99 Commits

Author SHA1 Message Date
hiyouga
f3e638ac6a Release v0.1.8
Former-commit-id: d9666411375964d334d0a93ec162b27e05f70d49
2023-09-11 17:31:34 +08:00
hiyouga
42e0b30476 update flashattn, fix ppo save model
Former-commit-id: 0b08bc3dac246d4aa3f89afb7172529dcad9c39f
2023-09-11 17:25:36 +08:00
hiyouga
a09a7b650d remove PeftTrainer
Former-commit-id: cc0cff3e991f194732d278e627648e528118a719
2023-09-10 22:23:23 +08:00
hiyouga
332d7bbd56 truncate readme
Former-commit-id: fed5d0cc87e4a5a023f2edae622f2820bded1509
2023-09-10 21:04:20 +08:00
hiyouga
d3b6fece71 update readme
Former-commit-id: c42fe77fec2918fe8811d48ec88e9a7c1e6f07ab
2023-09-10 21:01:20 +08:00
hiyouga
9d963b82de update readme
Former-commit-id: b4109cfe548e091cd20fa84815dce5ff3974a090
2023-09-10 20:52:21 +08:00
hiyouga
a402161631 support FlashAttention2
Former-commit-id: 23e56c5554b948d4f08ad87849b261eafd2c7890
2023-09-10 20:43:56 +08:00
hiyouga
b481ad58e6 fix #850
Former-commit-id: e5975c4c6b8bd47ec506b0d4a4703bee05495436
2023-09-10 14:22:03 +08:00
hiyouga
f91c5f2638 fix lora target
Former-commit-id: d822e41e7ac7e310ee49e347fc45754284ce30b8
2023-09-09 17:04:45 +08:00
hiyouga
7143c551ab support lora target auto find
Former-commit-id: bce9984733d88bf013847eed523d1c75fdf0995e
2023-09-09 15:38:37 +08:00
hiyouga
50e93392dd fix chatglm2 tokenizer
Former-commit-id: 1ab60b4a93fa1be5dfe6ffbd4deb64c0f9d9b431
2023-09-09 13:50:29 +08:00
hiyouga
9f83e93839 add baichuan2 convert script
Former-commit-id: 4d676e0ea9e59c1be13ecb47734917ba78938ac8
2023-09-08 22:59:41 +08:00
hiyouga
692b132dbf fix bug in DPO data collator
Former-commit-id: 4fc262cdf1347691e253bdfbd96568db5a49c086
2023-09-08 20:45:07 +08:00
hiyouga
e70b3e8947 fix #761
Former-commit-id: be76f6cbe5143f781b6b39603b80392253b3080a
2023-09-08 20:22:18 +08:00
hiyouga
612d97db6f change to right-padding, update reward score #803
Former-commit-id: baa90415bc8f5ebd423d001378b51c3a3a6c2ec7
2023-09-08 20:04:31 +08:00
hiyouga
bb1b67c076 fix chatglm template
Former-commit-id: 69a824628b4d6a56a680a7e713b217877c6c15c5
2023-09-08 14:45:58 +08:00
hiyouga
5a75c31caa update requirements
Former-commit-id: d796a4a5709c390629bafbeb7c91fccf6a9076d0
2023-09-07 19:26:25 +08:00
hiyouga
8b9210286b fix #818
Former-commit-id: e81fd458c279ed2f3cee780e517482b425c8886d
2023-09-07 19:19:53 +08:00
hiyouga
b5acec34f7 add deepspeed check in PPO training
Former-commit-id: e203ec7f71f504ccbaa89c27d20b8a0d9fa53f7e
2023-09-07 19:12:40 +08:00
hiyouga
86d835878c fix #809
Former-commit-id: 2783ca75365d7c373cefba039788a48f0b8f35fc
2023-09-07 19:04:32 +08:00
hiyouga
eae7b331d3 fix baichuan templates
Former-commit-id: f48a49e835b32f3991cfad8874c7b9c78953809f
2023-09-07 18:54:14 +08:00
hiyouga
ed89e29bcc update baichuan2 template
Former-commit-id: 16d9f8ba176443c5b397233da621600d6e1e1eec
2023-09-06 21:43:06 +08:00
hiyouga
c2b1886aff add Baichuan2 models
Former-commit-id: 90b3f02c44c0b8cc1b59f37af3a1ec28874a8a61
2023-09-06 18:40:11 +08:00
hiyouga
218f36bca5 add Baichuan2 models
Former-commit-id: 36960025e9274b574f57e7a7bf453cd96956e922
2023-09-06 18:36:04 +08:00
hoshi-hiyouga
b91fc1f5b3 Merge pull request #786 from kinghuin/patch-1
fix utils.py bug

Former-commit-id: 26aad616340748e1594a60119ca9434908bf7465
2023-09-05 10:49:34 +08:00
Q
2a22bf9c15 fix utils.py bug
Former-commit-id: dc490117d50c3cbc070b804bac89400f4290272f
2023-09-05 10:38:01 +08:00
hiyouga
62e2037125 fix #763
Former-commit-id: e424b928a35097b783af879a2290f59b2158801d
2023-09-01 23:13:05 +08:00
hiyouga
e5b72c6a77 refactor dataset_attr, add eos in pt, fix #757
Former-commit-id: 0feec9a830b917b36686b61938a66e842eccf930
2023-09-01 19:00:45 +08:00
codingma
93be211f80 Merge pull request #741 from hiyouga/feature-addDatasetCheck
Feature add dataset check

Former-commit-id: 4b6dabe73d2c7edc94cd495390577c8bcf88428b
2023-08-31 20:57:36 +08:00
codemayq
9ae3fb4ced update llama2 template
Former-commit-id: 01de1d51d9fa5a22a338b6ed18ffad4d0ad5e3e8
2023-08-30 16:23:56 +08:00
codemayq
f641075789 add dataset stage check
Former-commit-id: 5c719a7ce988339d034a653456da9742dc2cec7c
2023-08-30 16:23:08 +08:00
codingma
f7658db1b6 Merge pull request #651 from hiyouga/feature-dataset_stage
add dataset stage

Former-commit-id: 3b0ef57405cbc22ff8ce4eef2cfcb73872519db5
2023-08-28 16:03:45 +08:00
codemayq
b869bc1a20 add ad gen dataset
Former-commit-id: fcd0788aa4dda0cecc1420d369d371032a207810
2023-08-27 20:35:32 +08:00
codemayq
a72d756d77 add text format dataset preview in webui
Former-commit-id: cd30871aadb40cd3d598a6d0b415946744d2d550
2023-08-24 19:45:36 +08:00
codemayq
d3fd8f89b8 add stage in DatasetAttr
Former-commit-id: 9c55200d8de0623640f529dbf39b8b0f169636d3
2023-08-23 20:54:53 +08:00
hiyouga
180a05a446 fix import error
Former-commit-id: b3207a974a45038591b8cbbcf20d1ca1142d6679
2023-08-23 20:45:03 +08:00
hiyouga
eb9ac9ee1f fix #649
Former-commit-id: e6120a937ddb4f3c0b9bcb2466742f5cf4f77f8c
2023-08-23 20:21:15 +08:00
codemayq
a6662b73f5 add readme for dataset
Former-commit-id: bdcb0ea40e726e4c5752f938b379ed9a18e7e1d0
2023-08-23 19:55:45 +08:00
codemayq
cbc7db3478 add dataset stage and filter dataset when stage chosen in webui
Former-commit-id: 26e4136449a4df6028d834fd16a0f4a7c532759d
2023-08-23 18:54:23 +08:00
hiyouga
4606340f0f fix webui
Former-commit-id: 95304b6822d9fe04bcddc1ee246a56389bd5f96a
2023-08-23 11:03:35 +08:00
hoshi-hiyouga
d4b4ccd597 Merge pull request #644 from hiyouga/fix-quantization_bit
fix quantization bit is ""

Former-commit-id: e1a8eca182e532b48e472919b4474656a726b40c
2023-08-23 10:45:45 +08:00
codemayq
9c3f4e3a37 fix quantization bit is ""
Former-commit-id: 0dcab66f8843e2887f9f7ca66334122fef35c5b7
2023-08-23 10:08:17 +08:00
codemayq
440e00d8f9 fix quantization is ""
Former-commit-id: 2469cc16d1dd3f5ee822edc18b2d7021ff7cba03
2023-08-23 10:04:03 +08:00
hiyouga
6310613699 update template
Former-commit-id: a95f3a4d62de1073a78125401cf4289ec0523156
2023-08-22 19:46:09 +08:00
hoshi-hiyouga
f55907dbea Merge pull request #629 from panpan0000/main
add rm dataset explanation

Former-commit-id: c2b4571d0ffb6298d6e07212982d9c13efd65adf
2023-08-22 13:41:44 +08:00
Peter Pan
5cac87d317 add rm dataset explanation
Signed-off-by: Peter Pan <Peter.Pan@daocloud.io>

Former-commit-id: 1efb95025be6501f1b30b20e7c711d3590b5d1ee
2023-08-22 01:33:59 -04:00
hoshi-hiyouga
9c0622de13 Merge pull request #619 from hiyouga/feature-templateTest
add template encode test

Former-commit-id: 8a1587ae49fff3968e0182f4fcc9a65dfdb260fc
2023-08-21 20:56:34 +08:00
codemayq
37b93c8b71 add template encode test
Former-commit-id: c15e0d6847cbc055d8376b3c43ac4fbd17b5877a
2023-08-21 20:51:24 +08:00
hiyouga
d6be98cda6 fix #617
Former-commit-id: a7bdaf1c92c7d798caf8438dc42a8972632ec584
2023-08-21 18:16:11 +08:00
hiyouga
4d128acc17 fix #608
Former-commit-id: c02a6809124fcfd06628c49c95d419ec2d8cc8ef
2023-08-21 17:49:36 +08:00
hiyouga
516df9ecce fix baichuan template for training #597 #616
Former-commit-id: 6530c1d972301eac9ef058b3235618bb09833f15
2023-08-21 17:41:51 +08:00
hiyouga
8eec1d50e1 fix #595
Former-commit-id: a360ccf9aa0484ce783eaa5857cf698b3ac2051e
2023-08-20 16:40:00 +08:00
hoshi-hiyouga
cfb096d43a Merge pull request #596 from beat4ocean/beat
fix KeyError: 'lang' bug

Former-commit-id: dd22541cdf1b832d20bb894d78c034afce841bfb
2023-08-20 16:37:40 +08:00
beat4ocean
713fa28804 fix KeyError: 'lang' bug
Former-commit-id: 4d4d9172b1f362cb4876315f1f5739e417055065
2023-08-20 15:32:36 +08:00
hiyouga
5549f35939 fix ppo trainer #551
Former-commit-id: 050a5447c191b8c50a0826a0f03bae499bff8b48
2023-08-20 14:07:11 +08:00
hiyouga
6eed1db36c Release v0.1.7
Former-commit-id: 81abe8d6cabaa1ebe74dc32a5dc143389e4c9f31
2023-08-18 17:21:27 +08:00
hiyouga
948124f55e tiny fix
Former-commit-id: 0ee159654ac6339c162745b004e2152ba6fe3c81
2023-08-18 13:07:35 +08:00
hiyouga
2b191ca776 support ppo score norm (trl 0.5.1.dev required)
Former-commit-id: 2b25db6d260ec1532281a592e873579346c7d21c
2023-08-18 12:02:42 +08:00
hiyouga
be4d2822ea fix PPO trainer #551 , update readme
Former-commit-id: faead74849470cebae9e37cde5fab2a71b32aa43
2023-08-18 11:43:10 +08:00
hiyouga
736ddd0319 update readme
Former-commit-id: beaf2fb737dbe64d35334d88b42935c89ef09eee
2023-08-18 01:51:55 +08:00
hiyouga
dfa289aa72 Update .gitignore
Former-commit-id: a1772a4dfef8dfaf7c2c321fad0a70ccf95fe6a0
2023-08-18 01:43:42 +08:00
hiyouga
c2644f939a update training resuming
Former-commit-id: 2ec75c31f609e65116ac3b621eeb7d8ccbf69135
2023-08-18 01:41:17 +08:00
hoshi-hiyouga
f11c1ae562 Merge pull request #434 from niuba/main
add last_checkpoint support

Former-commit-id: b78d461f2826c194c332ead37825704c2cb8b910
2023-08-18 01:38:31 +08:00
hoshi-hiyouga
3126164aa6 Merge branch 'main' into main
Former-commit-id: 870d2c7bf74d0da5a927bef4b8b01d15cc66a3e9
2023-08-18 01:37:23 +08:00
hiyouga
ed10486cad support bf16 ppo #551
Former-commit-id: 092088967de7409a2d51847cfc7afc83a8887320
2023-08-18 00:40:32 +08:00
hiyouga
04fa430c6c fix ChatGLM2 ppo #527 #528
Former-commit-id: 60d6ad64d7c9f6445b0df8de0153c3a311974198
2023-08-18 00:34:59 +08:00
hiyouga
fa1893b59c fix generation bug #532
Former-commit-id: c071121e67374e5f09798db57cfc8668617a36ae
2023-08-17 22:21:34 +08:00
hiyouga
e993e717a5 fix streaming in pt stage #548 #549
Former-commit-id: 050e992bee2a9293cc7399b578de807b5bf9bddc
2023-08-17 17:59:26 +08:00
hiyouga
c80e56423a update readme
Former-commit-id: b74af3c9cf29e1690ae4d5acb27599b1abd152e2
2023-08-17 11:00:22 +08:00
hiyouga
ffa09a01d6 fix baichuan and intern template
Former-commit-id: e1fd18fa6ef1009f978aca5210a259251a0b19a6
2023-08-17 01:27:20 +08:00
hiyouga
7d04f8567b fix generation
Former-commit-id: 66a0300d312ef91c24fcf80667fa3b0bb8e1a342
2023-08-16 22:39:54 +08:00
hiyouga
baa709674f fix system prompt
Former-commit-id: 411e775aa939bdd154a3f1e92921ede90d989f18
2023-08-16 01:35:52 +08:00
hiyouga
ca9a494d0c fix baichuan template #481
Former-commit-id: 7608c6c25877d97ef26a1c209c4073c9c42f4535
2023-08-15 11:38:21 +08:00
hoshi-hiyouga
37eb8c05cc Merge pull request #516 from liuyanyi/add_gitignore
[Enhance] Add .gitignore file

Former-commit-id: 12cfe5482f5ef95d8c386d0af0de381e72eab0f9
2023-08-15 11:25:40 +08:00
hiyouga
7c046edb7b fix ChatGLM RLHF
Former-commit-id: 4e43e887e432ceb7e9287b4e309b63af3c3ba1bf
2023-08-15 11:19:20 +08:00
Yanyi Liu
22cea38b20 Add .gitignore
Former-commit-id: a2ebdeef81706596617da4409fc5da71739bccdc
2023-08-15 11:13:45 +08:00
hiyouga
ef2ca0a827 alert pad_token source
Former-commit-id: f26a84e0d927d2554890daf431a93652e18f4235
2023-08-15 00:07:56 +08:00
hiyouga
7f0b908de2 update webui
Former-commit-id: da30d0fb4abdb825f3383ddd106bb06a84695b7a
2023-08-14 22:45:26 +08:00
hoshi-hiyouga
5fc5e776ff Merge pull request #511 from hiyouga/feature-autoTemplate
add template match and stage in webui

Former-commit-id: 413752ecba845cddaff5fb48db7d3d24b960eec1
2023-08-14 22:44:04 +08:00
codemayq
93b281c016 auto match template when change model_name
Former-commit-id: ab2d7ab0572765ce33a52ac71641062d5d904db4
2023-08-14 20:56:05 +08:00
codemayq
9585699918 add template match and stage in webui
Former-commit-id: d6283e7f041f08f76d18350cb5f6a6c58ca80e92
2023-08-14 20:42:59 +08:00
hiyouga
bceaba551d fix ChatGLM lm_head #494
Former-commit-id: bf0048abdaeb2b9592d38ac991704ad014370b47
2023-08-14 14:14:48 +08:00
hiyouga
0bfeed3a7e fix bug in webui
Former-commit-id: c95f0f687689934379b6c24abf872ffcde06073b
2023-08-14 11:38:42 +08:00
hiyouga
70a780c3c0 fix webui cache
Former-commit-id: 9aba5c197fbc8abaab77f454374f8b497f0310d0
2023-08-14 11:37:01 +08:00
hiyouga
d74ab5306c update readme_zh
Former-commit-id: bdfe7e0285fdeb3a2728669dbdabf70c9652735c
2023-08-14 11:13:25 +08:00
hiyouga
688e8601ab web UI integrating RLHF
Former-commit-id: 137fd146b90f89a1164b56e6d507b30b1f5c2437
2023-08-14 10:48:47 +08:00
hiyouga
4933ab5956 fix #480
Former-commit-id: ec15ca8fffacba2c34e1849c5ce90ca9989d66a2
2023-08-14 00:23:56 +08:00
hiyouga
6c7225a5d4 fix webui
Former-commit-id: 2c8b7414be9b43e20cc1d0575cc4dc1c7545fd86
2023-08-12 23:52:07 +08:00
hiyouga
a22982f2fa tiny fix
Former-commit-id: 50a34c043de6d9e1410291e1d8c1ea9d53754e9e
2023-08-12 22:02:43 +08:00
hiyouga
c95479dddb fix rope scaling
Former-commit-id: 2e0dd36700ec5e8294581c1db4b9431f755fc5f8
2023-08-12 22:00:01 +08:00
hiyouga
fc48bd8da0 update readme
Former-commit-id: 94ac570cb62aa9cd5dba105f0bb4c4da43eca042
2023-08-12 21:29:06 +08:00
hiyouga
d5323bfa3f update readme
Former-commit-id: ecfe87f34b383901f8e97ffb90af459cd55419b1
2023-08-12 21:25:19 +08:00
hiyouga
e9d4a2b507 update readme
Former-commit-id: eadbe9b7a0b6c8897e7a763b519cc5b7e00f3b2c
2023-08-12 21:23:05 +08:00
hiyouga
37bcbe8046 update readme
Former-commit-id: 6fa381400c21fa249cebcdff8c3afd72f8de20b3
2023-08-12 21:00:11 +08:00
hiyouga
fdfb644f0a support rope scaling, fix #475 #476 #478
Former-commit-id: 337d5f68b72230e545e7a94ca789187c7a2b7187
2023-08-12 20:46:27 +08:00
hoshi-hiyouga
cde9f3db57 Merge pull request #479 from hiyouga/feature-addCmdExport
add sft script preview in webui

