update readme
Former-commit-id: 6b08adc8219caacefa8d7b5a618e33ccd6060eec
This commit is contained in:
21
README.md
21
README.md
@@ -9,11 +9,13 @@
|
||||
|
||||
## Changelog
|
||||
|
||||
[23/06/15] Now we support training the baichuan-7B model in this repo. Try `--model_name_or_path baichuan-inc/baichuan-7B` argument to use the baichuan-7B model.
|
||||
[23/06/22] Now we align the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.
|
||||
|
||||
[23/06/15] Now we support training the baichuan-7B model in this repo. Try `--model_name_or_path baichuan-inc/baichuan-7B` and `--lora_target W_pack` arguments to use the baichuan-7B model.
|
||||
|
||||
[23/06/03] Now we support quantized training and inference (aka [QLoRA](https://github.com/artidoro/qlora)). Try `--quantization_bit 4/8` argument to work with quantized model. (experimental feature)
|
||||
|
||||
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` argument to use the BLOOMZ model.
|
||||
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
|
||||
|
||||
## Supported Models
|
||||
|
||||
@@ -75,9 +77,9 @@ huggingface-cli login
|
||||
|
||||
- Python 3.8+ and PyTorch 1.13.1+
|
||||
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
||||
- protobuf, cpm_kernels and sentencepiece
|
||||
- jieba, rouge_chinese and nltk (used at evaluation)
|
||||
- gradio and mdtex2html (used in web_demo.py)
|
||||
- uvicorn and fastapi (used in api_demo.py)
|
||||
|
||||
And **powerful GPUs**!
|
||||
|
||||
@@ -99,7 +101,7 @@ cd LLaMA-Efficient-Tuning
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### LLaMA Weights Preparation
|
||||
### LLaMA Weights Preparation (optional)
|
||||
|
||||
1. Download the weights of the LLaMA models.
|
||||
2. Convert them to HF format using the following command.
|
||||
@@ -216,17 +218,10 @@ CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
||||
|
||||
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
|
||||
|
||||
### CLI Demo
|
||||
### API / CLI / Web Demo
|
||||
|
||||
```bash
|
||||
python src/cli_demo.py \
|
||||
--model_name_or_path path_to_your_model \
|
||||
--checkpoint_dir path_to_checkpoint
|
||||
```
|
||||
|
||||
### Web Demo
|
||||
```bash
|
||||
python src/web_demo.py \
|
||||
python src/xxx_demo.py \
|
||||
--model_name_or_path path_to_your_model \
|
||||
--checkpoint_dir path_to_checkpoint
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user