fix mod stuff
Former-commit-id: cf3988226e6398c67bb2955578e436fc505aa5c5
This commit is contained in:
@@ -46,7 +46,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
||||
- **多种模型**:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练、DPO 训练和 ORPO 训练。
|
||||
- **多种精度**:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
|
||||
- **先进算法**:GaLore、Mixture of Depths、BAdam、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ 和 Agent 微调。
|
||||
- **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
|
||||
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||
@@ -68,16 +68,16 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/04/19] 我们整合了 **[深度混合](https://github.com/astramind-ai/Mixture-of-depths)**。用法请参见 `examples/extras/MoD`。
|
||||
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`。
|
||||
|
||||
[24/04/19] 我们支持了 **Meta Llama 3** 系列模型。
|
||||
|
||||
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 `examples/extras/badam`。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`。
|
||||
|
||||
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
|
||||
@@ -251,6 +251,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
||||
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
||||
- [Orca DPO (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
|
||||
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
|
||||
- [DPO mix (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
|
||||
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
|
||||
|
||||
</details>
|
||||
|
||||
Reference in New Issue
Block a user