Former-commit-id: 060225e57d13d8164beb6920410c181fbb28b77a
2023-08-12 20:41:52 +08:00
codemayq
8bf5a98815 add sft script preview in webui
Former-commit-id: 2b72649b404750226aa418b61ef5a6c9ac03938f
2023-08-12 13:53:55 +08:00
hiyouga
be566a15a5 fix unusual output of 8bit models #278 #391
Former-commit-id: 337ce5272b81f5561162beb08814b0e5abf23703
2023-08-12 00:25:29 +08:00
niuba
458955d0fb add last_checkpoint support
Former-commit-id: 9f1977e4de00b14a9d1b555c25bcaf12998d5046
2023-08-09 16:39:27 +08:00
56 changed files with 2229 additions and 1220 deletions

160
.gitignore vendored Normal file
View File

@@ -0,0 +1,160 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

281
README.md
View File

@@ -12,63 +12,61 @@
## Changelog
[23/08/11] Now we support **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models (experimental feature).
[23/09/10] Now we support using **[FlashAttention](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs (experimental feature).
[23/08/03] Now we support training the **Qwen-7B** model in this repo. Try `--model_name_or_path Qwen/Qwen-7B-Chat` and `--lora_target c_attn` arguments to train the Qwen-7B model. Remember to use `--template chatml` argument when you are using the Qwen-7B-Chat model.
[23/08/18] Now we support **resuming training**, upgrade `transformers` to `4.31.0` to enjoy this feature.
[23/07/31] Now we support dataset streaming. Try `--streaming` and `--max_steps 100` arguments to stream your dataset.
[23/08/12] Now we support **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
[23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)) for details.
[23/08/11] Now we support **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
[23/07/19] Now we support training the **LLaMA-2** models in this repo. Try `--model_name_or_path meta-llama/Llama-2-7b-hf` argument to use the LLaMA-2 model. Remember to use `--template llama2` argument when you are using the LLaMA-2-chat model.
[23/07/31] Now we support **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode.
[23/07/18] Now we develop an all-in-one Web UI for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
[23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)) for details.
[23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base` and `--lora_target W_pack` arguments to train the Baichuan-13B model. Remember to use `--template baichuan` argument when you are using the Baichuan-13B-Chat model.
[23/07/18] Now we develop an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development.
[23/07/09] Now we release [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
[23/07/09] Now we release **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.
[23/07/07] Now we support training the **InternLM-7B** model in this repo. Try `--model_name_or_path internlm/internlm-7b` argument to use the InternLM model. Remember to use `--template intern` argument when you are using the InternLM-chat model.
[23/07/05] Now we support training the **Falcon-7B/40B** models in this repo. Try `--model_name_or_path tiiuae/falcon-7b` and `--lora_target query_key_value` arguments to use the Falcon model.
[23/06/29] We provide a **reproducible example** of training a chat model using instruction-following datasets, see this [Hugging Face Repo](https://huggingface.co/hiyouga/baichuan-7b-sft) for details.
[23/06/29] We provide a **reproducible example** of training a chat model using instruction-following datasets, see [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft) for details.
[23/06/22] Now we align the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in **arbitrary ChatGPT-based applications**.
[23/06/15] Now we support training the **Baichuan-7B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-7B` and `--lora_target W_pack` arguments to use the Baichuan-7B model.
[23/06/03] Now we support quantized training and inference (aka **[QLoRA](https://github.com/artidoro/qlora)**). Try `--quantization_bit 4/8` argument to work with quantized models.
[23/05/31] Now we support training the **BLOOM & BLOOMZ** models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
## Supported Models
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse |
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
- **Default module** is used for the `--lora_target` argument. Please use `python src/train_bash.py -h` to see all available options.
- For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models.
> [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
>
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models.
## Supported Training Approaches
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
| ---------------------- | -------------- | ----------------- | ---- | ----- |
| Pre-Training | ✅ | ✅ | ✅ | ✅ |
| Supervised Fine-Tuning | ✅ | ✅ | ✅ | ✅ |
| Reward Model Training | | | ✅ | ✅ |
| PPO Training | | | ✅ | ✅ |
| DPO Training | | | ✅ | ✅ |
| Approach | Full-parameter | Partial-parameter | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| Pre-Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Supervised Fine-Tuning | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| Reward Modeling | | | :white_check_mark: | :white_check_mark: |
| PPO Training | | | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
> [!NOTE]
> Use `--quantization_bit 4/8` argument to enable QLoRA.
## Provided Datasets
@@ -99,7 +97,8 @@
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- For reward modelling or DPO training:
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- For reward modeling or DPO training:
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
@@ -117,7 +116,7 @@ huggingface-cli login
- Python 3.8+ and PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- sentencepiece and tiktoken
- sentencepiece, protobuf and tiktoken
- jieba, rouge-chinese and nltk (used at evaluation)
- gradio and matplotlib (used in web_demo.py)
- uvicorn, fastapi and sse-starlette (used in api_demo.py)
@@ -130,7 +129,8 @@ And **powerful GPUs**!
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
### Dependence Installation (optional)
@@ -154,18 +154,26 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
```
Currently the web UI only supports training on **a single GPU**.
We strongly recommend using the all-in-one Web UI for newcomers since it can also generate training scripts **automatically**.
### Pre-Training
> [!WARNING]
> Currently the web UI only supports training on **a single GPU**.
### Train on a single GPU
> [!IMPORTANT]
> If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training).
#### Pre-Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
@@ -179,16 +187,17 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--fp16
```
### Supervised Fine-Tuning
#### Supervised Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
@@ -202,18 +211,17 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--fp16
```
Remember to specify `--lora_target W_pack` if you are using Baichuan models.
### Reward Model Training
#### Reward Modeling
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \
@@ -222,22 +230,23 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--learning_rate 1e-6 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
### PPO Training
#### PPO Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
@@ -249,19 +258,21 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss
--plot_loss \
--fp16
```
### DPO Training
#### DPO Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_en \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
@@ -278,24 +289,20 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
### Distributed Training
#### Use Huggingface Accelerate
```bash
accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
```
<details><summary>Example configuration for full-tuning with DeepSpeed ZeRO-2</summary>
<details><summary>Example config for LoRA training</summary>
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
@@ -311,12 +318,95 @@ use_cpu: false
</details>
#### Use DeepSpeed
```bash
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # arguments (same as above)
```
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
</details>
### Export model
```bash
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
### API Demo
```bash
python src/api_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
> [!NOTE]
> Visit `http://localhost:8000/docs` for API documentation.
### CLI Demo
```bash
python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### Web Demo
```bash
python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### Evaluation (BLEU and ROUGE_CHINESE)
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_eval \
--dataset alpaca_gpt4_en \
--template default \
@@ -328,14 +418,15 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
> [!NOTE]
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
### Predict
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_predict \
--dataset alpaca_gpt4_en \
--template default \
@@ -347,55 +438,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
### API Demo
```bash
python src/api_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
Visit `http://localhost:8000/docs` for API documentation.
### CLI Demo
```bash
python src/cli_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### Web Demo
```bash
python src/web_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### Export model
```bash
python src/export_model.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
## TODO
- [ ] Supporting flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention)).
- [ ] Implementing multi-query attention for faster inference.
- [ ] Supporting full-parameter RLHF training.
## License
This repository is licensed under the [Apache-2.0 License](LICENSE).
@@ -407,6 +449,7 @@ Please follow the model licenses to use the corresponding model weights:
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
- [Falcon](LICENSE)
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
- [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
@@ -427,7 +470,7 @@ If this work is helpful, please kindly cite as:
## Acknowledgement
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models.
This repo benefits from [PEFT](https://github.com/huggingface/peft), [QLoRA](https://github.com/artidoro/qlora) and [OpenChatKit](https://github.com/togethercomputer/OpenChatKit). Thanks for their wonderful works.
## Star History

View File

@@ -12,62 +12,61 @@
## 更新日志
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)(实验性功能)。
[23/09/10] 现在我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat``--lora_target c_attn` 参数。使用 Qwen-7B-Chat 模型请添加 `--template chatml` 参数
[23/08/18] 现在我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能
[23/07/31] 现在我们支持了训练数据流式加载。请尝试使用 `--streaming``--max_steps 100` 参数来流式加载数据集
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)。
[23/07/19] 现在我们支持了 **LLaMA-2** 模型的训练。请尝试使用 `--model_name_or_path meta-llama/Llama-2-7b-hf` 参数。请注意使用 LLaMA-2-chat 模型需要添加 `--template llama2` 参数
[23/07/31] 现在我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集
[23/07/18] 我们开发了支持训练和测试的浏览器一键微调界面。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft)
[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-13B-Base``--lora_target W_pack` 参数。请注意使用 Baichuan-13B-Chat 模型需要添加 `--template baichuan` 参数
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力
[23/07/09] 我们开源了 [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
[23/07/07] 现在我们支持了 **InternLM-7B** 模型的训练。请尝试使用 `--model_name_or_path internlm/internlm-7b` 参数。请注意使用 InternLM-chat 模型需要添加 `--template intern` 参数
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)
[23/07/05] 现在我们支持了 **Falcon-7B/40B** 模型的训练。请尝试使用 `--model_name_or_path tiiuae/falcon-7b``--lora_target query_key_value` 参数
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Hugging Face 项目](https://huggingface.co/hiyouga/baichuan-7b-sft)
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中。
[23/06/15] 现在我们支持了 **Baichuan-7B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-7B``--lora_target W_pack` 参数。
[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 [QLoRA](https://github.com/artidoro/qlora))。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
[23/05/31] 现在我们支持了 **BLOOM & BLOOMZ** 模型的训练。请尝试使用 `--model_name_or_path bigscience/bloomz-7b1-mt``--lora_target query_key_value` 参数。
[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse |
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
- **默认模块**是 `--lora_target` 参数的部分可选项。请使用 `python src/train_bash.py -h` 查看全部可选项。
- 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用对应的模板
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用对应的模板。
## 训练方法
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------- | ---------- | ----------- | ---- | ----- |
| 预训练 | ✅ | ✅ | ✅ | ✅ |
| 指令监督微调 | ✅ | ✅ | ✅ | ✅ |
| 奖励模型训练 | | | ✅ | ✅ |
| PPO 训练 | | | ✅ | ✅ |
| DPO 训练 | ✅ | | ✅ | |
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | | | :white_check_mark: | :white_check_mark: |
| PPO 训练 | | | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
> [!NOTE]
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
## 数据集
@@ -98,7 +97,8 @@
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- 用于奖励模型或 DPO 训练:
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- 用于训练奖励模型或 DPO 训练:
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
@@ -116,7 +116,7 @@ huggingface-cli login
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
- sentencepiece 和 tiktoken
- sentencepiece, protobuf 和 tiktoken
- jieba, rouge-chinese 和 nltk (用于评估)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
@@ -129,7 +129,8 @@ huggingface-cli login
关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
注意:使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`。
### 环境搭建(可跳过)
@@ -147,24 +148,32 @@ pip install -r requirements.txt
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
### 浏览器一键微调/测试
### 浏览器一体化界面
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_web.py
```
目前网页 UI 仅支持**单卡训练**
我们极力推荐新手使用浏览器一体化界面,因为它还可以**自动**生成运行所需的命令行脚本
### 预训练
> [!WARNING]
> 目前网页 UI 仅支持**单卡训练**。
### 单 GPU 训练
> [!IMPORTANT]
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
#### 预训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
@@ -178,16 +187,17 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--fp16
```
### 指令监督微调
#### 指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
@@ -201,18 +211,17 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--fp16
```
使用 Baichuan 模型时请指定 `--lora_target W_pack` 参数。
### 奖励模型训练
#### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \
@@ -221,22 +230,23 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--learning_rate 1e-6 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
### PPO 训练
#### PPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
@@ -251,16 +261,17 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--plot_loss
```
### DPO 训练
#### DPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
@@ -277,24 +288,20 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
### 多 GPU 分布式训练
#### 使用 Huggingface Accelerate
```bash
accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
```
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数微调的 Accelerate 配置示例</summary>
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 4
gradient_clipping: 0.5
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: false
zero_stage: 2
distributed_type: DEEPSPEED
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
@@ -310,12 +317,95 @@ use_cpu: false
</details>
### 指标评估BLEU分数和汉语ROUGE分数
#### 使用 DeepSpeed
```bash
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # 参数同上
```
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
```json
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
</details>
### 导出微调后的模型
```bash
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
### API 服务
```bash
python src/api_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
> [!NOTE]
> 关于 API 文档请见 `http://localhost:8000/docs`。
### 命令行测试
```bash
python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 指标评估BLEU 分数和汉语 ROUGE 分数)
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_eval \
--dataset alpaca_gpt4_zh \
--template default \
@@ -327,14 +417,15 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1``--max_target_length 128` 参数。
> [!NOTE]
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
### 模型预测
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path path_to_your_model \
--model_name_or_path path_to_llama_model \
--do_predict \
--dataset alpaca_gpt4_zh \
--template default \
@@ -346,55 +437,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--predict_with_generate
```
### API 服务
```bash
python src/api_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
关于 API 文档请见 `http://localhost:8000/docs`
### 命令行测试
```bash
python src/cli_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 导出微调模型
```bash
python src/export_model.py \
--model_name_or_path path_to_your_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
## TODO
- [ ] 实现 flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention))。
- [ ] 在推理阶段使用 Multi-query attention 进行加速。
- [ ] 支持 RLHF 的全参数微调。
## 协议
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
@@ -406,8 +448,11 @@ python src/export_model.py \
- [BLOOM](https://huggingface.co/spaces/bigscience/license)
- [Falcon](LICENSE)
- [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/resolve/main/Baichuan%202%E6%A8%A1%E5%9E%8B%E7%A4%BE%E5%8C%BA%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
- [InternLM](https://github.com/InternLM/InternLM#open-source-license)
- [Qwen](https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/LICENSE)
- [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B/blob/main/MODEL_LICENSE)
## 引用
@@ -424,7 +469,7 @@ python src/export_model.py \
## 致谢
本项目是 [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning) 的同类项目。采用了类似的代码结构和训练方法
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [OpenChatKit](https://github.com/togethercomputer/OpenChatKit),感谢以上诸位作者的付出
## Star History

View File

@@ -6,6 +6,7 @@ If you are using a custom dataset, please provide your dataset definition in the
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional)",
"ranking": "whether the examples contains ranked responses or not. (default: false)",
"columns": {
"prompt": "the name of the column in the datasets containing the prompts. (default: instruction)",
"query": "the name of the column in the datasets containing the queries. (default: input)",
@@ -16,3 +17,16 @@ If you are using a custom dataset, please provide your dataset definition in the
```
where the `prompt` and `response` columns should contain non-empty values. The `query` column will be concatenated with the `prompt` column and used as input for the model. The `history` column should contain a list where each element is a string tuple representing a query-response pair.
For datasets used in reward modeling or DPO training, the `response` column should be a string list, with the preferred answers appearing first, for example:
```json
{
"instruction": "Question",
"input": "",
"output": [
"Chosen answer",
"Rejected answer"
]
}
```

View File

@@ -6,6 +6,7 @@
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选",
"ranking": "数据集是否包含排序后的回答默认false",
"columns": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
@@ -16,3 +17,16 @@
```
其中 `prompt``response` 列应当是非空的字符串。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。`history` 列应当是一个列表,其中每个元素是一个字符串二元组,分别代表用户请求和模型答复。
对于训练奖励模型或 DPO 训练的数据集,`response` 列应当是一个字符串列表,排在前面的代表更优的答案,例如:
```json
{
"instruction": "Question",
"input": "",
"output": [
"Chosen answer",
"Rejected answer"
]
}
```

View File

@@ -1,11 +1,12 @@
torch>=1.13.1
transformers>=4.29.1
transformers>=4.30.0
datasets>=2.12.0
accelerate>=0.21.0
peft>=0.4.0
trl>=0.5.0
peft==0.4.0
trl>=0.7.1
scipy
sentencepiece
protobuf
tiktoken
jieba
rouge-chinese

View File

@@ -6,4 +6,4 @@ from llmtuner.tuner import export_model, run_exp
from llmtuner.webui import create_ui, create_web_demo
__version__ = "0.1.6"
__version__ = "0.1.8"

View File

@@ -47,15 +47,15 @@ def create_app(chat_model: ChatModel) -> FastAPI:
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
if request.messages[-1].role != Role.USER:
if len(request.messages) < 1 or request.messages[-1].role != Role.USER:
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == Role.SYSTEM:
prefix = prev_messages.pop(0).content
system = prev_messages.pop(0).content
else:
prefix = None
system = None
history = []
if len(prev_messages) % 2 == 0:
@@ -64,11 +64,11 @@ def create_app(chat_model: ChatModel) -> FastAPI:
history.append([prev_messages[i].content, prev_messages[i+1].content])
if request.stream:
generate = predict(query, history, prefix, request)
generate = predict(query, history, system, request)
return EventSourceResponse(generate, media_type="text/event-stream")
response, (prompt_length, response_length) = chat_model.chat(
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
)
usage = ChatCompletionResponseUsage(
@@ -85,7 +85,7 @@ def create_app(chat_model: ChatModel) -> FastAPI:
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage)
async def predict(query: str, history: List[Tuple[str, str]], prefix: str, request: ChatCompletionRequest):
async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role=Role.ASSISTANT),
@@ -95,7 +95,7 @@ def create_app(chat_model: ChatModel) -> FastAPI:
yield chunk.json(exclude_unset=True, ensure_ascii=False)
for new_text in chat_model.stream_chat(
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
):
if len(new_text) == 0:
continue

