fix mod stuff

Former-commit-id: cf3988226e6398c67bb2955578e436fc505aa5c5
This commit is contained in:
hiyouga
2024-04-21 18:11:10 +08:00
parent 3365cc8cf0
commit f8e219dc81
16 changed files with 63 additions and 88 deletions

View File

@@ -69,7 +69,7 @@ def init_adapter(
for name, _ in model.named_modules():
if ".0." in name:
freeze_modules.add(name.split(".0.")[-1].split(".")[0])
elif ".1." in name: # here since MoD starts from layer 1
elif ".1." in name: # MoD starts from layer 1
freeze_modules.add(name.split(".1.")[-1].split(".")[0])
trainable_layers = []

View File

@@ -3,6 +3,7 @@ from typing import TYPE_CHECKING, Any, Dict
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..extras.constants import MOD_SUPPORTED_MODELS
from ..extras.logging import get_logger
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
from .adapter import init_adapter
@@ -44,7 +45,7 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
padding_side="right",
**init_kwargs,
)
except Exception: # try the fast one
except ValueError: # try the fast one
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=True,
@@ -71,12 +72,6 @@ def load_model(
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if model_args.mixture_of_depths == 'continue':
from MoD import AutoMoDModelForCausalLM
model = AutoMoDModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config)
if model.config.model_type == 'qwen2':
RuntimeError("Qwen models are not supported for MoD training.")
if is_trainable and model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
@@ -104,14 +99,22 @@ def load_model(
if model is None:
init_kwargs["config"] = config
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == 'convert':
from MoD import convert_hf_model
if model.config.model_type == 'qwen2':
RuntimeError("Qwen models are not supported for MoD training.")
model = convert_hf_model(model)
if model_args.mixture_of_depths == "load":
from MoD import AutoMoDModelForCausalLM
model = AutoMoDModelForCausalLM.from_pretrained(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == "convert":
from MoD import apply_mod_to_hf
if getattr(config, "model_type", None) not in MOD_SUPPORTED_MODELS:
raise ValueError("Current model is not supported by mixture-of-depth.")
model = apply_mod_to_hf(model)
model = model.to(model_args.compute_dtype)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
@@ -119,7 +122,7 @@ def load_model(
model = init_adapter(model, model_args, finetuning_args, is_trainable)
if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
patch_valuehead_model(model)
if model_args.adapter_name_or_path is not None:

View File

@@ -61,9 +61,7 @@ def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "Mod
return samples
def _configure_attn_implementation(
config: "PretrainedConfig", model_args: "ModelArguments", init_kwargs: Dict[str, Any]
) -> None:
def _configure_attn_implementation(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
if model_args.flash_attn:
if not is_flash_attn2_available():
logger.warning("FlashAttention2 is not installed.")
@@ -73,9 +71,9 @@ def _configure_attn_implementation(
if getattr(config, "model_type", None) == "internlm2": # special case for custom models
setattr(config, "attn_implementation", "flash_attention_2")
else:
init_kwargs["attn_implementation"] = "flash_attention_2"
setattr(config, "_attn_implementation", "flash_attention_2")
else:
init_kwargs["attn_implementation"] = "eager"
setattr(config, "_attn_implementation", "eager")
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
@@ -295,7 +293,7 @@ def patch_config(
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
_configure_attn_implementation(config, model_args, init_kwargs)
_configure_attn_implementation(config, model_args)
_configure_rope(config, model_args, is_trainable)
_configure_longlora(config, model_args, is_trainable)
_configure_quantization(config, tokenizer, model_args, init_kwargs)