalset, subset, split=split)
else:
dataset = load_dataset(evalset, split=split)
n_samples = min(len(dataset), n_samples)
dataset = dataset.map(TASK_DICT[task_type], batched=True)
dataset = dataset.select(range(n_samples))
n_correct = 0
predictions = []
for example in tqdm(dataset):
query, label = example["query"], example["label"]
predict = openai.ChatCompletion.create(
model="default",
messages=[{"role": "user", "content": query}],
temperature=0.01,
top_p=0.01,
max_new_tokens=20
).choices[0].message.content
if task_type == "choice" and predict[0].lower() == label[0].lower():
n_correct += 1
if task_type == "cloze" and label in [predict[:len(label)], predict[-len(label):]]:
n_correct += 1
if task_type == "openqa" and label in predict:
n_correct += 1
predictions.append({
"query": query,
"label": label,
"predict": predict
})
print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100))
with open(output_file, "w", encoding="utf-8") as f:
json.dump(predictions, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
fire.Fire(evaluate)

View File

@@ -0,0 +1,86 @@
# coding=utf-8
# Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
# Usage: python llamafy_baichuan2.py --input_dir input --output_dir output --shard_size 10GB
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
import os
import fire
import json
import torch
from collections import OrderedDict
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from typing import Any, Dict
CONFIG_NAME = "config.json"
def save_weight(
input_dir: str,
output_dir: str,
shard_size: str
):
baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
baichuan2_state_dict.update(shard_weight)
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for key, value in baichuan2_state_dict.items():
if "W_pack" in key:
proj_size = value.size(0) // 3
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size:2*proj_size, :]
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*proj_size:, :]
elif "lm_head" in key:
llama2_state_dict[key] = torch.nn.functional.normalize(value)
else:
llama2_state_dict[key] = value
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME)
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else:
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
def save_config(
input_dir: str,
output_dir: str
):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
llama2_config_dict: Dict[str, Any] = json.load(f)
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
llama2_config_dict.pop("auto_map", None)
llama2_config_dict.pop("tokenizer_class", None)
llama2_config_dict["model_type"] = "llama"
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
json.dump(llama2_config_dict, f, indent=2)
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_baichuan2(
input_dir: str,
output_dir: str,
shard_size: str
):
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:
raise print("Output dir already exists", e)
save_weight(input_dir, output_dir, shard_size)
save_config(input_dir, output_dir)
if __name__ == "__main__":
fire.Fire(llamafy_baichuan2)