View File

@@ -1,10 +1,9 @@
import torch
from types import MethodType
from typing import Any, Dict, Generator, List, Optional, Tuple
from threading import Thread
from transformers import PreTrainedModel, TextIteratorStreamer
from transformers import GenerationConfig, TextIteratorStreamer
from llmtuner.extras.misc import dispatch_model, get_logits_processor, get_stopping_criteria
from llmtuner.extras.misc import dispatch_model, get_logits_processor
from llmtuner.extras.template import get_template_and_fix_tokenizer
from llmtuner.tuner.core import get_infer_args, load_model_and_tokenizer
@@ -15,22 +14,20 @@ class ChatModel:
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
self.model = dispatch_model(self.model)
self.model = self.model.eval() # change to eval mode
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
self.source_prefix = data_args.source_prefix
self.model.generate = MethodType(PreTrainedModel.generate, self.model) # disable custom method (for Qwen)
self.system_prompt = data_args.system_prompt
def process_args(
self,
query: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None,
system: Optional[str] = None,
**input_kwargs
) -> Tuple[Dict[str, Any], int]:
prefix = prefix or self.source_prefix
system = system or self.system_prompt
prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp="", history=history, prefix=prefix
tokenizer=self.tokenizer, query=query, resp="", history=history, system=system
)
input_ids = torch.tensor([prompt], device=self.model.device)
prompt_length = len(input_ids[0])
@@ -43,25 +40,30 @@ class ChatModel:
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
gen_kwargs = self.generating_args.to_dict()
gen_kwargs.update(dict(
input_ids=input_ids,
do_sample=do_sample if do_sample is not None else gen_kwargs["do_sample"],
temperature=temperature or gen_kwargs["temperature"],
top_p=top_p or gen_kwargs["top_p"],
top_k=top_k or gen_kwargs["top_k"],
repetition_penalty=repetition_penalty or gen_kwargs["repetition_penalty"],
logits_processor=get_logits_processor(),
stopping_criteria=get_stopping_criteria(self.tokenizer.additional_special_tokens_ids)
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id
))
if max_length:
gen_kwargs.pop("max_new_tokens", None)
gen_kwargs["max_length"] = max_length
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = max_new_tokens
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=input_ids,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor()
)
return gen_kwargs, prompt_length
@@ -70,10 +72,10 @@ class ChatModel:
self,
query: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None,
system: Optional[str] = None,
**input_kwargs
) -> Tuple[str, Tuple[int, int]]:
gen_kwargs, prompt_length = self.process_args(query, history, prefix, **input_kwargs)
gen_kwargs, prompt_length = self.process_args(query, history, system, **input_kwargs)
generation_output = self.model.generate(**gen_kwargs)
outputs = generation_output.tolist()[0][prompt_length:]
response = self.tokenizer.decode(outputs, skip_special_tokens=True)
@@ -85,10 +87,10 @@ class ChatModel:
self,
query: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None,
system: Optional[str] = None,
**input_kwargs
) -> Generator[str, None, None]:
gen_kwargs, _ = self.process_args(query, history, prefix, **input_kwargs)
gen_kwargs, _ = self.process_args(query, history, system, **input_kwargs)
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs["streamer"] = streamer

View File

@@ -1,48 +1,25 @@
import os
import hashlib
from typing import TYPE_CHECKING, List, Optional
from typing import TYPE_CHECKING, List, Union
from datasets import Value, concatenate_datasets, interleave_datasets, load_dataset
from datasets import concatenate_datasets, interleave_datasets, load_dataset
from llmtuner.dsets.utils import checksum, EXT2TYPE
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from datasets import Dataset
from datasets import Dataset, IterableDataset
from llmtuner.hparams import ModelArguments, DataArguments
logger = get_logger(__name__)
EXT2TYPE = {
"csv": "csv",
"json": "json",
"jsonl": "json",
"txt": "text"
}
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
if file_sha1 is None:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
return
if len(data_files) != 1:
logger.warning("Checksum failed: too many files.")
return
with open(data_files[0], "rb") as f:
sha1 = hashlib.sha1(f.read()).hexdigest()
if sha1 != file_sha1:
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
def get_dataset(
model_args: "ModelArguments",
data_args: "DataArguments"
) -> "Dataset":
) -> Union["Dataset", "IterableDataset"]:
max_samples = data_args.max_samples
all_datasets: List["Dataset"] = [] # support multiple datasets
all_datasets: List[Union["Dataset", "IterableDataset"]] = [] # support multiple datasets
for dataset_attr in data_args.dataset_list:
logger.info("Loading dataset {}...".format(dataset_attr))
@@ -92,14 +69,11 @@ def get_dataset(
if getattr(dataset_attr, column_name) and getattr(dataset_attr, column_name) != column_name:
dataset = dataset.rename_column(getattr(dataset_attr, column_name), column_name)
if dataset_attr.source_prefix: # add prefix
if dataset_attr.system_prompt: # add system prompt
if data_args.streaming:
features = dataset.features
features["prefix"] = Value(dtype="string", id=None)
dataset = dataset.map(lambda _: {"prefix": dataset_attr.source_prefix}, features=features)
dataset = dataset.map(lambda _: {"system": dataset_attr.system_prompt})
else:
prefix_data = [dataset_attr.source_prefix] * len(dataset)
dataset = dataset.add_column("prefix", prefix_data)
dataset = dataset.add_column("system", [dataset_attr.system_prompt] * len(dataset))
all_datasets.append(dataset)

View File

@@ -1,25 +1,25 @@
import tiktoken
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal, Union
from itertools import chain
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.template import get_template_and_fix_tokenizer
if TYPE_CHECKING:
from datasets import Dataset
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from llmtuner.hparams import DataArguments
def preprocess_dataset(
dataset: "Dataset",
dataset: Union["Dataset", "IterableDataset"],
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"]
) -> "Dataset":
column_names = list(dataset.column_names)
) -> Union["Dataset", "IterableDataset"]:
column_names = list(next(iter(dataset)).keys())
template = get_template_and_fix_tokenizer(data_args.template, tokenizer)
def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]:
@@ -27,15 +27,19 @@ def preprocess_dataset(
query, response = examples["prompt"][i], examples["response"][i]
query = query + "\n" + examples["query"][i] if "query" in examples and examples["query"][i] else query
history = examples["history"][i] if "history" in examples else None
prefix = examples["prefix"][i] if "prefix" in examples else None
yield query, response, history, prefix
system = examples["system"][i] if "system" in examples else None
yield query, response, history, system
def preprocess_pretrain_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
# build grouped texts with format `X1 X2 X3 ...` (without <eos>)
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
# build grouped texts with format `X1 X2 X3 ...`
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding):
kwargs = dict(allowed_special="all") # for tiktoken tokenizer (Qwen)
else:
kwargs = dict(add_special_tokens=False)
kwargs = dict(add_special_tokens=True)
if hasattr(tokenizer, "add_bos_token") and hasattr(tokenizer, "add_eos_token"):
setattr(tokenizer, "add_bos_token", True) # for LLaMA tokenizer
setattr(tokenizer, "add_eos_token", True)
tokenized_examples = tokenizer(examples["prompt"], **kwargs)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
@@ -56,10 +60,12 @@ def preprocess_dataset(
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
max_length = data_args.max_source_length + data_args.max_target_length
for query, response, history, prefix in construct_example(examples):
for query, response, history, system in construct_example(examples):
input_ids, labels = [], []
for source_ids, target_ids in template.encode_multiturn(tokenizer, query, response, history, prefix):
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, query, response, history, system
)):
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
if len(target_ids) > data_args.max_target_length:
@@ -68,8 +74,17 @@ def preprocess_dataset(
if len(input_ids) + len(source_ids) + len(target_ids) > max_length:
break
if turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += [IGNORE_INDEX] * len(source_ids) + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
@@ -78,17 +93,20 @@ def preprocess_dataset(
return model_inputs
def preprocess_unsupervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
# build inputs with format `<bos> X` and labels with format `<bos> Y`
# build inputs with format `<bos> X` and labels with format `Y <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for query, response, history, prefix in construct_example(examples):
source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, prefix)
for query, response, history, system in construct_example(examples):
source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, system)
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
if len(target_ids) > data_args.max_target_length:
target_ids = target_ids[:data_args.max_target_length]
if template.efficient_eos:
target_ids += [tokenizer.eos_token_id]
model_inputs["input_ids"].append(source_ids)
model_inputs["attention_mask"].append([1] * len(source_ids))
model_inputs["labels"].append(target_ids)
@@ -98,9 +116,9 @@ def preprocess_dataset(
def preprocess_pairwise_dataset(examples):
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []}
for query, response, history, prefix in construct_example(examples):
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, prefix)
_, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, prefix)
for query, response, history, system in construct_example(examples):
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, query, response[0], history, system)
_, rejected_ids = template.encode_oneturn(tokenizer, query, response[1], history, system)
if len(prompt_ids) > data_args.max_source_length:
prompt_ids = prompt_ids[:data_args.max_source_length]
@@ -109,6 +127,10 @@ def preprocess_dataset(
if len(rejected_ids) > data_args.max_target_length:
rejected_ids = rejected_ids[:data_args.max_target_length]
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)

View File

@@ -1,4 +1,7 @@
from typing import TYPE_CHECKING, Dict, Union
import hashlib
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
@@ -6,6 +9,32 @@ if TYPE_CHECKING:
from llmtuner.hparams import DataArguments
logger = get_logger(__name__)
EXT2TYPE = {
"csv": "csv",
"json": "json",
"jsonl": "json",
"txt": "text"
}
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
if file_sha1 is None:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
return
if len(data_files) != 1:
logger.warning("Checksum failed: too many files.")
return
with open(data_files[0], "rb") as f:
sha1 = hashlib.sha1(f.read()).hexdigest()
if sha1 != file_sha1:
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
def split_dataset(
dataset: Union["Dataset", "IterableDataset"],
data_args: "DataArguments",

View File

@@ -5,7 +5,9 @@ from typing import TYPE_CHECKING
from datetime import timedelta
from transformers import TrainerCallback
from transformers.trainer_utils import has_length
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from transformers.training_args import TrainingArguments
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.logging import get_logger
@@ -17,6 +19,24 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class SavePeftModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step))
getattr(kwargs.get("model"), "pretrained_model").save_pretrained(output_dir)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
getattr(kwargs.get("model"), "pretrained_model").save_pretrained(args.output_dir)
class LogCallback(TrainerCallback):
def __init__(self, runner=None):

View File

@@ -2,14 +2,18 @@ IGNORE_INDEX = -100
LOG_FILE_NAME = "trainer_log.jsonl"
VALUE_HEAD_FILE_NAME = "value_head.bin"
FINETUNING_ARGS_NAME = "finetuning_args.json"
LAYERNORM_NAMES = ["norm", "ln_f", "ln_attn", "ln_mlp"]
METHODS = ["full", "freeze", "lora"]
TRAINING_STAGES = {
"Supervised Fine-Tuning": "sft",
"Reward Modeling": "rm",
"PPO": "ppo",
"DPO": "dpo",
"Pre-Training": "pt"
}
SUPPORTED_MODELS = {
"LLaMA-7B": "huggyllama/llama-7b",
"LLaMA-13B": "huggyllama/llama-13b",
@@ -21,6 +25,10 @@ SUPPORTED_MODELS = {
"LLaMA2-7B-Chat": "meta-llama/Llama-2-7b-chat-hf",
"LLaMA2-13B-Chat": "meta-llama/Llama-2-13b-chat-hf",
"LLaMA2-70B-Chat": "meta-llama/Llama-2-70b-chat-hf",
"ChineseLLaMA2-7B": "ziqingyang/chinese-llama-2-7b",
"ChineseLLaMA2-13B": "ziqingyang/chinese-llama-2-13b",
"ChineseLLaMA2-7B-Chat": "ziqingyang/chinese-alpaca-2-7b",
"ChineseLLaMA2-13B-Chat": "ziqingyang/chinese-alpaca-2-13b",
"BLOOM-560M": "bigscience/bloom-560m",
"BLOOM-3B": "bigscience/bloom-3b",
"BLOOM-7B1": "bigscience/bloom-7b1",
@@ -34,23 +42,41 @@ SUPPORTED_MODELS = {
"Baichuan-7B": "baichuan-inc/Baichuan-7B",
"Baichuan-13B": "baichuan-inc/Baichuan-13B-Base",
"Baichuan-13B-Chat": "baichuan-inc/Baichuan-13B-Chat",
"Baichuan2-7B": "baichuan-inc/Baichuan2-7B-Base",
"Baichuan2-13B": "baichuan-inc/Baichuan2-13B-Base",
"Baichuan2-7B-Chat": "baichuan-inc/Baichuan2-7B-Chat",
"Baichuan2-13B-Chat": "baichuan-inc/Baichuan2-13B-Chat",
"InternLM-7B": "internlm/internlm-7b",
"InternLM-7B-Chat": "internlm/internlm-chat-7b",
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"XVERSE-13B": "xverse/XVERSE-13B",
"ChatGLM2-6B": "THUDM/chatglm2-6b"
"XVERSE-13B-Chat": "xverse/XVERSE-13B-Chat",
"ChatGLM2-6B-Chat": "THUDM/chatglm2-6b"
}
DEFAULT_MODULE = {
"LLaMA": "q_proj,v_proj",
"LLaMA2": "q_proj,v_proj",
"ChineseLLaMA2": "q_proj,v_proj",
"BLOOM": "query_key_value",
"BLOOMZ": "query_key_value",
"Falcon": "query_key_value",
"Baichuan": "W_pack",
"Baichuan2": "W_pack",
"InternLM": "q_proj,v_proj",
"Qwen": "c_attn",
"XVERSE": "q_proj,v_proj",
"ChatGLM2": "query_key_value"
}
DEFAULT_TEMPLATE = {
"LLaMA2": "llama2",
"ChineseLLaMA2": "llama2_zh",
"Baichuan": "baichuan",
"Baichuan2": "baichuan2",
"InternLM": "intern",
"Qwen": "chatml",
"XVERSE": "xverse",
"ChatGLM2": "chatglm2"
}

View File

@@ -8,6 +8,9 @@ class LoggerHandler(logging.Handler):
super().__init__()
self.log = ""
def reset(self):
self.log = ""
def emit(self, record):
if record.name == "httpx":
return

View File

@@ -1,13 +1,7 @@
import gc
import torch
from typing import TYPE_CHECKING, List, Optional, Tuple
from transformers import (
LogitsProcessor,
LogitsProcessorList,
StoppingCriteria,
StoppingCriteriaList
)
from llmtuner.extras.constants import LAYERNORM_NAMES
from typing import TYPE_CHECKING, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
@@ -33,37 +27,6 @@ class AverageMeter:
self.avg = self.sum / self.count
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 0] = 1.0
return scores
def get_logits_processor() -> LogitsProcessorList:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
return logits_processor
class StopWordsCriteria(StoppingCriteria):
def __init__(self, stop_ids: List[int]) -> None:
super().__init__()
self.stop_ids = stop_ids
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
return any([stop_id in input_ids[:, -1] for stop_id in self.stop_ids])
def get_stopping_criteria(stop_ids: List[int]) -> StoppingCriteriaList:
stopping_criteria = StoppingCriteriaList()
stopping_criteria.append(StopWordsCriteria(stop_ids))
return stopping_criteria
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
r"""
Returns the number of trainable parameters and number of all parameters in the model.
@@ -86,52 +49,17 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param
# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35
def prepare_model_for_training(
model: "PreTrainedModel",
finetuning_type: str,
output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel":
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
if finetuning_type != "full" and hasattr(model, output_layer_name):
if hasattr(model, "config") and hasattr(model.config, "pretraining_tp"):
model.config.pretraining_tp = 1 # disable TP for LoRA (https://github.com/huggingface/peft/pull/728)
output_layer: torch.nn.Linear = getattr(model, output_layer_name)
input_dtype = output_layer.weight.dtype
class CastOutputToFloat(torch.nn.Sequential):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return super().forward(x.to(input_dtype)).to(torch.float32)
setattr(model, output_layer_name, CastOutputToFloat(output_layer))
return model
def get_logits_processor() -> LogitsProcessorList:
logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor
def torch_gc() -> None:
r"""
Collects GPU memory.
"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@@ -142,6 +70,9 @@ def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel":
Dispatches a pre-trained model to GPUs with balanced memory.
Borrowed from: https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/modeling_utils.py#L2803
"""
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): # do nothing
return model
if torch.cuda.device_count() > 1:
from accelerate import dispatch_model
from accelerate.utils import infer_auto_device_map, get_balanced_memory

