Merge branch 'hiyouga:main' into main
Former-commit-id: 014acaa7845b7ac2876596d216b1be369a8e9311
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
import os
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import Annotated, Optional
|
||||
from typing import Optional
|
||||
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from ..chat import ChatModel
|
||||
from ..extras.misc import torch_gc
|
||||
|
||||
@@ -11,7 +11,7 @@ from .aligner import align_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum, merge_dataset
|
||||
from .utils import merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -61,8 +61,6 @@ def load_single_dataset(
|
||||
|
||||
if data_path is None:
|
||||
raise ValueError("File extension must be txt, csv, json or jsonl.")
|
||||
|
||||
checksum(data_files, dataset_attr.file_sha1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@@ -21,7 +21,6 @@ class DatasetAttr:
|
||||
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
|
||||
dataset_name: str
|
||||
""" extra configs """
|
||||
file_sha1: Optional[str] = None
|
||||
subset: Optional[str] = None
|
||||
folder: Optional[str] = None
|
||||
ranking: bool = False
|
||||
@@ -99,7 +98,6 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
else:
|
||||
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
|
||||
|
||||
dataset_attr.set_attr("file_sha1", dataset_info[name])
|
||||
dataset_attr.set_attr("subset", dataset_info[name])
|
||||
dataset_attr.set_attr("folder", dataset_info[name])
|
||||
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import hashlib
|
||||
from enum import Enum, unique
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
|
||||
|
||||
from datasets import concatenate_datasets, interleave_datasets
|
||||
|
||||
@@ -26,21 +25,6 @@ class Role(str, Enum):
|
||||
OBSERVATION = "observation"
|
||||
|
||||
|
||||
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
|
||||
if file_sha1 is None:
|
||||
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
||||
return
|
||||
|
||||
if len(data_files) != 1:
|
||||
logger.warning("Checksum failed: too many files.")
|
||||
return
|
||||
|
||||
with open(data_files[0], "rb") as f:
|
||||
sha1 = hashlib.sha1(f.read()).hexdigest()
|
||||
if sha1 != file_sha1:
|
||||
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))
|
||||
|
||||
|
||||
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
|
||||
max_target_len = int(max_len * (target_len / (source_len + target_len)))
|
||||
max_target_len = max(max_target_len, reserved_label_len)
|
||||
|
||||
@@ -139,13 +139,15 @@ class LogCallback(TrainerCallback):
|
||||
r"""
|
||||
Event called after an evaluation phase.
|
||||
"""
|
||||
self._close_thread_pool()
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a successful prediction.
|
||||
"""
|
||||
self._close_thread_pool()
|
||||
if not self.do_train:
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
|
||||
@@ -715,11 +715,11 @@ register_model_group(
|
||||
models={
|
||||
"Phi3-3.8B-4k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.DEFAULT: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct",
|
||||
},
|
||||
"Phi3-3.8B-128k-Chat": {
|
||||
DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.DEFAULT: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct",
|
||||
},
|
||||
},
|
||||
module="qkv_proj",
|
||||
|
||||
@@ -46,6 +46,9 @@ def init_adapter(
|
||||
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
|
||||
model = model.float()
|
||||
|
||||
if model_args.visual_inputs and hasattr(model, "vision_tower"): # freeze vision model
|
||||
model.vision_tower.requires_grad_(False)
|
||||
|
||||
if finetuning_args.finetuning_type == "freeze" and is_trainable:
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
num_layers = (
|
||||
|
||||
@@ -106,7 +106,7 @@ def load_model(
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = load_config(model_args)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable, add_valuehead)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
lazy_load = False
|
||||
|
||||
@@ -15,8 +15,8 @@ from .utils.longlora import configure_longlora
|
||||
from .utils.moe import add_z3_leaf_module, configure_moe
|
||||
from .utils.quantization import configure_quantization
|
||||
from .utils.rope import configure_rope
|
||||
from .utils.valuehead import configure_valuehead, prepare_valuehead_model
|
||||
from .utils.visual import autocast_projector_dtype
|
||||
from .utils.valuehead import prepare_valuehead_model
|
||||
from .utils.visual import autocast_projector_dtype, configure_hidden_size
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -40,7 +40,6 @@ def patch_config(
|
||||
model_args: "ModelArguments",
|
||||
init_kwargs: Dict[str, Any],
|
||||
is_trainable: bool,
|
||||
add_valuehead: bool,
|
||||
) -> None:
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
@@ -50,9 +49,7 @@ def patch_config(
|
||||
configure_longlora(config, model_args, is_trainable)
|
||||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
configure_moe(config, model_args, is_trainable)
|
||||
|
||||
if add_valuehead:
|
||||
configure_valuehead(config)
|
||||
configure_hidden_size(config)
|
||||
|
||||
if model_args.use_cache and not is_trainable:
|
||||
setattr(config, "use_cache", True)
|
||||
|
||||
@@ -8,7 +8,7 @@ from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
@@ -16,11 +16,6 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_valuehead(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "llava":
|
||||
setattr(config, "hidden_size", getattr(config.vision_config, "intermediate_size", None))
|
||||
|
||||
|
||||
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Loads value head parameters from Hugging Face Hub or local disk.
|
||||
|
||||
@@ -6,7 +6,7 @@ from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
@@ -14,6 +14,11 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_hidden_size(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "llava":
|
||||
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
||||
|
||||
|
||||
def autocast_projector_dtype(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector"
|
||||
) -> None:
|
||||
@@ -22,7 +27,7 @@ def autocast_projector_dtype(
|
||||
) -> "torch.Tensor":
|
||||
return output.to(model_args.compute_dtype)
|
||||
|
||||
if hasattr(model, mm_projector_name):
|
||||
if hasattr(model, mm_projector_name) and getattr(model.config, "quantization_method", None):
|
||||
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
||||
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
||||
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
||||
|
||||
@@ -52,7 +52,9 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
processor = tokenizer_module["processor"]
|
||||
get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab
|
||||
|
||||
@@ -66,6 +68,8 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
output_dtype = getattr(model.config, "torch_dtype", torch.float16)
|
||||
setattr(model.config, "torch_dtype", output_dtype)
|
||||
model = model.to(output_dtype)
|
||||
else:
|
||||
setattr(model.config, "torch_dtype", torch.float16)
|
||||
|
||||
model.save_pretrained(
|
||||
save_directory=model_args.export_dir,
|
||||
@@ -86,5 +90,12 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
tokenizer.save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
|
||||
|
||||
if model_args.visual_inputs and processor is not None:
|
||||
getattr(processor, "image_processor").save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
getattr(processor, "image_processor").push_to_hub(
|
||||
model_args.export_hub_model_id, token=model_args.hf_hub_token
|
||||
)
|
||||
except Exception:
|
||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||
|
||||
@@ -71,14 +71,12 @@ def create_web_demo() -> gr.Blocks:
|
||||
|
||||
|
||||
def run_web_ui() -> None:
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
server_port = int(os.environ.get("GRADIO_SERVER_PORT", "7860"))
|
||||
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
|
||||
create_ui().queue().launch(share=gradio_share, server_name=server_name, server_port=server_port)
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
create_ui().queue().launch(share=gradio_share, server_name=server_name)
|
||||
|
||||
|
||||
def run_web_demo() -> None:
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
server_port = int(os.environ.get("GRADIO_SERVER_PORT", "7860"))
|
||||
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
|
||||
create_web_demo().queue().launch(share=gradio_share, server_name=server_name, server_port=server_port)
|
||||
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
||||
create_web_demo().queue().launch(share=gradio_share, server_name=server_name)
|
||||
|
||||
Reference in New Issue
Block a user