135
tests/llamafy_qwen.py Normal file
View File

@@ -0,0 +1,135 @@
# coding=utf-8
# Converts the Qwen models in the same format as LLaMA2.
# Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB
import os
import fire
import json
import torch
from collections import OrderedDict
from safetensors import safe_open
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from transformers.utils import check_min_version
from typing import Any, Dict
try:
check_min_version("4.34.0")
except:
raise ValueError("Please upgrade `transformers` to 4.34.0")
CONFIG_NAME = "config.json"
def save_weight(
input_dir: str,
output_dir: str,
shard_size: str
) -> str:
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"):
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f:
for key in f.keys():
qwen_state_dict[key] = f.get_tensor(key)
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
torch_dtype = None
for key, value in qwen_state_dict.items():
if torch_dtype is None:
torch_dtype = value.dtype
if "wte" in key:
llama2_state_dict["model.embed_tokens.weight"] = value
elif "ln_f" in key:
llama2_state_dict["model.norm.weight"] = value
else:
key = key.replace("transformer.h", "model.layers")
if "attn.c_attn" in key:
proj_size = value.size(0) // 3
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[proj_size:2*proj_size, ...]
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2*proj_size:, ...]
elif "attn.c_proj" in key:
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = (
torch.zeros_like(value[:, 0]).squeeze()
)
elif "ln_1" in key:
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
elif "ln_2" in key:
llama2_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value
elif "mlp.w1" in key:
llama2_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value
elif "mlp.w2" in key:
llama2_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value
elif "mlp.c_proj" in key:
llama2_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value
elif "lm_head" in key:
llama2_state_dict[key] = value
else:
raise KeyError("Unable to process key {}".format(key))
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME)
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else:
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
return str(torch_dtype).replace("torch.", "")
def save_config(
input_dir: str,
output_dir: str,
torch_dtype: str
):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
qwen_config_dict: Dict[str, Any] = json.load(f)
llama2_config_dict: Dict[str, Any] = OrderedDict()
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
llama2_config_dict["hidden_act"] = "silu"
llama2_config_dict["hidden_size"] = qwen_config_dict["hidden_size"]
llama2_config_dict["initializer_range"] = qwen_config_dict["initializer_range"]
llama2_config_dict["intermediate_size"] = qwen_config_dict["intermediate_size"] // 2
llama2_config_dict["max_position_embeddings"] = qwen_config_dict["max_position_embeddings"]
llama2_config_dict["model_type"] = "llama"
llama2_config_dict["num_attention_heads"] = qwen_config_dict["num_attention_heads"]
llama2_config_dict["num_hidden_layers"] = qwen_config_dict["num_hidden_layers"]
llama2_config_dict["num_key_value_heads"] = qwen_config_dict["hidden_size"] // qwen_config_dict["kv_channels"]
llama2_config_dict["pretraining_tp"] = 1
llama2_config_dict["rms_norm_eps"] = qwen_config_dict["layer_norm_epsilon"]
llama2_config_dict["rope_scaling"] = None
llama2_config_dict["tie_word_embeddings"] = qwen_config_dict["tie_word_embeddings"]
llama2_config_dict["torch_dtype"] = torch_dtype
llama2_config_dict["transformers_version"] = "4.34.0"
llama2_config_dict["use_cache"] = True
llama2_config_dict["vocab_size"] = qwen_config_dict["vocab_size"]
llama2_config_dict["attention_bias"] = True
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
json.dump(llama2_config_dict, f, indent=2)
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_qwen(
input_dir: str,
output_dir: str,
shard_size: str
):
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:
raise print("Output dir already exists", e)
torch_dtype = save_weight(input_dir, output_dir, shard_size)
save_config(input_dir, output_dir, torch_dtype)
if __name__ == "__main__":
fire.Fire(llamafy_qwen)