View File

View File

@@ -0,0 +1,305 @@
# coding=utf-8
# Modified from:
# [1] https://huggingface.co/Birchlabs/flash_llama/blob/main/modeling_flash_llama.py
# [2] https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama2_flash_attn_monkey_patch.py
# [3] https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/modeling_flash_llama.py
# [4] https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# With fix from Alex Birch: https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/discussions/17
import torch
from typing import Optional, Tuple
from transformers.utils import logging
from transformers.models.llama.configuration_llama import LlamaConfig
try:
from flash_attn.flash_attn_interface import (
flash_attn_kvpacked_func,
flash_attn_varlen_kvpacked_func,
)
from flash_attn.bert_padding import unpad_input, pad_input
flash_attn_v2_installed = True
print('>>>> Flash Attention installed')
except ImportError:
flash_attn_v2_installed = False
raise ImportError('Please install Flash Attention: `pip install flash-attn --no-build-isolation`')
try:
from flash_attn.layers.rotary import apply_rotary_emb_func
flash_rope_installed = True
print('>>>> Flash RoPE installed')
except ImportError:
flash_rope_installed = False
raise ImportError('Please install RoPE kernels: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary`')
logger = logging.get_logger(__name__)
class LlamaRMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype) # for fp32 weight
class FlashRotaryEmbedding(torch.nn.Module):
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
scaling_factor=1.0,
pos_idx_in_fp32=True,
device=None
):
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
self.scale_base = scale_base
self.scaling_factor = scaling_factor
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None else None
)
self.register_buffer("scale", scale)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _compute_inv_freq(self, device=None):
return 1 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
if (
seqlen > self._seq_len_cached or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
t /= self.scaling_factor
if self.inv_freq.dtype != torch.float32:
inv_freq = self.inv_freq.to(torch.float32)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
t /= self.scaling_factor
inv_freq = self.inv_freq
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
(torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2) / self.scale_base
)
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
q: (batch, seqlen, nheads, headdim)
k: (batch, seqlen, nheads, headdim)
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
if self.scale is None:
return apply_rotary_emb_func(
q, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
self.interleaved, True # inplace=True
), apply_rotary_emb_func(
k, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
self.interleaved, True # inplace=True
)
else:
assert False
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
r"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, slen, _, num_key_value_heads, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, :, :, None, :].expand(batch, slen, 2, num_key_value_heads, n_rep, head_dim)
return hidden_states.reshape(batch, slen, 2, num_key_value_heads * n_rep, head_dim)
class LlamaAttention(torch.nn.Module):
def __init__(self, config: "LlamaConfig"):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = torch.nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.register_buffer(
"norm_factor",
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
persistent=False,
)
if self.config.rope_scaling is None:
scaling_factor = 1
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
assert scaling_type == "linear"
self.rotary_emb = FlashRotaryEmbedding(
self.head_dim, base=10000, interleaved=False, scaling_factor=scaling_factor
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, h_size = hidden_states.size()
has_layer_past = past_key_value is not None
if has_layer_past:
past_kv = past_key_value[0]
past_len = past_key_value[1]
else:
past_len = 0
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = q.view(bsz, q_len, self.num_heads, self.head_dim)
k = k.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
v = v.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
q, k = self.rotary_emb(q, k, past_len)
kv = torch.stack([k, v], 2)
kv = repeat_kv(kv, self.num_key_value_groups)
# Cache QKV values
if has_layer_past:
new_len = past_len+q.size(1)
if new_len > past_kv.size(1):
past_kv = torch.cat(
[past_kv, torch.empty(bsz, 256, 2, kv.size(3), kv.size(4), dtype=kv.dtype, device=kv.device)], 1
)
past_kv[:, past_len:new_len] = kv
kv = past_kv[:, :new_len]
else:
past_kv = kv
past_key_value = (past_kv, past_len + q.size(1)) if use_cache else None
if attention_mask is not None:
# varlen, ignore padding tokens, efficient for large batch with many paddings
logger.warning_once("padded sequences is less efficient")
unpadded_kv, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(kv, attention_mask)
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask[:, -q.size(1):])
attn_outputs = flash_attn_varlen_kvpacked_func(
unpadded_q, unpadded_kv, cu_seqlens_q, cu_seqlens_k,
max_seqlen_q, max_seqlen_k,
dropout_p=0.0, softmax_scale=1.0/self.norm_factor,
causal=(not has_layer_past), return_attn_probs=output_attentions
)
attn_output = attn_outputs[0] if output_attentions else attn_outputs
attn_output = pad_input(
attn_output, indices_q, bsz, q_len
).reshape(bsz, q_len, h_size)
attn_weights = attn_outputs[2] if output_attentions else None
else:
# no padding tokens, more efficient
attn_outputs = flash_attn_kvpacked_func(
q, kv, dropout_p=0.0, softmax_scale=1.0/self.norm_factor,
causal=(not has_layer_past), return_attn_probs=output_attentions
)
attn_output = attn_outputs[0] if output_attentions else attn_outputs
attn_output = attn_output.reshape(bsz, q_len, h_size)
attn_weights = attn_outputs[2] if output_attentions else None
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Disable the transformation of the attention mask in LlamaModel as flash attention
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward.
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
(
torch.full(
(input_shape[0], past_key_values_length),
True,
dtype=attention_mask.dtype,
device=attention_mask.device
),
attention_mask
),
dim=-1
)
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask

View File

@@ -1,49 +1,21 @@
import os
import torch
from typing import Dict
from transformers.trainer import WEIGHTS_NAME
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from transformers.modeling_utils import load_sharded_checkpoint
from llmtuner.extras.constants import VALUE_HEAD_FILE_NAME
from llmtuner.extras.logging import get_logger
logger = get_logger(__name__)
def get_state_dict(model: torch.nn.Module) -> Dict[str, torch.Tensor]:
state_dict: Dict[str, torch.Tensor] = model.state_dict()
filtered_state_dict = {}
for k, v in model.named_parameters():
if v.requires_grad:
filtered_state_dict[k] = state_dict[k].cpu().clone().detach()
return filtered_state_dict
def load_trainable_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
weights_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
if os.path.exists(weights_file):
model_state_dict = torch.load(weights_file, map_location="cpu")
model.load_state_dict(model_state_dict, strict=False) # skip missing keys
elif os.path.exists(os.path.join(checkpoint_dir, WEIGHTS_INDEX_NAME)):
load_sharded_checkpoint(model, checkpoint_dir, strict=False)
else:
logger.warning("Provided path ({}) does not contain pre-trained weights.".format(checkpoint_dir))
return False
return True
def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -> bool:
valuehead_file = os.path.join(checkpoint_dir, VALUE_HEAD_FILE_NAME)
if not os.path.exists(valuehead_file):
vhead_file = os.path.join(checkpoint_dir, WEIGHTS_NAME)
if not os.path.exists(vhead_file):
logger.warning("Provided path ({}) does not contain valuehead weights.".format(checkpoint_dir))
return False
valuehead_state_dict = torch.load(valuehead_file, map_location="cpu")
model.register_buffer("reward_head_weight", valuehead_state_dict["summary.weight"])
model.register_buffer("reward_head_bias", valuehead_state_dict["summary.bias"])
model.register_buffer("default_head_weight", torch.zeros_like(valuehead_state_dict["summary.weight"]))
model.register_buffer("default_head_bias", torch.zeros_like(valuehead_state_dict["summary.bias"]))
vhead_params = torch.load(vhead_file, map_location="cpu")
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
model.register_buffer("default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False)
model.register_buffer("default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False)
return True

View File

@@ -16,9 +16,11 @@ class Template:
prefix: List[Union[str, Dict[str, str]]]
prompt: List[Union[str, Dict[str, str]]]
system: str
sep: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
efficient_eos: bool
def encode_oneturn(
self,
@@ -26,18 +28,18 @@ class Template:
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
system: Optional[str] = None
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
prefix, history = self._format(query, resp, history, prefix)
encoded_pairs = self._encode(tokenizer, prefix, history)
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids = prompt_ids + query_ids + resp_ids
prompt_ids = prompt_ids + encoded_pairs[-1][0]
return prompt_ids, encoded_pairs[-1][1]
prompt_ids, answer_ids = prompt_ids + encoded_pairs[-1][0], encoded_pairs[-1][1]
return prompt_ids, answer_ids
def encode_multiturn(
self,
@@ -45,13 +47,13 @@ class Template:
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
system: Optional[str] = None
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
prefix, history = self._format(query, resp, history, prefix)
encoded_pairs = self._encode(tokenizer, prefix, history)
system, history = self._format(query, resp, history, system)
encoded_pairs = self._encode(tokenizer, system, history)
return encoded_pairs
def _format(
@@ -59,36 +61,39 @@ class Template:
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> Tuple[List[Union[str, Dict[str, str]]], List[Tuple[str, str]]]:
system: Optional[str] = None
) -> Tuple[str, List[Tuple[str, str]]]:
r"""
Aligns inputs to the standard format.
"""
prefix = [prefix] if prefix else self.prefix # use prefix if provided
system = system or self.system # use system if provided
history = history if (history and self.use_history) else []
history = history + [(query, resp)]
return prefix, history
return system, history
def _get_special_ids(
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id:
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else:
bos_ids = [] # bos token is optional
else: # baichuan, qwen and gpt2 models have no bos token
bos_ids = []
if tokenizer.eos_token_id:
eos_ids = [tokenizer.eos_token_id]
else:
if tokenizer.eos_token_id is None:
raise ValueError("EOS token is required.")
if self.efficient_eos: # used in baichuan, qwen, chatglm, etc.
eos_ids = []
else:
eos_ids = [tokenizer.eos_token_id]
return bos_ids, eos_ids
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
system: str,
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
@@ -101,8 +106,9 @@ class Template:
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
if prefix: # has prefix
prefix_ids = bos_ids + self._convert_inputs_to_ids(tokenizer, context=prefix) + sep_ids
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system)
if len(prefix_ids) != 0: # has prefix
prefix_ids = bos_ids + prefix_ids + sep_ids
else:
prefix_ids = bos_ids
else:
@@ -117,8 +123,9 @@ class Template:
self,
tokenizer: "PreTrainedTokenizer",
context: List[Union[str, Dict[str, str]]],
query: Optional[str] = "",
idx: Optional[str] = ""
system: Optional[str] = None,
query: Optional[str] = None,
idx: Optional[str] = None
) -> List[int]:
r"""
Converts context to token ids.
@@ -131,13 +138,17 @@ class Template:
token_ids = []
for elem in context:
if isinstance(elem, str):
elem = elem.replace("{{query}}", query, 1)
elem = elem.replace("{{idx}}", idx, 1)
if len(elem) == 0:
continue
elem = elem.replace("{{system}}", system, 1) if system is not None else elem
elem = elem.replace("{{query}}", query, 1) if query is not None else elem
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
else:
raise NotImplementedError
return token_ids
@@ -147,7 +158,7 @@ class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
system: str,
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
@@ -157,10 +168,9 @@ class Llama2Template(Template):
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
encoded_pairs = []
assert isinstance(prefix[0], str), "LLaMA-2 template only accepts list containing a single string."
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0: # llama2 template has not sep_ids
query = prefix[0] + query
if turn_idx == 0: # llama2 template has no sep_ids
query = self.prefix[0].replace("{{system}}", system) + query
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids))
@@ -174,17 +184,21 @@ def register_template(
name: str,
prefix: List[Union[str, Dict[str, str]]],
prompt: List[Union[str, Dict[str, str]]],
system: str,
sep: List[Union[str, Dict[str, str]]],
stop_words: List[str],
use_history: bool
stop_words: Optional[List[str]] = [],
use_history: Optional[bool] = True,
efficient_eos: Optional[bool] = False
) -> None:
template_class = Llama2Template if "llama2" in name else Template
templates[name] = template_class(
prefix=prefix,
prompt=prompt,
system=system,
sep=sep,
stop_words=stop_words,
use_history=use_history
use_history=use_history,
efficient_eos=efficient_eos
)
@@ -192,13 +206,6 @@ def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
if len(template.stop_words): # inplace method
tokenizer.eos_token = template.stop_words[0]
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
if tokenizer.eos_token_id is None:
tokenizer.eos_token = "<|endoftext|>"
logger.info("Add eos token: {}".format(tokenizer.eos_token))
@@ -207,7 +214,15 @@ def get_template_and_fix_tokenizer(
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
tokenizer.add_special_tokens(dict(additional_special_tokens=template.stop_words))
if name is None:
return None
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
tokenizer.add_special_tokens(
dict(additional_special_tokens=template.stop_words),
replace_additional_special_tokens=False
)
return template
@@ -220,8 +235,8 @@ register_template(
prompt=[
"{{query}}"
],
system="",
sep=[],
stop_words=[],
use_history=False
)
@@ -232,17 +247,18 @@ Default template.
register_template(
name="default",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant: "
],
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[
"\n"
],
stop_words=[],
use_history=True
]
)
@@ -254,38 +270,39 @@ Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
register_template(
name="llama2",
prefix=[
"<<SYS>>\nYou are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n"
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST] "
],
sep=[],
stop_words=[],
use_history=True
system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
sep=[]
)
r"""
Supports: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
"""
register_template(
name="llama2_zh",
prefix=[
"<<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n"
"<<SYS>>\n{{system}}\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST] "
],
sep=[],
stop_words=[],
use_history=True
system="You are a helpful assistant. 你是一个乐于助人的助手。",
sep=[]
)
@@ -296,17 +313,18 @@ Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
register_template(
name="alpaca",
prefix=[
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
"{{system}}"
],
prompt=[
"### Instruction:\n{{query}}\n\n### Response:\n"
],
system=(
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
),
sep=[
"\n\n"
],
stop_words=[],
use_history=True
]
)
@@ -317,15 +335,16 @@ Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
register_template(
name="vicuna",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
"{{system}}"
],
prompt=[
"USER: {{query}} ASSISTANT: "
],
sep=[],
stop_words=[],
use_history=True
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
),
sep=[]
)
@@ -334,15 +353,16 @@ Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B
"""
register_template(
name="belle",
prefix=[],
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nBelle: "
],
system="",
sep=[
"\n\n"
],
stop_words=[],
use_history=True
]
)
@@ -351,15 +371,16 @@ Supports: https://github.com/CVI-SZU/Linly
"""
register_template(
name="linly",
prefix=[],
prefix=[
"{{system}}"
],
prompt=[
"User: {{query}}\nBot: "
],
system="",
sep=[
"\n"
],
stop_words=[],
use_history=True
]
)
@@ -368,15 +389,16 @@ Supports: https://github.com/Neutralzz/BiLLa
"""
register_template(
name="billa",
prefix=[],
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\nAssistant: "
],
system="",
sep=[
"\n"
],
stop_words=[],
use_history=True
]
)
@@ -385,18 +407,19 @@ Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
register_template(
name="ziya",
prefix=[],
prefix=[
"{{system}}"
],
prompt=[
{"token": "<human>"},
":{{query}}\n",
{"token": "<bot>"},
":"
],
system="",
sep=[
"\n"
],
stop_words=[],
use_history=True
]
)
@@ -406,17 +429,18 @@ Supports: https://huggingface.co/qhduan/aquilachat-7b
register_template(
name="aquila",
prefix=[
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
"{{system}}"
],
prompt=[
"Human: {{query}}###Assistant: "
],
system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
sep=[
"###"
],
stop_words=[],
use_history=True
]
)
@@ -425,19 +449,23 @@ Supports: https://huggingface.co/internlm/internlm-chat-7b
"""
register_template(
name="intern",
prefix=[],
prefix=[
"{{system}}"
],
prompt=[
"<|User|>:{{query}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
system="",
sep=[
{"token": "<eoa>"},
"\n"
],
stop_words=[
"<eoa>"
],
use_history=True
efficient_eos=True
)
@@ -447,17 +475,36 @@ Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
register_template(
name="baichuan",
prefix=[
{"token": "<reserved_102>"} # user token (a little difference in the first turn)
"{{system}}"
],
prompt=[
{"token": "<reserved_102>"}, # user token
"{{query}}",
{"token": "<reserved_103>"} # assistant token
{"token": "<reserved_103>"} # assistant token
],
system="",
sep=[],
stop_words=[
"<reserved_102>" # user token
efficient_eos=True
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
"""
register_template(
name="baichuan2",
prefix=[
"{{system}}"
],
use_history=True
prompt=[
{"token": "<reserved_106>"}, # user token
"{{query}}",
{"token": "<reserved_107>"} # assistant token
],
system="",
sep=[],
efficient_eos=True
)
@@ -469,8 +516,7 @@ register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n",
{"token": "<|end|>"}
"\n{{system}}",
],
prompt=[
{"token": "<|user|>"},
@@ -479,13 +525,15 @@ register_template(
"\n",
{"token": "<|assistant|>"}
],
system="",
sep=[
{"token": "<|end|>"},
"\n"
],
stop_words=[
"<|end|>"
],
use_history=True
efficient_eos=True
)
@@ -496,8 +544,7 @@ register_template(
name="chatml",
prefix=[
{"token": "<|im_start|>"},
"system\nYou are a helpful assistant.",
{"token": "<|im_end|>"}
"system\n{{system}}"
],
prompt=[
{"token": "<|im_start|>"},
@@ -507,13 +554,15 @@ register_template(
{"token": "<|im_start|>"},
"assistant\n"
],
system="You are a helpful assistant.",
sep=[
{"token": "<|im_end|>"},
"\n"
],
stop_words=[
"<|im_end|>"
],
use_history=True
efficient_eos=True
)
@@ -524,14 +573,31 @@ register_template(
name="chatglm2",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"}
{"token": "sop"},
"{{system}}"
],
prompt=[
"[Round {{idx}}]\n\n问:{{query}}\n\n答:"
],
system="",
sep=[
"\n\n"
],
stop_words=[],
use_history=True
efficient_eos=True
)
r"""
Supports: https://huggingface.co/xverse/XVERSE-13B-Chat
"""
register_template(
name="xverse",
prefix=[
"{{system}}"
],
prompt=[
"Human: {{query}}\n\nAssistant: "
],
system="",
sep=[]
)

View File

@@ -10,24 +10,24 @@ class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
source_prefix: Optional[str] = None
system_prompt: Optional[str] = None
ranking: Optional[bool] = False
prompt: Optional[str] = "instruction"
query: Optional[str] = "input"
response: Optional[str] = "output"
history: Optional[str] = None
def __repr__(self) -> str:
return self.dataset_name
def __post_init__(self):
self.prompt = "instruction"
self.query = "input"
self.response = "output"
self.history = None
@dataclass
class DataArguments:
r"""
Arguments pertaining to what data we are going to input our model for training and evaluation.
"""
template: str = field(
template: Optional[str] = field(
default=None,
metadata={"help": "Which template to use for constructing prompts in training and inference."}
)
dataset: Optional[str] = field(
@@ -47,7 +47,7 @@ class DataArguments:
metadata={"help": "Enable streaming mode."}
)
buffer_size: Optional[int] = field(
default=16384,
default=1024,
metadata={"help": "Size of the buffer to randomly sample examples from in streaming mode."}
)
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
@@ -86,9 +86,9 @@ class DataArguments:
default=True,
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
)
source_prefix: Optional[str] = field(
system_prompt: Optional[str] = field(
default=None,
metadata={"help": "A prefix to add before every source text. Use `|` to separate multiple prefixes in training."}
metadata={"help": "System prompt to add before the user query. Use `|` to separate multiple prompts in training."}
)
val_size: Optional[float] = field(
default=0,
@@ -100,12 +100,9 @@ class DataArguments:
with open(os.path.join(self.dataset_dir, "dataset_info.json"), "r") as f:
dataset_info = json.load(f)
if self.source_prefix is not None:
prefix_list = self.source_prefix.split("|")
prefix_list = prefix_list * len(dataset_names) if len(prefix_list) == 1 else prefix_list
assert len(prefix_list) == len(dataset_names), "The number of prefixes should be either identical with datasets or 1."
else:
prefix_list = [None] * len(dataset_names)
prompt_list = self.system_prompt.split("|") if self.system_prompt else [None]
prompt_list = prompt_list * (len(dataset_names) // len(prompt_list))
assert len(prompt_list) == len(dataset_names), "Number of system prompts should be equal to datasets or 1."
if self.interleave_probs is not None:
self.interleave_probs = [float(prob.strip()) for prob in self.interleave_probs.split(",")]
@@ -126,12 +123,12 @@ class DataArguments:
dataset_sha1=dataset_info[name].get("file_sha1", None)
)
dataset_attr.source_prefix = prefix_list[i]
if "columns" in dataset_info[name]:
dataset_attr.prompt = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query = dataset_info[name]["columns"].get("query", None)
dataset_attr.response = dataset_info[name]["columns"].get("response", None)
dataset_attr.history = dataset_info[name]["columns"].get("history", None)
dataset_attr.ranking = dataset_info[name].get("ranking", False)
dataset_attr.system_prompt = prompt_list[i]
self.dataset_list.append(dataset_attr)

View File

@@ -8,7 +8,7 @@ class FinetuningArguments:
r"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
finetuning_type: Optional[Literal["none", "freeze", "lora", "full"]] = field(
finetuning_type: Optional[Literal["lora", "freeze", "full", "none"]] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
)
@@ -21,7 +21,8 @@ class FinetuningArguments:
Falcon choices: [\"32\", \"60\"], \
Baichuan choices: [\"32\", \"40\"] \
Qwen choices: [\"32\"], \
XVERSE choices: [\"40\"]"}
XVERSE choices: [\"40\"], \
ChatGLM2 choices: [\"28\"]"}
)
num_layer_trainable: Optional[int] = field(
default=3,
@@ -31,7 +32,7 @@ class FinetuningArguments:
default="mlp",
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM & Falcon choices: [\"mlp\", \"self_attention\"], \
BLOOM & Falcon & ChatGLM2 choices: [\"mlp\", \"self_attention\"], \
Baichuan choices: [\"mlp\", \"self_attn\"], \
Qwen choices: [\"mlp\", \"attn\"], \
LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
@@ -49,10 +50,10 @@ class FinetuningArguments:
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_target: Optional[str] = field(
default="q_proj,v_proj",
default=None,
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
BLOOM & Falcon & ChatGLM2 choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
@@ -61,6 +62,10 @@ class FinetuningArguments:
default=True,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
)
ppo_score_norm: Optional[bool] = field(
default=False,
metadata={"help": "Use score normalization in PPO Training."}
)
dpo_beta: Optional[float] = field(
default=0.1,
metadata={"help": "The beta parameter for the DPO loss."}
@@ -77,7 +82,7 @@ class FinetuningArguments:
self.trainable_layers = ["{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
assert self.finetuning_type in ["none", "freeze", "lora", "full"], "Invalid fine-tuning method."
assert self.finetuning_type in ["lora", "freeze", "full", "none"], "Invalid fine-tuning method."
def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`."""

View File

@@ -16,7 +16,7 @@ class ModelArguments:
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
)
use_fast_tokenizer: Optional[bool] = field(
default=False,
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
)
use_auth_token: Optional[bool] = field(
@@ -27,10 +27,6 @@ class ModelArguments:
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
)
padding_side: Optional[Literal["left", "right"]] = field(
default="left",
metadata={"help": "The side on which the model should have padding applied."}
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."}
@@ -43,9 +39,13 @@ class ModelArguments:
default=True,
metadata={"help": "Whether to use double quantization in int4 training or not."}
)
compute_dtype: Optional[torch.dtype] = field(
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
default=None,
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
metadata={"help": "Adopt scaled rotary positional embeddings."}
)
flash_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enable flash attention for faster training."}
)
checkpoint_dir: Optional[str] = field(
default=None,
@@ -63,8 +63,19 @@ class ModelArguments:
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."}
)
compute_dtype: Optional[torch.dtype] = field(
default=None,
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
)
model_max_length: Optional[int] = field(
default=None,
metadata={"help": "Used in rope scaling. Do not specify this argument manually."}
)
def __post_init__(self):
if self.compute_dtype is not None or self.model_max_length is not None:
raise ValueError("These arguments cannot be specified.")
if self.checkpoint_dir is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]

View File

@@ -11,7 +11,7 @@ from peft import (
from peft.utils import CONFIG_NAME, WEIGHTS_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import load_trainable_params
from llmtuner.tuner.core.utils import find_all_linear_modules
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
@@ -52,9 +52,6 @@ def init_adapter(
else:
param.data = param.data.to(torch.float32)
if model_args.checkpoint_dir is not None:
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
latest_checkpoint = None
@@ -81,13 +78,18 @@ def init_adapter(
model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable)
if is_trainable and latest_checkpoint is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, model_args.quantization_bit)
else:
target_modules = finetuning_args.lora_target
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetuning_args.lora_rank,
lora_alpha=finetuning_args.lora_alpha,
lora_dropout=finetuning_args.lora_dropout,
target_modules=finetuning_args.lora_target
target_modules=target_modules
)
model = get_peft_model(model, lora_config)

View File

@@ -1,7 +1,10 @@
import os
import math
import torch
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Tuple
import transformers
from transformers import (
AutoConfig,
AutoModelForCausalLM,
@@ -13,14 +16,19 @@ from transformers import (
)
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from transformers.deepspeed import is_deepspeed_zero3_enabled
from trl import AutoModelForCausalLMWithValueHead
try:
from transformers.deepspeed import is_deepspeed_zero3_enabled
except ImportError:
from transformers.integrations import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import reset_logging, get_logger
from llmtuner.extras.misc import count_parameters, prepare_model_for_training
from llmtuner.extras.misc import count_parameters
from llmtuner.extras.save_and_load import load_valuehead_params
from llmtuner.hparams import FinetuningArguments
from llmtuner.tuner.core.adapter import init_adapter
from llmtuner.tuner.core.utils import prepare_model_for_training
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
@@ -30,11 +38,11 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
check_min_version("4.29.1")
check_min_version("4.30.0")
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.4.0", "To fix: pip install peft>=0.4.0")
require_version("trl>=0.5.0", "To fix: pip install trl>=0.5.0")
require_version("peft==0.4.0", "To fix: pip install peft==0.4.0")
require_version("trl>=0.7.1", "To fix: pip install trl>=0.7.1")
def load_model_and_tokenizer(
@@ -62,20 +70,84 @@ def load_model_and_tokenizer(
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
padding_side=model_args.padding_side,
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
**config_kwargs
)
if model_args.checkpoint_dir is not None and finetuning_args.finetuning_type == "full":
# Fix tokenizer (for ChatGLM2)
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None:
model_to_load = model_args.checkpoint_dir[0]
else:
model_to_load = model_args.model_name_or_path
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs)
is_mergeable = True
# Fix config (for Qwen)
if is_trainable and hasattr(config, "fp16") and hasattr(config, "bf16"):
if model_args.compute_dtype == torch.bfloat16:
setattr(config, "bf16", True)
else:
setattr(config, "fp16", True)
# Set RoPE scaling
if model_args.rope_scaling is not None:
if hasattr(config, "use_dynamic_ntk"): # for Qwen models
if is_trainable:
logger.warning("Qwen model does not support RoPE scaling in training.")
else:
setattr(config, "use_dynamic_ntk", True)
setattr(config, "use_logn_attn", True)
logger.info("Using dynamic NTK scaling.")
elif hasattr(config, "rope_scaling"): # for LLaMA and Falcon models
require_version("transformers>=4.31.0", "RoPE scaling requires transformers>=4.31.0")
if is_trainable:
if model_args.rope_scaling == "dynamic":
assert not model_args.flash_attn, "Flash attention does not support dynamic rope scaling."
logger.warning(
"Dynamic NTK may not work well with fine-tuning. "
"See: https://github.com/huggingface/transformers/pull/24653"
)
current_max_length = getattr(config, "max_position_embeddings", None)
if current_max_length and model_args.model_max_length > current_max_length:
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
logger.info("Using {} scaling strategy and setting scaling factor to {}".format(
model_args.rope_scaling, scaling_factor
))
else:
logger.warning("Current model does not support RoPE scaling.")
# Set flash attention
if model_args.flash_attn and getattr(config, "model_type", None) == "llama":
import transformers.models.llama.modeling_llama as LlamaModule
from llmtuner.extras.models.flash_llama import LlamaRMSNorm, LlamaAttention, _prepare_decoder_attention_mask
LlamaModule.LlamaRMSNorm = LlamaRMSNorm
LlamaModule.LlamaAttention = LlamaAttention
LlamaModule.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask
if not hasattr(config, "num_key_value_heads"):
setattr(config, "num_key_value_heads", getattr(config, "num_attention_heads"))
if getattr(config, "pretraining_tp", 1) != 1:
setattr(config, "pretraining_tp", 1)
# Quantization configurations (using bitsandbytes library).
is_mergeable = True
if model_args.quantization_bit is not None:
if is_deepspeed_zero3_enabled():
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.")
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["load_in_8bit"] = True
@@ -92,18 +164,26 @@ def load_model_and_tokenizer(
)
is_mergeable = False
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} if is_trainable else "auto"
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load and prepare pretrained models (without valuehead).
# Load and prepare pre-trained models (without valuehead).
model = AutoModelForCausalLM.from_pretrained(
model_to_load,
config=config,
torch_dtype=torch.bfloat16 if model_args.compute_dtype == torch.bfloat16 else torch.float16,
torch_dtype=model_args.compute_dtype,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs
)
# Disable custom generate method (for Qwen)
if "GenerationMixin" not in str(model.generate.__func__):
model.generate = MethodType(PreTrainedModel.generate, model)
# Fix LM head (for ChatGLM2)
if not hasattr(model, "lm_head") and hasattr(model, "transformer"):
setattr(model, "lm_head", model.transformer.output_layer)
# Register auto class to save the custom code files.
if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}):
config.__class__.register_for_auto_class()
@@ -115,11 +195,13 @@ def load_model_and_tokenizer(
# Initialize adapters
model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
model = model.train() if is_trainable else model.eval()
if stage == "rm" or stage == "ppo": # add value head
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
# Prepare model with valuehead for RLHF
if stage == "rm" or stage == "ppo":
model: AutoModelForCausalLMWithValueHead = AutoModelForCausalLMWithValueHead.from_pretrained(model)
model._keys_to_ignore_on_save = None
reset_logging()
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model
logger.warning("Only the last checkpoint containing valuehead will be loaded as the valuehead.")
if load_valuehead_params(model, model_args.checkpoint_dir[-1]):
@@ -133,9 +215,11 @@ def load_model_and_tokenizer(
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."
# Prepare model for inference
if not is_trainable:
model.requires_grad_(False) # fix all model params
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
infer_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 # detect cuda capability
model = model.to(infer_dtype) if model_args.quantization_bit is None else model
trainable_params, all_param = count_parameters(model)
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(

View File

@@ -5,6 +5,8 @@ import datasets
import transformers
from typing import Any, Dict, Optional, Tuple
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.utils.versions import require_version
from transformers.trainer_utils import get_last_checkpoint
from llmtuner.extras.logging import get_logger
from llmtuner.hparams import (
@@ -94,33 +96,50 @@ def get_train_args(
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
data_args.init_for_training()
if general_args.stage != "pt" and data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if general_args.stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True except SFT.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
if general_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if general_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO training can only be performed with the LoRA method.")
raise ValueError("RM and PPO stages can only be performed with the LoRA method.")
if general_args.stage in ["rm", "ppo"] and training_args.resume_from_checkpoint is not None:
raise ValueError("RM and PPO stages do not support `resume_from_checkpoint`.")
if general_args.stage in ["ppo", "dpo"] and not training_args.do_train:
raise ValueError("PPO and DPO stage can only be performed at training.")
raise ValueError("PPO and DPO stages can only be performed at training.")
if general_args.stage in ["rm", "dpo"]:
for dataset_attr in data_args.dataset_list:
if not dataset_attr.ranking:
raise ValueError("Please use ranked datasets for reward modeling or DPO training.")
if general_args.stage == "ppo" and model_args.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
if general_args.stage == "ppo" and training_args.deepspeed is not None:
raise ValueError("PPO training is incompatible with DeepSpeed, use Accelerate instead.")
if general_args.stage == "ppo" and data_args.streaming:
raise ValueError("Streaming mode does not suppport PPO training currently.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
if data_args.val_size > 1e-6 and data_args.val_size < 1 and data_args.streaming:
raise ValueError("Streaming mode should have an integer val size.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
if training_args.do_train and finetuning_args.finetuning_type == "lora" and finetuning_args.lora_target is None:
raise ValueError("Please specify `lora_target` in LoRA training.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
@@ -134,35 +153,58 @@ def get_train_args(
if model_args.quantization_bit is not None and (not training_args.do_train):
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
if training_args.do_train and (not training_args.fp16):
logger.warning("We recommend enable fp16 mixed precision training.")
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
logger.warning("We recommend enable mixed precision training.")
# postprocess data_args
if data_args.max_samples is not None and data_args.streaming:
logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.")
data_args.max_samples = None
# postprocess training_args
if (
training_args.local_rank != -1
and training_args.ddp_find_unused_parameters is None
and finetuning_args.finetuning_type == "lora"
):
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
training_args.ddp_find_unused_parameters = False
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(ddp_find_unused_parameters=False))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
if data_args.max_samples is not None and data_args.streaming:
logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.")
data_args.max_samples = None
if (
training_args.resume_from_checkpoint is None
and training_args.do_train
and os.path.isdir(training_args.output_dir)
and not training_args.overwrite_output_dir
):
require_version("transformers>=4.31.0", "Resuming training requires transformers>=4.31.0.")
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError("Output directory already exists and is not empty. Use `overwrite_output_dir`.")
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
if last_checkpoint is not None:
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
logger.info(
"Resuming from checkpoint. Change `output_dir` or use `overwrite_output_dir` to avoid."
)
if model_args.quantization_bit is not None:
if training_args.fp16:
model_args.compute_dtype = torch.float16
elif training_args.bf16:
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float32
# postprocess model_args
if training_args.bf16:
if not torch.cuda.is_bf16_supported():
raise ValueError("Current device does not support bf16 training.")
model_args.compute_dtype = torch.bfloat16
else:
model_args.compute_dtype = torch.float16
model_args.model_max_length = data_args.max_source_length + data_args.max_target_length
# Log on each process the small summary:
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, 16-bits training: {}".format(
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
training_args.local_rank, training_args.device, training_args.n_gpu,
bool(training_args.local_rank != -1), training_args.fp16
bool(training_args.local_rank != -1), str(model_args.compute_dtype)
))
logger.info(f"Training/evaluation parameters {training_args}")
@@ -182,6 +224,9 @@ def get_infer_args(
]:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args)
if data_args.template is None:
raise ValueError("Please specify which `template` to use.")
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")

View File

@@ -1,107 +0,0 @@
import os
import torch
from typing import TYPE_CHECKING, Dict, Optional
from transformers import Seq2SeqTrainer
from transformers.trainer import TRAINING_ARGS_NAME, WEIGHTS_NAME
from transformers.modeling_utils import PreTrainedModel, unwrap_model
from peft import PeftModel
from trl import PreTrainedModelWrapper
from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, Seq2SeqTrainingArguments, TrainerState
from llmtuner.hparams import FinetuningArguments
logger = get_logger(__name__)
class PeftModelMixin:
r"""
Patches the save and load methods in Hugging Face Trainer for PeftModel and ModelWithValueHead.
"""
def __init__(self) -> None: # for type checking
self.model: PreTrainedModel = None
self.tokenizer: "PreTrainedTokenizer" = None
self.args: "Seq2SeqTrainingArguments" = None
self.finetuning_args: "FinetuningArguments" = None
self.state: "TrainerState" = None
raise AssertionError("Mixin should not be initialized.")
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, torch.Tensor]] = None) -> None:
r"""
Saves trainable parameters as model checkpoint.
This function will only be executed at the process zero.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
"""
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
model = unwrap_model(self.model)
if isinstance(model, PreTrainedModelWrapper):
# Custom state dict: https://github.com/lvwerra/trl/blob/v0.4.7/trl/models/modeling_value_head.py#L200
model_state_dict = state_dict or model.state_dict()
v_head_state_dict = {
name.replace("v_head.", ""): model_state_dict[name].cpu().clone().detach()
for name in model_state_dict.keys() if name.startswith("v_head.")
}
torch.save(v_head_state_dict, os.path.join(output_dir, VALUE_HEAD_FILE_NAME))
model = model.pretrained_model
state_dict = state_dict or get_state_dict(model)
if isinstance(model, (PeftModel, PreTrainedModel)):
model.config.use_cache = True
model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors)
model.config.use_cache = False
else:
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
if self.finetuning_args.finetuning_type == "full" and self.tokenizer is not None:
try:
self.tokenizer.save_pretrained(output_dir)
except:
logger.warning("Cannot save tokenizer, copy the files manually.")
with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f:
f.write(self.args.to_json_string() + "\n")
self.finetuning_args.save_to_json(os.path.join(output_dir, FINETUNING_ARGS_NAME))
def _load_best_model(self):
r"""
Loads trainable parameters from model checkpoint.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
"""
logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
model = unwrap_model(self.model)
if isinstance(model, PreTrainedModelWrapper):
model.v_head.load_state_dict(torch.load(
os.path.join(self.state.best_model_checkpoint, VALUE_HEAD_FILE_NAME), map_location="cpu"
))
model = model.pretrained_model
if isinstance(model, PeftModel):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
else: # freeze/full-tuning
load_trainable_params(model, self.state.best_model_checkpoint)
class PeftTrainer(PeftModelMixin, Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to support parameter-efficient checkpoints.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs):
Seq2SeqTrainer.__init__(self, **kwargs)
self.finetuning_args = finetuning_args

View File

@@ -0,0 +1,72 @@
import torch
from typing import TYPE_CHECKING, List, Optional
from llmtuner.extras.constants import LAYERNORM_NAMES
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
def find_all_linear_modules(
model: "PreTrainedModel",
quantization_bit: Optional[int] = None,
output_layer_name: Optional[str] = "lm_head"
) -> List[str]:
if quantization_bit is not None:
import bitsandbytes as bnb
linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt
else:
linear_cls = torch.nn.Linear
module_names = set()
for name, module in model.named_modules():
if output_layer_name not in name and isinstance(module, linear_cls):
module_names.add(name.split(".")[-1])
if output_layer_name in module_names:
module_names.pop(output_layer_name)
return list(module_names)
def prepare_model_for_training(
model: "PreTrainedModel",
finetuning_type: str,
output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel":
r"""
Includes:
(1) cast the layernorm in fp32
(2) make output embedding layer require grads
(3) upcast the lm_head to fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
"""
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
model.gradient_checkpointing_enable()
model.config.use_cache = False # turn off when gradient checkpointing is enabled
if finetuning_type != "full" and hasattr(model, output_layer_name):
output_layer: torch.nn.Linear = getattr(model, output_layer_name)
input_dtype = output_layer.weight.dtype
class CastOutputToFloat(torch.nn.Sequential):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return super().forward(x.to(input_dtype)).to(torch.float32)
setattr(model, output_layer_name, CastOutputToFloat(output_layer))
return model