View File

@@ -1,743 +0,0 @@
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging
from transformers.generation.utils import GenerationConfig
from .configuration_baichuan import BaichuanConfig
logger = logging.get_logger(__name__)
# Copied from transformers.models.bloom.modeling_bloom._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
"""
Make causal mask used for self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
seq_ids = torch.arange(target_length, device=device)
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
if past_key_values_length > 0:
mask[:, :past_key_values_length] = False
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
return expanded_mask
# Copied from transformers.models.bloom.modeling_bloom._expand_mask
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
"""
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
"""
batch_size, src_length = mask.shape
tgt_length = tgt_length if tgt_length is not None else src_length
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
# Copied from transformers.models.bloom.modeling_bloom.build_alibi_tensor
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
class RMSNorm(nn.Module):
def __init__(self, hidden_size, epsilon=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.epsilon = epsilon
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
return (self.weight * hidden_states).to(input_dtype)
class MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class BaichuanAttention(nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.model_max_length
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = 1.0
self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
proj = self.W_pack(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim)
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim)
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim)
query_states = query_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim)
key_states = key_states.permute(0, 2, 3, 1).reshape(bsz * self.num_heads, self.head_dim, q_len)
value_states = value_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim)
if past_key_value is not None:
# reuse k, v, self_attention
past_key, past_value = past_key_value
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=1)
_, _, kv_seq_len = key_states.shape
past_key_value = (key_states, value_states) if use_cache else None
# [batch_size * num_heads, q_length, kv_length]
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
matmul_result = alibi.baddbmm(
batch1=query_states,
batch2=key_states,
beta=self.beta,
alpha=self.inv_norm_factor,
)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(bsz, self.num_heads, q_len, kv_seq_len)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype
# [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16:
attention_scores = attention_scores.to(torch.float)
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
# change view [batch_size x num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(bsz * self.num_heads, q_len, kv_seq_len)
# matmul: [batch_size * num_heads, q_length, head_dim]
attn_output = torch.bmm(attention_probs_reshaped, value_states)
attn_output = attn_output.view(bsz, self.num_heads, q_len, self.head_dim)
attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attention_probs = None
return attn_output, attention_probs, past_key_value
class BaichuanLayer(nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = BaichuanAttention(config=config)
self.mlp = MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
alibi=alibi,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BaichuanPreTrainedModel(PreTrainedModel):
config_class = BaichuanConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BaichuanLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BaichuanModel):
module.gradient_checkpointing = value
@staticmethod
def _convert_to_standard_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
num_heads, ...]))
"""
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
num_heads = batch_size_times_num_heads // batch_size
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
@staticmethod
def _convert_to_baichuan_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by Baichuan, i.e. to tuple(tuple([batch_size * num_heads, ...]))
"""
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
batch_size_times_num_heads = batch_size * num_heads
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
class BaichuanModel(BaichuanPreTrainedModel):
def __init__(self, config: BaichuanConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.n_head = config.num_attention_heads
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
return build_alibi_tensor(attention_mask, num_heads, dtype)
def _prepare_attn_mask(
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
) -> torch.BoolTensor:
# create causal mask
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = _make_causal_mask(
input_shape, device=device, past_key_values_length=past_key_values_length
)
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You need to provide input_ids or inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[1]
seq_length_with_past = seq_length_with_past + past_key_values_length
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Compute alibi tensor: check build_alibi_tensor documentation
alibi = self.build_alibi_tensor(attention_mask, self.n_head, dtype=hidden_states.dtype)
causal_mask = self._prepare_attn_mask(
attention_mask,
input_shape=(batch_size, seq_length),
past_key_values_length=past_key_values_length,
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
alibi,
causal_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
alibi=alibi,
attention_mask=causal_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class BaichuanForCausalLM(BaichuanPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = BaichuanModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
) -> dict:
if past_key_values:
input_ids = input_ids[:, -1:]
# the cache may be in the standard format (e.g. in contrastive search)
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
past_key_values = self._convert_to_baichuan_cache(past_key_values)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def _reorder_cache(
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in standardized_past
)
return self._convert_to_baichuan_cache(reordered_past)
def quantize(self, bits: int):
try:
from .quantizer import QLinear
except ImportError:
raise ImportError(
f"Needs QLinear to run quantize."
)
for layer in self.model.layers:
layer.self_attn.W_pack = QLinear(
bits=bits,
weight=layer.self_attn.W_pack.weight,
bias = None,
)
layer.self_attn.o_proj = QLinear(
bits=bits,
weight=layer.self_attn.o_proj.weight,
bias = None,
)
layer.mlp.gate_proj = QLinear(
bits=bits,
weight=layer.mlp.gate_proj.weight,
bias = None,
)
layer.mlp.down_proj = QLinear(
bits=bits,
weight=layer.mlp.down_proj.weight,
bias = None,
)
layer.mlp.up_proj = QLinear(
bits=bits,
weight=layer.mlp.up_proj.weight,
bias = None,
)
return self
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0):
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
max_input_tokens = self.config.model_max_length - max_new_tokens
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
total_input, round_input = [], []
for i, message in enumerate(messages[::-1]):
content_tokens = tokenizer.encode(message['content'])
if message['role'] == 'user':
round_input = [self.generation_config.user_token_id] + content_tokens + round_input
if total_input and len(total_input) + len(round_input) > max_input_tokens:
break
else:
total_input = round_input + total_input
if len(total_input) >= max_input_tokens:
break
else:
round_input = []
elif message['role'] == 'assistant':
round_input = [
self.generation_config.assistant_token_id
] + content_tokens + [
self.generation_config.eos_token_id
] + round_input
else:
raise ValueError(f"message role not supported yet: {message['role']}")
total_input = total_input[-max_input_tokens:] # truncate left
total_input.append(self.generation_config.assistant_token_id)
total_input = torch.LongTensor([total_input]).to(self.device)
return total_input
@torch.no_grad()
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
if stream:
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
self.__class__.generate = NewGenerationMixin.generate
self.__class__.sample_stream = NewGenerationMixin.sample_stream
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
def stream_generator():
outputs = []
for token in self.generate(input_ids, generation_config=stream_config):
outputs.append(token.item())
yield tokenizer.decode(outputs, skip_special_tokens=True)
return stream_generator()
else:
self.__class__.generate = PreTrainedModel.generate # disable stream
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response

View File

@@ -1,5 +1,5 @@
# coding=utf-8
# Quantizes fine-tuned models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
# Quantizes models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
# Usage: python quantize.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
# --max_length 1024 --max_samples 1024
# dataset format: instruction (string), input (string), output (string), history (List[string])