View File

@@ -16,7 +16,7 @@ class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
if self.tokenizer.padding_side == "left":
start, end = feature.size(0) - answer_len, feature.size(0)
else:
start, end = prompt_len, answer_len
start, end = prompt_len, prompt_len + answer_len
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor)

View File

@@ -1,68 +1,62 @@
import torch
from collections import defaultdict
from peft import PeftModel
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from transformers import Trainer
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.tuner.core.trainer import PeftModelMixin
if TYPE_CHECKING:
from transformers import PreTrainedModel
from llmtuner.hparams import FinetuningArguments, GeneratingArguments
class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
class CustomDPOTrainer(DPOTrainer):
def __init__(
self,
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
beta: float,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: Optional[bool] = True,
**kwargs
):
self.finetuning_args = finetuning_args
self.generating_args = generating_args
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.is_encoder_decoder = model.config.is_encoder_decoder
self.ref_model = ref_model
self.use_dpo_data_collator = True # hack to avoid warning
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.beta = finetuning_args.dpo_beta
self.beta = beta
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, **kwargs)
Trainer.__init__(self, model=model, **kwargs)
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
if ref_model is not None:
if hasattr(self, "accelerator"):
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if self.is_deepspeed_enabled:
self.ref_model, = self.accelerator._prepare_deepspeed(self.ref_model)
self.ref_model.eval()
else:
raise AttributeError("Please update `transformers`.")
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def concatenated_forward(
self,
model: Optional[torch.nn.Module] = None,
batch: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_disable()
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
if model is None and isinstance(unwrapped_model, PeftModel): # peft model has no ref_model
with unwrapped_model.disable_adapter():
all_logits: torch.Tensor = self.model(
batch["input_ids"],
attention_mask=batch["attention_mask"],
return_dict=True
).logits.to(torch.float32)
else:
all_logits: torch.Tensor = model(
batch["input_ids"],
attention_mask=batch["attention_mask"],
return_dict=True
).logits.to(torch.float32)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_enable()
all_logits = model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
all_logps = self._get_batch_logps(
all_logits,

View File

@@ -3,17 +3,18 @@
from copy import deepcopy
from peft import PeftModel
from typing import TYPE_CHECKING, Optional, List
from transformers import Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.dpo.collator import DPODataCollatorWithPadding
from llmtuner.tuner.dpo.trainer import DPOPeftTrainer
from llmtuner.tuner.dpo.trainer import CustomDPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
def run_dpo(
@@ -21,7 +22,6 @@ def run_dpo(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None
):
dataset = get_dataset(model_args, data_args)
@@ -32,15 +32,15 @@ def run_dpo(
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
training_args.remove_unused_columns = False # important for pairwise dataset
ref_model = deepcopy(model) if not isinstance(model, PeftModel) else None
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = DPOPeftTrainer(
finetuning_args=finetuning_args,
generating_args=generating_args,
ref_model=ref_model,
trainer = CustomDPOTrainer(
beta=finetuning_args.dpo_beta,
model=model,
ref_model=deepcopy(model) if not isinstance(model, PeftModel) else None,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
@@ -50,7 +50,7 @@ def run_dpo(
# Training
if training_args.do_train:
train_result = trainer.train()
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()

View File

@@ -2,29 +2,28 @@ import os
import math
import torch
from tqdm import tqdm
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
from transformers import TrainerState, TrainerControl
from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from trl import PPOTrainer
from trl.core import LengthSampler
from trl.core import LengthSampler, PPODecorators, logprobs_from_logits
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor, get_stopping_criteria
from llmtuner.tuner.core.trainer import PeftTrainer
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.tuner.ppo.utils import cast_layernorm_dtype, replace_model
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.extras.callbacks import LogCallback
from llmtuner.hparams import FinetuningArguments, GeneratingArguments
from llmtuner.hparams import GeneratingArguments
logger = get_logger(__name__)
class PPOPeftTrainer(PPOTrainer, PeftTrainer):
class CustomPPOTrainer(PPOTrainer, Trainer):
r"""
Inherits PPOTrainer.
"""
@@ -32,16 +31,19 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
def __init__(
self,
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: List["LogCallback"],
callbacks: List["TrainerCallback"],
compute_dtype: torch.dtype,
**kwargs
):
PPOTrainer.__init__(self, **kwargs)
if getattr(self.accelerator.state, "deepspeed_plugin", None) is not None:
raise ValueError("PPOTrainer is incompatible with DeepSpeed.")
self.args = training_args
self.finetuning_args = finetuning_args
self.generating_args = generating_args
self.log_callback = callbacks[0]
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
self.compute_dtype = compute_dtype
self.state = TrainerState()
self.control = TrainerControl()
@@ -73,9 +75,11 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}")
# Keyword arguments for `model.generate`
gen_kwargs = self.generating_args.to_dict()
gen_kwargs["logits_processor"] = get_logits_processor()
gen_kwargs["stopping_criteria"] = get_stopping_criteria(self.tokenizer.additional_special_tokens_ids)
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id
))
length_sampler = LengthSampler(max_target_length // 2, max_target_length)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
@@ -93,17 +97,21 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
# Cast to inference mode
unwrapped_model.gradient_checkpointing_disable()
unwrapped_model.config.use_cache = True
self.model.eval()
# Get inputs
queries, responses = self.get_inputs(batch, length_sampler, **gen_kwargs)
queries, responses = self.get_inputs(batch, length_sampler, generating_args)
self.tokenizer.padding_side = "right" # change padding side
rewards = self.get_rewards(queries, responses, unwrapped_model)
# Cast to training mode
unwrapped_model.gradient_checkpointing_enable()
unwrapped_model.config.use_cache = False
self.model.train()
# Run PPO step
stats = self.step(queries, responses, rewards)
self.tokenizer.padding_side = "left" # restore padding side
loss_meter.update(stats["ppo/loss/total"], n=len(rewards))
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
@@ -125,7 +133,12 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
reward_meter.reset()
if (step+1) % self.args.save_steps == 0: # save checkpoint
self.save_model(os.path.join(self.args.output_dir, f"checkpoint-{step+1}"))
self.save_model(os.path.join(
self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step)
))
self.save_callback.on_save(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
if self.control.should_epoch_stop or self.control.should_training_stop:
break
@@ -134,36 +147,46 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
dataiter = iter(self.dataloader)
steps_trained = 0
self.log_callback.on_train_end(self.args, self.state, self.control)
self.log_callback.on_train_end(
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
)
@torch.no_grad()
def get_inputs(
self,
batch: Dict[str, torch.Tensor],
length_sampler: Optional[Callable] = None,
**generation_kwargs
length_sampler: Callable,
generating_args: Dict[str, Any]
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
r"""
Generates model's responses given queries.
"""
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
generating_args["max_new_tokens"] = length_sampler()
gen_kwargs = dict(
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
**batch
)
self.model, layer_norm_params = cast_layernorm_dtype(self.model)
input_ids = batch["input_ids"]
self.model, layer_norm_params = cast_layernorm_dtype(self.model, self.compute_dtype)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
response: torch.Tensor = unwrapped_model.generate(**batch, **generation_kwargs)
self.model, _ = cast_layernorm_dtype(self.model, layer_norm_params)
# Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop
# Inspired by: https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_seq2seq.py#L273
if unwrapped_model.pretrained_model.generation_config._from_model_config:
unwrapped_model.pretrained_model.generation_config._from_model_config = False
response: torch.Tensor = unwrapped_model.generate(**gen_kwargs)
self.model, _ = cast_layernorm_dtype(self.model, self.compute_dtype, layer_norm_params)
query, response = input_ids.detach().cpu(), response[:, input_ids.size(-1):].detach().cpu()
queries, responses = [], []
query, response = batch["input_ids"].detach().cpu(), response[:, batch["input_ids"].size(-1):].detach().cpu()
for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0]
response_length = (response[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0:
response_length = 1 # allow empty response
elif self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
response_length = response_index[-1] + 2 # save the EOS token
else:
response_length = response_index[-1] + 1
queries.append(query[i, query_length:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right
@@ -181,11 +204,94 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
"""
replace_model(unwrapped_model, target="reward")
batch = self.prepare_model_inputs(queries, responses)
_, _, values = self.model(**batch, output_hidden_states=True, return_dict=True)
rewards = [reward for reward in values[:, -1].float().detach().cpu()] # use fp32 type
with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
_, _, values = self.model(**batch, output_hidden_states=True, return_dict=True)
if values.size(0) != batch["input_ids"].size(0): # adapt to chatglm2
values = torch.transpose(values, 0, 1)
rewards = []
for i in range(values.size(0)):
end_index = batch["attention_mask"][i].nonzero()[-1] # use the score on the EOS token
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
replace_model(unwrapped_model, target="default")
return rewards
@PPODecorators.empty_cuda_cache()
def batched_forward_pass(
self,
model: "AutoModelForCausalLMWithValueHead",
queries: torch.Tensor,
responses: torch.Tensor,
model_inputs: dict,
return_logits: Optional[bool] = False,
response_masks: Optional[torch.Tensor] = None
):
r"""
Calculates model outputs in multiple batches.
Subclass and override to inject custom behavior.
"""
bs = len(queries)
fbs = self.config.mini_batch_size
all_logprobs = []
all_logits = []
all_masks = []
all_values = []
for i in range(math.ceil(bs / fbs)):
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
query_batch = queries[i * fbs : (i + 1) * fbs]
response_batch = responses[i * fbs : (i + 1) * fbs]
if response_masks is not None:
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
input_ids = input_kwargs["input_ids"]
attention_mask = input_kwargs["attention_mask"]
with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
logits, _, values = model(**input_kwargs)
if values.size(0) != input_ids.size(0): # adapt to chatglm2
values = torch.transpose(values, 0, 1)
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
masks = torch.zeros_like(attention_mask)
masks[:, :-1] = attention_mask[:, 1:]
for j in range(len(query_batch)):
start = len(query_batch[j]) - 1
if attention_mask[j, 0] == 0: # offset left padding
start += attention_mask[j, :].nonzero()[0]
end = start + len(response_batch[j])
if response_masks is not None:
response_masks_batch = torch.cat(
(torch.zeros_like(query_batch[j]), response_masks_batch[j])
)[1:]
masks[j, :start] = 0
masks[j, end:] = 0
if response_masks is not None:
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
if return_logits:
all_logits.append(logits)
else:
del logits
all_values.append(values)
all_logprobs.append(logprobs)
all_masks.append(masks)
return (
torch.cat(all_logprobs),
torch.cat(all_logits)[:, :-1] if return_logits else None,
torch.cat(all_values)[:, :-1],
torch.cat(all_masks)[:, :-1],
)
def save_model(self, output_dir: Optional[str] = None) -> None:
r"""
Saves model checkpoint.

View File

@@ -22,18 +22,19 @@ def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["d
def cast_layernorm_dtype(
model: "AutoModelForCausalLMWithValueHead",
layer_norm_names: List[str] = LAYERNORM_NAMES,
layer_norm_params: Optional[Dict[str, torch.Tensor]] = None
compute_dtype: torch.dtype,
layer_norm_params: Optional[Dict[str, torch.Tensor]] = None,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> Tuple["AutoModelForCausalLMWithValueHead", Dict[str, torch.Tensor]]:
layer_norm_state_dict = {}
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
if layer_norm_params is not None:
param.data = layer_norm_params[name] # restore float32 weights
else:
if layer_norm_params is None:
layer_norm_state_dict[name] = param.data.detach().clone() # store float32 weights for stability
param.data = param.data.to(torch.float16)
param.data = param.data.to(compute_dtype)
else:
param.data = layer_norm_params[name] # restore float32 weights
return model, layer_norm_state_dict

View File

@@ -4,13 +4,14 @@ import math
from trl import PPOConfig
from torch.optim import AdamW
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
from transformers import DataCollatorWithPadding
from transformers.optimization import get_scheduler
from llmtuner.dsets import get_dataset, preprocess_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.ppo.trainer import PPOPeftTrainer
from llmtuner.tuner.ppo.trainer import CustomPPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
@@ -28,7 +29,9 @@ def run_ppo(
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="ppo")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="ppo")
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=tokenizer.pad_token_id)
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
ppo_config = PPOConfig(
model_name=model_args.model_name_or_path,
@@ -37,9 +40,15 @@ def run_ppo(
batch_size=training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps,
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
ppo_epochs=1,
max_grad_norm=training_args.max_grad_norm
max_grad_norm=training_args.max_grad_norm,
seed=training_args.seed,
optimize_cuda_cache=True
)
if finetuning_args.ppo_score_norm:
ppo_config.use_score_scaling = True
ppo_config.use_score_norm = True
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate)
total_train_batch_size = (
training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
@@ -53,11 +62,11 @@ def run_ppo(
)
# Initialize our Trainer
ppo_trainer = PPOPeftTrainer(
ppo_trainer = CustomPPOTrainer(
training_args=training_args,
finetuning_args=finetuning_args,
generating_args=generating_args,
callbacks=callbacks,
callbacks=callbacks + [SavePeftModelCallback()],
compute_dtype=model_args.compute_dtype,
config=ppo_config,
model=model,
ref_model=None,

View File

@@ -2,12 +2,11 @@
import math
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForLanguageModeling
from transformers import DataCollatorForLanguageModeling, Trainer
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.core.trainer import PeftTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
@@ -27,8 +26,7 @@ def run_pt(
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Initialize our Trainer
trainer = PeftTrainer(
finetuning_args=finetuning_args,
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
@@ -39,7 +37,7 @@ def run_pt(
# Training
if training_args.do_train:
train_result = trainer.train()
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
@@ -56,6 +54,5 @@ def run_pt(
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)

View File

@@ -2,9 +2,9 @@ import os
import json
import torch
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from transformers import Trainer
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.trainer import PeftTrainer
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
@@ -14,7 +14,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class PairwisePeftTrainer(PeftTrainer):
class PairwiseTrainer(Trainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
"""
@@ -32,19 +32,54 @@ class PairwisePeftTrainer(PeftTrainer):
r"""
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
We use score on the EOS token to represent reward of the whole sentence.
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
Note that the first element will be removed from the output tuple.
Subclass and override to inject custom behavior.
Note that the first element will be removed from the output tuple.
See: https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/trainer.py#L3509
"""
batch_size = inputs["input_ids"].size(0) // 2
# Compute rewards
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
r_accept, r_reject = values[:, -1].split(batch_size, dim=0)
loss = -torch.log(torch.sigmoid(r_accept - r_reject)).mean()
return (loss, [loss, r_accept, r_reject]) if return_outputs else loss
if values.size(0) != inputs["input_ids"].size(0): # adapt to chatglm2
values = torch.transpose(values, 0, 1)
# Split the inputs and rewards into two parts, chosen and rejected
batch_size = inputs["input_ids"].size(0) // 2
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
chosen_attn_mask, rejected_attn_mask = (
inputs["attention_mask"][:batch_size], inputs["attention_mask"][batch_size:]
)
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
chosen_scores, rejected_scores = [], []
# Compute pairwise loss. Only backprop on the different tokens before padding
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
loss = 0
for i in range(batch_size):
chosen_length = chosen_attn_mask[i].nonzero()[-1] + 1
rejected_length = rejected_attn_mask[i].nonzero()[-1] + 1
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
if len(check_divergence) == 0:
end_index = chosen_length
div_index = end_index - 1
else:
end_index = max(chosen_length, rejected_length)
div_index = check_divergence[0]
assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
if return_outputs: # use the score on the EOS token for inference
chosen_scores.append(chosen_rewards[i, chosen_length-1])
rejected_scores.append(rejected_rewards[i, rejected_length-1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
loss = loss / batch_size
if return_outputs:
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
return loss, [loss, chosen_scores, rejected_scores]
return loss
def save_predictions(
self,
@@ -61,10 +96,10 @@ class PairwisePeftTrainer(PeftTrainer):
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
acc_scores, rej_scores = predict_results.predictions
chosen_scores, rejected_scores = predict_results.predictions
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for acc_score, rej_score in zip(acc_scores, rej_scores):
res.append(json.dumps({"accept": round(float(acc_score), 2), "reject": round(float(rej_score), 2)}))
for c_score, r_score in zip(chosen_scores, rejected_scores):
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
writer.write("\n".join(res))

View File

@@ -1,18 +1,19 @@
# Inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from typing import TYPE_CHECKING, Optional, List
from transformers import Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.rm.metric import compute_accuracy
from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding
from llmtuner.tuner.rm.trainer import PairwisePeftTrainer
from llmtuner.tuner.rm.trainer import PairwiseTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
@@ -28,16 +29,17 @@ def run_rm(
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorWithPadding(tokenizer)
training_args.remove_unused_columns = False # important for pairwise dataset
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = PairwisePeftTrainer(
finetuning_args=finetuning_args,
trainer = PairwiseTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
callbacks=callbacks + [SavePeftModelCallback()],
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args)
)

View File

@@ -25,7 +25,7 @@ class ComputeMetrics:
Uses the model predictions to compute metrics.
"""
preds, labels = eval_preds
score_dict = {"accuracy": [], "rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
@@ -49,6 +49,5 @@ class ComputeMetrics:
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
score_dict["accuracy"].append(float(len(label) != 0 and pred[:len(label)] == label))
return {k: float(np.mean(v)) for k, v in score_dict.items()}

View File

@@ -4,10 +4,10 @@ import torch
import numpy as np
import torch.nn as nn
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from transformers import Seq2SeqTrainer
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.trainer import PeftTrainer
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
@@ -16,7 +16,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
class Seq2SeqPeftTrainer(PeftTrainer):
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
"""
@@ -33,28 +33,31 @@ class Seq2SeqPeftTrainer(PeftTrainer):
Subclass and override to inject custom behavior.
"""
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len:
inputs["input_ids"] = self._pad_tensors_to_target_len(inputs["input_ids"], inputs["labels"])
if "attention_mask" in inputs:
inputs["attention_mask"] = self._pad_tensors_to_target_len(
inputs["attention_mask"], inputs["labels"], pad_token_id=0
)
if "position_ids" in inputs:
inputs["position_ids"] = self._pad_tensors_to_target_len(
inputs["position_ids"], inputs["labels"], pad_token_id=0
)
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len:
inputs["input_ids"] = self._pad_tensors_to_target_len(inputs["input_ids"], inputs["labels"])
if "attention_mask" in inputs:
inputs["attention_mask"] = self._pad_tensors_to_target_len(
inputs["attention_mask"], inputs["labels"], pad_token_id=0
)
if "position_ids" in inputs:
inputs["position_ids"] = self._pad_tensors_to_target_len(
inputs["position_ids"], inputs["labels"], pad_token_id=0
)
loss, generated_tokens, labels = super().prediction_step(
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
generated_tokens = (
generated_tokens[:, max(prompt_len, label_len):] if generated_tokens is not None else None
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :max(prompt_len, label_len)] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return (loss, generated_tokens, labels)
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(
self,
@@ -64,19 +67,8 @@ class Seq2SeqPeftTrainer(PeftTrainer):
) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
Should only be called when predict_with_generate=True.
"""
if pad_token_id is None:
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
pad_token_id = self.tokenizer.pad_token_id
else:
if self.model.config.pad_token_id is not None:
pad_token_id = self.model.config.pad_token_id
else:
raise ValueError("Pad_token_id must be set in the configuration of the model.")
pad_token_id = pad_token_id if pad_token_id is not None else self.tokenizer.pad_token_id
padded_tensor = pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory

View File

@@ -1,18 +1,18 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.misc import get_logits_processor, get_stopping_criteria
from llmtuner.extras.misc import get_logits_processor
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.sft.metric import ComputeMetrics
from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer
from llmtuner.tuner.sft.trainer import CustomSeq2SeqTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from transformers import TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
@@ -27,20 +27,25 @@ def run_sft(
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="sft")
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length if \
training_args.generation_max_length is not None else data_args.max_target_length
training_args.generation_num_beams = data_args.eval_num_beams if \
data_args.eval_num_beams is not None else training_args.generation_num_beams
training_args_dict = training_args.to_dict()
training_args_dict.update(dict(
generation_max_length=training_args.generation_max_length or data_args.max_target_length,
generation_num_beams=data_args.eval_num_beams or training_args.generation_num_beams
))
training_args = Seq2SeqTrainingArguments(**training_args_dict)
# Initialize our Trainer
trainer = Seq2SeqPeftTrainer(
finetuning_args=finetuning_args,
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
@@ -52,12 +57,13 @@ def run_sft(
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
gen_kwargs["stopping_criteria"] = get_stopping_criteria(tokenizer.additional_special_tokens_ids)
# Training
if training_args.do_train:
train_result = trainer.train()
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()

View File

@@ -35,7 +35,7 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
def export_model(args: Optional[Dict[str, Any]] = None, max_shard_size: Optional[str] = "10GB"):
model_args, _, training_args, finetuning_args, _ = get_train_args(args)
model_args, _, training_args, finetuning_args, _, _ = get_train_args(args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
model.save_pretrained(training_args.output_dir, max_shard_size=max_shard_size)
try:

View File

@@ -26,7 +26,7 @@ class WebChatModel(ChatModel):
finetuning_type: str,
quantization_bit: str,
template: str,
source_prefix: str
system_prompt: str
):
if self.model is not None:
yield ALERTS["err_exists"][lang]
@@ -53,9 +53,9 @@ class WebChatModel(ChatModel):
model_name_or_path=model_name_or_path,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit else None,
quantization_bit=int(quantization_bit) if quantization_bit and quantization_bit != "None" else None,
template=template,
source_prefix=source_prefix
system_prompt=system_prompt
)
super().__init__(args)
@@ -73,7 +73,7 @@ class WebChatModel(ChatModel):
chatbot: List[Tuple[str, str]],
query: str,
history: List[Tuple[str, str]],
prefix: str,
system: str,
max_new_tokens: int,
top_p: float,
temperature: float
@@ -81,7 +81,7 @@ class WebChatModel(ChatModel):
chatbot.append([query, ""])
response = ""
for new_text in self.stream_chat(
query, history, prefix, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature
):
response += new_text
response = self.postprocess(response)

View File

@@ -6,7 +6,7 @@ import gradio as gr
from peft.utils import WEIGHTS_NAME as PEFT_WEIGHTS_NAME
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from llmtuner.extras.constants import SUPPORTED_MODELS
from llmtuner.extras.constants import DEFAULT_TEMPLATE, SUPPORTED_MODELS, TRAINING_STAGES
DEFAULT_CACHE_DIR = "cache"
@@ -16,8 +16,8 @@ USER_CONFIG = "user.config"
DATA_CONFIG = "dataset_info.json"
def get_save_dir(model_name: str) -> str:
return os.path.join(DEFAULT_SAVE_DIR, os.path.split(model_name)[-1])
def get_save_dir(*args) -> os.PathLike:
return os.path.join(DEFAULT_SAVE_DIR, *args)
def get_config_path() -> os.PathLike:
@@ -29,14 +29,16 @@ def load_config() -> Dict[str, Any]:
with open(get_config_path(), "r", encoding="utf-8") as f:
return json.load(f)
except:
return {"last_model": "", "path_dict": {}}
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
def save_config(model_name: str, model_path: str) -> None:
def save_config(lang: str, model_name: str, model_path: str) -> None:
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
user_config = load_config()
user_config["last_model"] = model_name
user_config["path_dict"][model_name] = model_path
user_config["lang"] = lang or user_config["lang"]
if model_name:
user_config["last_model"] = model_name
user_config["path_dict"][model_name] = model_path
with open(get_config_path(), "w", encoding="utf-8") as f:
json.dump(user_config, f, indent=2, ensure_ascii=False)
@@ -46,9 +48,15 @@ def get_model_path(model_name: str) -> str:
return user_config["path_dict"].get(model_name, SUPPORTED_MODELS.get(model_name, ""))
def get_template(model_name: str) -> str:
if model_name.endswith("Chat") and model_name.split("-")[0] in DEFAULT_TEMPLATE:
return DEFAULT_TEMPLATE[model_name.split("-")[0]]
return "default"
def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]:
checkpoints = []
save_dir = os.path.join(get_save_dir(model_name), finetuning_type)
save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir):
for checkpoint in os.listdir(save_dir):
if (
@@ -70,6 +78,10 @@ def load_dataset_info(dataset_dir: str) -> Dict[str, Any]:
return {}
def list_dataset(dataset_dir: Optional[str] = None) -> Dict[str, Any]:
def list_dataset(
dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0]
) -> Dict[str, Any]:
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
return gr.update(value=[], choices=list(dataset_info.keys()))
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"]
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
return gr.update(value=[], choices=datasets)

View File

@@ -1,5 +1,5 @@
from llmtuner.webui.components.top import create_top
from llmtuner.webui.components.sft import create_sft_tab
from llmtuner.webui.components.train import create_train_tab
from llmtuner.webui.components.eval import create_eval_tab
from llmtuner.webui.components.infer import create_infer_tab
from llmtuner.webui.components.export import create_export_tab

View File

@@ -17,7 +17,7 @@ def create_chat_box(
with gr.Row():
with gr.Column(scale=4):
prefix = gr.Textbox(show_label=False)
system = gr.Textbox(show_label=False)
query = gr.Textbox(show_label=False, lines=8)
submit_btn = gr.Button(variant="primary")
@@ -31,7 +31,7 @@ def create_chat_box(
submit_btn.click(
chat_model.predict,
[chatbot, query, history, prefix, max_new_tokens, top_p, temperature],
[chatbot, query, history, system, max_new_tokens, top_p, temperature],
[chatbot, history],
show_progress=True
).then(
@@ -41,7 +41,7 @@ def create_chat_box(
clear_btn.click(lambda: ([], []), outputs=[chatbot, history], show_progress=True)
return chat_box, chatbot, history, dict(
prefix=prefix,
system=system,
query=query,
submit_btn=submit_btn,
clear_btn=clear_btn,

View File

@@ -14,13 +14,13 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
with gr.Row():
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
preview_btn = gr.Button(interactive=False, scale=1)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [preview_btn])
preview_btn.click(
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
[preview_count, preview_samples, preview_box],
@@ -35,6 +35,7 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
predict = gr.Checkbox(value=True)
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
stop_btn = gr.Button()
@@ -44,35 +45,36 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
with gr.Box():
output_box = gr.Markdown()
start_btn.click(
runner.run_eval,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["source_prefix"],
dataset_dir,
dataset,
max_source_length,
max_target_length,
max_samples,
batch_size,
predict
],
[
output_box,
process_bar
]
)
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
dataset_dir,
dataset,
max_source_length,
max_target_length,
max_samples,
batch_size,
predict
]
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(runner.preview_eval, input_components, output_components)
start_btn.click(runner.run_eval, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
return dict(
dataset_dir=dataset_dir,
dataset=dataset,
preview_btn=preview_btn,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
@@ -81,6 +83,7 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
max_samples=max_samples,
batch_size=batch_size,
predict=predict,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_box=output_box

View File

@@ -16,7 +16,7 @@ def create_infer_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"
info_box = gr.Textbox(show_label=False, interactive=False)
chat_model = WebChatModel()
chat_model = WebChatModel(lazy_init=True)
chat_box, chatbot, history, chat_elems = create_chat_box(chat_model)
load_btn.click(
@@ -28,7 +28,7 @@ def create_infer_tab(top_elems: Dict[str, "Component"]) -> Dict[str, "Component"
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["source_prefix"]
top_elems["system_prompt"]
],
[info_box]
).then(

View File

@@ -4,7 +4,7 @@ import gradio as gr
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
from llmtuner.extras.template import templates
from llmtuner.webui.common import list_checkpoint, get_model_path, save_config
from llmtuner.webui.common import list_checkpoint, get_model_path, get_template, save_config
from llmtuner.webui.utils import can_quantize
if TYPE_CHECKING:
@@ -15,27 +15,32 @@ def create_top() -> Dict[str, "Component"]:
available_models = list(SUPPORTED_MODELS.keys()) + ["Custom"]
with gr.Row():
lang = gr.Dropdown(choices=["en", "zh"], value="en", scale=1)
lang = gr.Dropdown(choices=["en", "zh"], scale=1)
model_name = gr.Dropdown(choices=available_models, scale=3)
model_path = gr.Textbox(scale=3)
with gr.Row():
finetuning_type = gr.Dropdown(value="lora", choices=METHODS, scale=1)
finetuning_type = gr.Dropdown(choices=METHODS, value="lora", scale=1)
checkpoints = gr.Dropdown(multiselect=True, scale=5)
refresh_btn = gr.Button(scale=1)
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
with gr.Row():
quantization_bit = gr.Dropdown([8, 4], scale=1)
template = gr.Dropdown(value="default", choices=list(templates.keys()), scale=1)
source_prefix = gr.Textbox(scale=2)
quantization_bit = gr.Dropdown(choices=["None", "8", "4"], value="None", scale=1)
template = gr.Dropdown(choices=list(templates.keys()), value="default", scale=1)
system_prompt = gr.Textbox(scale=2)
lang.change(save_config, [lang, model_name, model_path])
model_name.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
).then(
get_model_path, [model_name], [model_path]
).then(
get_template, [model_name], [template]
) # do not save config since the below line will save
model_path.change(save_config, [model_name, model_path])
model_path.change(save_config, [lang, model_name, model_path])
finetuning_type.change(
list_checkpoint, [model_name, finetuning_type], [checkpoints]
@@ -43,7 +48,9 @@ def create_top() -> Dict[str, "Component"]:
can_quantize, [finetuning_type], [quantization_bit]
)
refresh_btn.click(list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False)
refresh_btn.click(
list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False
)
return dict(
lang=lang,
@@ -55,5 +62,5 @@ def create_top() -> Dict[str, "Component"]:
advanced_tab=advanced_tab,
quantization_bit=quantization_bit,
template=template,
source_prefix=source_prefix
system_prompt=system_prompt
)

View File

@@ -3,7 +3,8 @@ from transformers.trainer_utils import SchedulerType
import gradio as gr
from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR
from llmtuner.extras.constants import TRAINING_STAGES
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR
from llmtuner.webui.components.data import create_preview_box
from llmtuner.webui.utils import can_preview, get_preview, gen_plot
@@ -12,17 +13,21 @@ if TYPE_CHECKING:
from llmtuner.webui.runner import Runner
def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
with gr.Row():
training_stage = gr.Dropdown(
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
)
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
dataset = gr.Dropdown(multiselect=True, scale=4)
preview_btn = gr.Button(interactive=False, scale=1)
data_preview_btn = gr.Button(interactive=False, scale=1)
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [preview_btn])
preview_btn.click(
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset])
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset])
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
data_preview_btn.click(
get_preview,
[dataset_dir, dataset],
[preview_count, preview_samples, preview_box],
@@ -40,7 +45,7 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
lr_scheduler_type = gr.Dropdown(
value="cosine", choices=[scheduler.value for scheduler in SchedulerType]
choices=[scheduler.value for scheduler in SchedulerType], value="cosine"
)
max_grad_norm = gr.Textbox(value="1.0")
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
@@ -51,7 +56,6 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
padding_side = gr.Radio(choices=["left", "right"], value="left")
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
with gr.Row():
@@ -60,7 +64,21 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
lora_target = gr.Textbox(scale=2)
resume_lora_training = gr.Checkbox(value=True, scale=1)
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=2)
reward_model = gr.Dropdown(scale=2)
refresh_btn = gr.Button(scale=1)
refresh_btn.click(
list_checkpoint,
[top_elems["model_name"], top_elems["finetuning_type"]],
[reward_model],
queue=False
)
with gr.Row():
cmd_preview_btn = gr.Button()
start_btn = gr.Button()
stop_btn = gr.Button()
@@ -78,44 +96,47 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
with gr.Column(scale=1):
loss_viewer = gr.Plot()
start_btn.click(
runner.run_train,
[
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["source_prefix"],
dataset_dir,
dataset,
max_source_length,
max_target_length,
learning_rate,
num_train_epochs,
max_samples,
batch_size,
gradient_accumulation_steps,
lr_scheduler_type,
max_grad_norm,
val_size,
logging_steps,
save_steps,
warmup_steps,
compute_type,
padding_side,
lora_rank,
lora_dropout,
lora_target,
resume_lora_training,
output_dir
],
[
output_box,
process_bar
]
)
input_components = [
top_elems["lang"],
top_elems["model_name"],
top_elems["checkpoints"],
top_elems["finetuning_type"],
top_elems["quantization_bit"],
top_elems["template"],
top_elems["system_prompt"],
training_stage,
dataset_dir,
dataset,
max_source_length,
max_target_length,
learning_rate,
num_train_epochs,
max_samples,
batch_size,
gradient_accumulation_steps,
lr_scheduler_type,
max_grad_norm,
val_size,
logging_steps,
save_steps,
warmup_steps,
compute_type,
lora_rank,
lora_dropout,
lora_target,
resume_lora_training,
dpo_beta,
reward_model,
output_dir
]
output_components = [
output_box,
process_bar
]
cmd_preview_btn.click(runner.preview_train, input_components, output_components)
start_btn.click(runner.run_train, input_components, output_components)
stop_btn.click(runner.set_abort, queue=False)
process_bar.change(
@@ -123,9 +144,10 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
)
return dict(
training_stage=training_stage,
dataset_dir=dataset_dir,
dataset=dataset,
preview_btn=preview_btn,
data_preview_btn=data_preview_btn,
preview_count=preview_count,
preview_samples=preview_samples,
close_btn=close_btn,
@@ -144,12 +166,16 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
save_steps=save_steps,
warmup_steps=warmup_steps,
compute_type=compute_type,
padding_side=padding_side,
lora_tab=lora_tab,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target,
resume_lora_training=resume_lora_training,
rlhf_tab=rlhf_tab,
dpo_beta=dpo_beta,
reward_model=reward_model,
refresh_btn=refresh_btn,
cmd_preview_btn=cmd_preview_btn,
start_btn=start_btn,
stop_btn=stop_btn,
output_dir=output_dir,

View File

@@ -3,7 +3,7 @@ from transformers.utils.versions import require_version
from llmtuner.webui.components import (
create_top,
create_sft_tab,
create_train_tab,
create_eval_tab,
create_infer_tab,
create_export_tab,
@@ -24,8 +24,8 @@ def create_ui() -> gr.Blocks:
with gr.Blocks(title="Web Tuner", css=CSS) as demo:
top_elems = create_top()
with gr.Tab("SFT"):
sft_elems = create_sft_tab(top_elems, runner)
with gr.Tab("Train"):
train_elems = create_train_tab(top_elems, runner)
with gr.Tab("Evaluate"):
eval_elems = create_eval_tab(top_elems, runner)
@@ -36,7 +36,7 @@ def create_ui() -> gr.Blocks:
with gr.Tab("Export"):
export_elems = create_export_tab(top_elems)
elem_list = [top_elems, sft_elems, eval_elems, infer_elems, export_elems]
elem_list = [top_elems, train_elems, eval_elems, infer_elems, export_elems]
manager = Manager(elem_list)
demo.load(
@@ -67,7 +67,7 @@ def create_web_demo() -> gr.Blocks:
demo.load(manager.gen_label, [lang], [lang] + list(chat_elems.values()))
lang.change(manager.gen_label, [lang], [lang] + list(chat_elems.values()), queue=False)
lang.select(manager.gen_label, [lang], [lang] + list(chat_elems.values()), queue=False)
return demo

View File

@@ -77,7 +77,7 @@ LOCALES = {
"info": "构建提示词时使用的模板"
}
},
"source_prefix": {
"system_prompt": {
"en": {
"label": "System prompt (optional)",
"info": "A sequence used as the default system prompt."
@@ -87,6 +87,16 @@ LOCALES = {
"info": "默认使用的系统提示词"
}
},
"training_stage": {
"en": {
"label": "Stage",
"info": "The stage to perform in training."
},
"zh": {
"label": "训练阶段",
"info": "目前采用的训练方式。"
}
},
"dataset_dir": {
"en": {
"label": "Data dir",
@@ -105,12 +115,12 @@ LOCALES = {
"label": "数据集"
}
},
"preview_btn": {
"data_preview_btn": {
"en": {
"value": "Preview"
"value": "Preview dataset"
},
"zh": {
"value": "预览"
"value": "预览数据集"
}
},
"preview_count": {
@@ -277,16 +287,6 @@ LOCALES = {
"info": "是否启用 FP16 或 BF16 混合精度训练。"
}
},
"padding_side": {
"en": {
"label": "Padding side",
"info": "The side on which the model should have padding applied."
},
"zh": {
"label": "填充位置",
"info": "使用左填充或右填充。"
}
},
"lora_tab": {
"en": {
"label": "LoRA configurations"
@@ -335,6 +335,42 @@ LOCALES = {
"info": "接着上次的 LoRA 权重训练或创建一个新的 LoRA 权重。"
}
},
"rlhf_tab": {
"en": {
"label": "RLHF configurations"
},
"zh": {
"label": "RLHF 参数设置"
}
},
"dpo_beta": {
"en": {
"label": "DPO beta",
"info": "Value of the beta parameter in the DPO loss."
},
"zh": {
"label": "DPO beta 参数",
"info": "DPO 损失函数中 beta 超参数大小。"
}
},
"reward_model": {
"en": {
"label": "Reward model",
"info": "Checkpoint of the reward model for PPO training."
},
"zh": {
"label": "奖励模型",
"info": "PPO 训练中奖励模型的断点路径。"
}
},
"cmd_preview_btn": {
"en": {
"value": "Preview command"
},
"zh": {
"value": "预览命令"
}
},
"start_btn": {
"en": {
"value": "Start"
@@ -409,7 +445,7 @@ LOCALES = {
"value": "模型未加载,请先加载模型。"
}
},
"prefix": {
"system": {
"en": {
"placeholder": "System prompt (optional)"
},

View File

@@ -12,13 +12,22 @@ class Manager:
def __init__(self, elem_list: List[Dict[str, Component]]):
self.elem_list = elem_list
def gen_refresh(self) -> Dict[str, Any]:
def gen_refresh(self, lang: str) -> Dict[str, Any]:
refresh_dict = {
"dataset": {"choices": list_dataset()["choices"]},
"output_dir": {"value": get_time()}
}
user_config = load_config()
if user_config["last_model"]:
if not lang:
if user_config.get("lang", None):
lang = user_config["lang"]
else:
lang = "en"
refresh_dict["lang"] = {"value": lang}
if user_config.get("last_model", None):
refresh_dict["model_name"] = {"value": user_config["last_model"]}
refresh_dict["model_path"] = {"value": get_model_path(user_config["last_model"])}
@@ -26,10 +35,12 @@ class Manager:
def gen_label(self, lang: str) -> Dict[Component, Dict[str, Any]]: # cannot use TYPE_CHECKING
update_dict = {}
refresh_dict = self.gen_refresh()
refresh_dict = self.gen_refresh(lang)
for elems in self.elem_list:
for name, component in elems.items():
update_dict[component] = gr.update(**LOCALES[name][lang], **refresh_dict.get(name, {}))
update_dict[component] = gr.update(
**LOCALES[name][refresh_dict["lang"]["value"]], **refresh_dict.get(name, {})
)
return update_dict

View File

@@ -5,16 +5,16 @@ import threading
import time
import transformers
from transformers.trainer import TRAINING_ARGS_NAME
from typing import Generator, List, Tuple
from typing import Any, Dict, Generator, List, Tuple
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.constants import DEFAULT_MODULE
from llmtuner.extras.constants import DEFAULT_MODULE, TRAINING_STAGES
from llmtuner.extras.logging import LoggerHandler
from llmtuner.extras.misc import torch_gc
from llmtuner.tuner import run_exp
from llmtuner.webui.common import get_model_path, get_save_dir
from llmtuner.webui.common import get_model_path, get_save_dir, load_config
from llmtuner.webui.locales import ALERTS
from llmtuner.webui.utils import get_eval_results, update_process_bar
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar
class Runner:
@@ -22,39 +22,36 @@ class Runner:
def __init__(self):
self.aborted = False
self.running = False
self.logger_handler = LoggerHandler()
self.logger_handler.setLevel(logging.INFO)
logging.root.addHandler(self.logger_handler)
transformers.logging.add_handler(self.logger_handler)
def set_abort(self):
self.aborted = True
self.running = False
def initialize(
def _initialize(
self, lang: str, model_name: str, dataset: List[str]
) -> Tuple[str, str, LoggerHandler, LogCallback]:
) -> str:
if self.running:
return None, ALERTS["err_conflict"][lang], None, None
return ALERTS["err_conflict"][lang]
if not model_name:
return None, ALERTS["err_no_model"][lang], None, None
return ALERTS["err_no_model"][lang]
model_name_or_path = get_model_path(model_name)
if not model_name_or_path:
return None, ALERTS["err_no_path"][lang], None, None
if not get_model_path(model_name):
return ALERTS["err_no_path"][lang]
if len(dataset) == 0:
return None, ALERTS["err_no_dataset"][lang], None, None
return ALERTS["err_no_dataset"][lang]
self.aborted = False
self.running = True
self.logger_handler.reset()
self.trainer_callback = LogCallback(self)
return ""
logger_handler = LoggerHandler()
logger_handler.setLevel(logging.INFO)
logging.root.addHandler(logger_handler)
transformers.logging.add_handler(logger_handler)
trainer_callback = LogCallback(self)
return model_name_or_path, "", logger_handler, trainer_callback
def finalize(
def _finalize(
self, lang: str, finish_info: str
) -> str:
self.running = False
@@ -64,7 +61,7 @@ class Runner:
else:
return finish_info
def run_train(
def _parse_train_args(
self,
lang: str,
model_name: str,
@@ -72,7 +69,8 @@ class Runner:
finetuning_type: str,
quantization_bit: str,
template: str,
source_prefix: str,
system_prompt: str,
training_stage: str,
dataset_dir: str,
dataset: List[str],
max_source_length: int,
@@ -89,37 +87,37 @@ class Runner:
save_steps: int,
warmup_steps: int,
compute_type: str,
padding_side: str,
lora_rank: int,
lora_dropout: float,
lora_target: str,
resume_lora_training: bool,
dpo_beta: float,
reward_model: str,
output_dir: str
) -> Generator[str, None, None]:
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
if checkpoints:
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
)
else:
checkpoint_dir = None
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
output_dir = get_save_dir(model_name, finetuning_type, output_dir)
user_config = load_config()
cache_dir = user_config.get("cache_dir", None)
args = dict(
stage="sft",
model_name_or_path=model_name_or_path,
stage=TRAINING_STAGES[training_stage],
model_name_or_path=get_model_path(model_name),
do_train=True,
overwrite_cache=True,
overwrite_cache=False,
cache_dir=cache_dir,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit else None,
quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
template=template,
source_prefix=source_prefix,
system_prompt=system_prompt,
dataset_dir=dataset_dir,
dataset=",".join(dataset),
max_source_length=max_source_length,
@@ -134,15 +132,22 @@ class Runner:
logging_steps=logging_steps,
save_steps=save_steps,
warmup_steps=warmup_steps,
fp16=(compute_type == "fp16"),
bf16=(compute_type == "bf16"),
padding_side=padding_side,
lora_rank=lora_rank,
lora_dropout=lora_dropout,
lora_target=lora_target or DEFAULT_MODULE.get(model_name.split("-")[0], "q_proj,v_proj"),
resume_lora_training=resume_lora_training,
resume_lora_training=(
False if TRAINING_STAGES[training_stage] in ["rm", "ppo", "dpo"] else resume_lora_training
),
output_dir=output_dir
)
args[compute_type] = True
if args["stage"] == "ppo":
args["reward_model"] = reward_model
val_size = 0
if args["stage"] == "dpo":
args["dpo_beta"] = dpo_beta
if val_size > 1e-6:
args["val_size"] = val_size
@@ -150,25 +155,9 @@ class Runner:
args["eval_steps"] = save_steps
args["load_best_model_at_end"] = True
run_kwargs = dict(args=args, callbacks=[trainer_callback])
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
thread.start()
return lang, model_name, dataset, output_dir, args
while thread.is_alive():
time.sleep(2)
if self.aborted:
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
else:
yield logger_handler.log, update_process_bar(trainer_callback)
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
finish_info = ALERTS["info_finished"][lang]
else:
finish_info = ALERTS["err_failed"][lang]
yield self.finalize(lang, finish_info), gr.update(visible=False)
def run_eval(
def _parse_eval_args(
self,
lang: str,
model_name: str,
@@ -176,7 +165,7 @@ class Runner:
finetuning_type: str,
quantization_bit: str,
template: str,
source_prefix: str,
system_prompt: str,
dataset_dir: str,
dataset: List[str],
max_source_length: int,
@@ -184,32 +173,31 @@ class Runner:
max_samples: str,
batch_size: int,
predict: bool
) -> Generator[str, None, None]:
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
if checkpoints:
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
)
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_" + "_".join(checkpoints))
output_dir = get_save_dir(model_name, finetuning_type, "eval_" + "_".join(checkpoints))
else:
checkpoint_dir = None
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_base")
output_dir = get_save_dir(model_name, finetuning_type, "eval_base")
user_config = load_config()
cache_dir = user_config.get("cache_dir", None)
args = dict(
stage="sft",
model_name_or_path=model_name_or_path,
model_name_or_path=get_model_path(model_name),
do_eval=True,
overwrite_cache=True,
overwrite_cache=False,
predict_with_generate=True,
cache_dir=cache_dir,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
quantization_bit=int(quantization_bit) if quantization_bit else None,
quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
template=template,
source_prefix=source_prefix,
system_prompt=system_prompt,
dataset_dir=dataset_dir,
dataset=",".join(dataset),
max_source_length=max_source_length,
@@ -223,7 +211,33 @@ class Runner:
args.pop("do_eval", None)
args["do_predict"] = True
run_kwargs = dict(args=args, callbacks=[trainer_callback])
return lang, model_name, dataset, output_dir, args
def preview_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, _, args = self._parse_train_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
else:
yield gen_cmd(args), gr.update(visible=False)
def preview_eval(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, _, args = self._parse_eval_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
else:
yield gen_cmd(args), gr.update(visible=False)
def run_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
lang, model_name, dataset, output_dir, args = self._parse_train_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
self.running = True
run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
thread.start()
@@ -232,11 +246,37 @@ class Runner:
if self.aborted:
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
else:
yield logger_handler.log, update_process_bar(trainer_callback)
yield self.logger_handler.log, update_process_bar(self.trainer_callback)
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
finish_info = ALERTS["info_finished"][lang]
else:
finish_info = ALERTS["err_failed"][lang]
yield self._finalize(lang, finish_info), gr.update(visible=False)
def run_eval(self, *args) -> Generator[str, None, None]:
lang, model_name, dataset, output_dir, args = self._parse_eval_args(*args)
error = self._initialize(lang, model_name, dataset)
if error:
yield error, gr.update(visible=False)
return
self.running = True
run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
thread.start()
while thread.is_alive():
time.sleep(2)
if self.aborted:
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
else:
yield self.logger_handler.log, update_process_bar(self.trainer_callback)
if os.path.exists(os.path.join(output_dir, "all_results.json")):
finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
else:
finish_info = ALERTS["err_failed"][lang]
yield self.finalize(lang, finish_info), gr.update(visible=False)
yield self._finalize(lang, finish_info), gr.update(visible=False)

View File

@@ -3,7 +3,7 @@ import json
import gradio as gr
import matplotlib.figure
import matplotlib.pyplot as plt
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Tuple
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple
from datetime import datetime
from llmtuner.extras.ploting import smooth
@@ -36,6 +36,7 @@ def get_time() -> str:
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
if (
len(dataset) > 0
and "file_name" in dataset_info[dataset[0]]
@@ -46,22 +47,42 @@ def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
return gr.update(interactive=False)
def get_preview(dataset_dir: str, dataset: list) -> Tuple[int, list, Dict[str, Any]]:
def get_preview(
dataset_dir: str, dataset: list, start: Optional[int] = 0, end: Optional[int] = 2
) -> Tuple[int, list, Dict[str, Any]]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
data_file = dataset_info[dataset[0]]["file_name"]
data_file: str = dataset_info[dataset[0]]["file_name"]
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
data = json.load(f)
return len(data), data[:2], gr.update(visible=True)
if data_file.endswith(".json"):
data = json.load(f)
elif data_file.endswith(".jsonl"):
data = [json.loads(line) for line in f]
else:
data = [line for line in f]
return len(data), data[start:end], gr.update(visible=True)
def can_quantize(finetuning_type: str) -> Dict[str, Any]:
if finetuning_type != "lora":
return gr.update(value="", interactive=False)
return gr.update(value="None", interactive=False)
else:
return gr.update(interactive=True)
def gen_cmd(args: Dict[str, Any]) -> str:
if args.get("do_train", None):
args["plot_loss"] = True
cmd_lines = ["CUDA_VISIBLE_DEVICES=0 python src/train_bash.py "]
for k, v in args.items():
if v is not None and v != "":
cmd_lines.append(" --{} {} ".format(k, str(v)))
cmd_text = "\\\n".join(cmd_lines)
cmd_text = "```bash\n{}\n```".format(cmd_text)
return cmd_text
def get_eval_results(path: os.PathLike) -> str:
with open(path, "r", encoding="utf-8") as f:
result = json.dumps(json.load(f), indent=4)
@@ -69,7 +90,7 @@ def get_eval_results(path: os.PathLike) -> str:
def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotlib.figure.Figure:
log_file = os.path.join(get_save_dir(base_model), finetuning_type, output_dir, "trainer_log.jsonl")
log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl")
if not os.path.isfile(log_file):
return None
@@ -118,7 +139,7 @@ def save_model(
return
checkpoint_dir = ",".join(
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
)
if not save_dir:

View File

@@ -0,0 +1,65 @@
# coding=utf-8
# Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
# Usage: python llamafy_baichuan2.py --llama2_json llama2.index.json --input_dir input --output_dir output
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
import os
import fire
import json
import torch
from collections import OrderedDict
SHARD_A = "pytorch_model-00001-of-00002.bin"
SHARD_B = "pytorch_model-00002-of-00002.bin"
def llamafy_baichuan2(
llama2_json: str,
input_dir: str,
output_dir: str
):
baichuan2_state_dict = OrderedDict()
for filepath in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
baichuan2_state_dict.update(shard_weight)
llama2_state_dict = OrderedDict()
total_size = 0
for key, value in baichuan2_state_dict.items():
total_size += 2 * value.numel() # half precision
if "W_pack" in key:
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:4096, :]
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[4096:2*4096, :]
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*4096:, :]
elif "lm_head" in key:
llama2_state_dict[key] = torch.nn.functional.normalize(value)
else:
llama2_state_dict[key] = value
with open(os.path.join(input_dir, llama2_json), "r", encoding="utf-8") as f:
llama2_index = json.load(f)
merged_index = OrderedDict()
merged_index["metadata"] = {"total_size": total_size}
merged_index["weight_map"] = llama2_index["weight_map"]
state_dict_a, state_dict_b = OrderedDict(), OrderedDict()
for key, value in llama2_state_dict.items():
if merged_index["weight_map"][key] == SHARD_A:
state_dict_a[key] = value
else:
state_dict_b[key] = value
os.makedirs(output_dir, exist_ok=True)
torch.save(state_dict_a, os.path.join(output_dir, SHARD_A))
torch.save(state_dict_b, os.path.join(output_dir, SHARD_B))
with open(os.path.join(output_dir, "pytorch_model.bin.index.json"), "w", encoding="utf-8") as f:
json.dump(merged_index, f, indent=2)
print("Completed!")
if __name__ == "__main__":
fire.Fire(llamafy_baichuan2)

View File

@@ -1,4 +1,6 @@
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
# Modified by hiyouga, to support attention mask, the alibi implementation is largely borrowed from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py
import math
from typing import List, Optional, Tuple, Union
@@ -12,7 +14,6 @@ from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging
from transformers.generation.utils import GenerationConfig
from .configuration_baichuan import BaichuanConfig
@@ -128,7 +129,7 @@ class MLP(nn.Module):
class BaichuanAttention(nn.Module):
def __init__(self, config: BaichuanConfig):
def __init__(self, config: "BaichuanConfig"):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
@@ -223,7 +224,7 @@ class BaichuanAttention(nn.Module):
class BaichuanLayer(nn.Module):
def __init__(self, config: BaichuanConfig):
def __init__(self, config: "BaichuanConfig"):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = BaichuanAttention(config=config)
@@ -342,7 +343,7 @@ class BaichuanPreTrainedModel(PreTrainedModel):
class BaichuanModel(BaichuanPreTrainedModel):
def __init__(self, config: BaichuanConfig):
def __init__(self, config: "BaichuanConfig"):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
@@ -651,93 +652,3 @@ class BaichuanForCausalLM(BaichuanPreTrainedModel):
for layer_past in standardized_past
)
return self._convert_to_baichuan_cache(reordered_past)
def quantize(self, bits: int):
try:
from .quantizer import QLinear
except ImportError:
raise ImportError(
f"Needs QLinear to run quantize."
)
for layer in self.model.layers:
layer.self_attn.W_pack = QLinear(
bits=bits,
weight=layer.self_attn.W_pack.weight,
bias = None,
)
layer.self_attn.o_proj = QLinear(
bits=bits,
weight=layer.self_attn.o_proj.weight,
bias = None,
)
layer.mlp.gate_proj = QLinear(
bits=bits,
weight=layer.mlp.gate_proj.weight,
bias = None,
)
layer.mlp.down_proj = QLinear(
bits=bits,
weight=layer.mlp.down_proj.weight,
bias = None,
)
layer.mlp.up_proj = QLinear(
bits=bits,
weight=layer.mlp.up_proj.weight,
bias = None,
)
return self
def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=0):
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
max_input_tokens = self.config.model_max_length - max_new_tokens
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
total_input, round_input = [], []
for i, message in enumerate(messages[::-1]):
content_tokens = tokenizer.encode(message['content'])
if message['role'] == 'user':
round_input = [self.generation_config.user_token_id] + content_tokens + round_input
if total_input and len(total_input) + len(round_input) > max_input_tokens:
break
else:
total_input = round_input + total_input
if len(total_input) >= max_input_tokens:
break
else:
round_input = []
elif message['role'] == 'assistant':
round_input = [
self.generation_config.assistant_token_id
] + content_tokens + [
self.generation_config.eos_token_id
] + round_input
else:
raise ValueError(f"message role not supported yet: {message['role']}")
total_input = total_input[-max_input_tokens:] # truncate left
total_input.append(self.generation_config.assistant_token_id)
total_input = torch.LongTensor([total_input]).to(self.device)
return total_input
@torch.no_grad()
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
if stream:
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
self.__class__.generate = NewGenerationMixin.generate
self.__class__.sample_stream = NewGenerationMixin.sample_stream
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
def stream_generator():
outputs = []
for token in self.generate(input_ids, generation_config=stream_config):
outputs.append(token.item())
yield tokenizer.decode(outputs, skip_special_tokens=True)
return stream_generator()
else:
self.__class__.generate = PreTrainedModel.generate # disable stream
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response