add code for reading from multi files in one directory
Former-commit-id: b7ebb83a96619e5111b0faa9da9d0feb8d9cdff0
This commit is contained in:
@@ -56,7 +56,6 @@ require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
|
||||
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
|
||||
require_version("trl>=0.4.1", "To fix: pip install trl>=0.4.1")
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
@@ -92,10 +91,12 @@ def _init_adapter(
|
||||
|
||||
if model_args.checkpoint_dir is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
|
||||
assert is_mergeable and len(
|
||||
model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
|
||||
else:
|
||||
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
|
||||
assert is_mergeable or len(
|
||||
model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
|
||||
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
logger.info("Fine-tuning method: LoRA")
|
||||
@@ -105,7 +106,8 @@ def _init_adapter(
|
||||
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
|
||||
"The given checkpoint is not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
|
||||
|
||||
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
|
||||
if (is_trainable and model_args.resume_lora_training) or (
|
||||
not is_mergeable): # continually train on the lora weights
|
||||
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
|
||||
else:
|
||||
checkpoints_to_merge = model_args.checkpoint_dir
|
||||
@@ -117,10 +119,10 @@ def _init_adapter(
|
||||
if len(checkpoints_to_merge) > 0:
|
||||
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
|
||||
|
||||
if lastest_checkpoint is not None: # resume lora training or quantized inference
|
||||
if lastest_checkpoint is not None: # resume lora training or quantized inference
|
||||
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable)
|
||||
|
||||
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
|
||||
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
@@ -168,7 +170,7 @@ def load_pretrained(
|
||||
padding_side="left",
|
||||
**config_kwargs
|
||||
)
|
||||
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
|
||||
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
|
||||
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
is_mergeable = True
|
||||
@@ -184,9 +186,11 @@ def load_pretrained(
|
||||
)
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
require_version("transformers>=4.30.0.dev0", "To fix: pip install git+https://github.com/huggingface/transformers.git")
|
||||
require_version("transformers>=4.30.0.dev0",
|
||||
"To fix: pip install git+https://github.com/huggingface/transformers.git")
|
||||
require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
|
||||
require_version("accelerate>=0.20.0.dev0", "To fix: pip install git+https://github.com/huggingface/accelerate.git")
|
||||
require_version("accelerate>=0.20.0.dev0",
|
||||
"To fix: pip install git+https://github.com/huggingface/accelerate.git")
|
||||
config_kwargs["load_in_4bit"] = True
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
@@ -214,10 +218,10 @@ def load_pretrained(
|
||||
model = prepare_model_for_training(model) if is_trainable else model
|
||||
model = _init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
|
||||
|
||||
if stage == "rm" or stage == "ppo": # add value head
|
||||
if stage == "rm" or stage == "ppo": # add value head
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
|
||||
|
||||
if stage == "ppo": # load reward model
|
||||
if stage == "ppo": # load reward model
|
||||
assert is_trainable, "PPO stage cannot be performed at evaluation."
|
||||
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
|
||||
logger.info("Load reward model from {}".format(model_args.reward_model))
|
||||
@@ -230,8 +234,8 @@ def load_pretrained(
|
||||
model._is_int8_training_enabled = True
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False) # fix all model params
|
||||
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
|
||||
model.requires_grad_(False) # fix all model params
|
||||
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
|
||||
|
||||
print_trainable_params(model)
|
||||
|
||||
@@ -241,11 +245,11 @@ def load_pretrained(
|
||||
def prepare_args(
|
||||
stage: Literal["pt", "sft", "rm", "ppo"]
|
||||
) -> Tuple[ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments]:
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments))
|
||||
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
||||
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
||||
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(
|
||||
json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
@@ -286,7 +290,7 @@ def prepare_args(
|
||||
logger.warning("`ddp_find_unused_parameters` needs to be set as False in DDP training.")
|
||||
training_args.ddp_find_unused_parameters = False
|
||||
|
||||
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
|
||||
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
if training_args.fp16:
|
||||
@@ -310,10 +314,9 @@ def prepare_args(
|
||||
|
||||
|
||||
def prepare_infer_args() -> Tuple[ModelArguments, DataTrainingArguments, FinetuningArguments]:
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FinetuningArguments))
|
||||
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
|
||||
model_args, data_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, finetuning_args = parser.parse_args_into_dataclasses()
|
||||
@@ -331,7 +334,6 @@ def prepare_data(
|
||||
model_args: ModelArguments,
|
||||
data_args: DataTrainingArguments
|
||||
) -> Dataset:
|
||||
|
||||
def checksum(file_path, hash):
|
||||
with open(file_path, "rb") as datafile:
|
||||
binary_data = datafile.read()
|
||||
@@ -340,7 +342,7 @@ def prepare_data(
|
||||
logger.warning("Checksum failed for {}. It may vary depending on the platform.".format(file_path))
|
||||
|
||||
max_samples = data_args.max_samples
|
||||
all_datasets: List[Dataset] = [] # support multiple datasets
|
||||
all_datasets: List[Dataset] = [] # support multiple datasets
|
||||
|
||||
for dataset_attr in data_args.dataset_list:
|
||||
|
||||
@@ -361,7 +363,7 @@ def prepare_data(
|
||||
checksum(data_file, dataset_attr.file_sha1)
|
||||
else:
|
||||
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
|
||||
|
||||
print(extension)
|
||||
raw_datasets = load_dataset(
|
||||
extension if extension in ["csv", "json"] else "text",
|
||||
data_files=data_file,
|
||||
@@ -383,11 +385,11 @@ def prepare_data(
|
||||
("query_column", "query"),
|
||||
("response_column", "response"),
|
||||
("history_column", "history")
|
||||
]: # every dataset will have 4 columns same as each other
|
||||
]: # every dataset will have 4 columns same as each other
|
||||
if getattr(dataset_attr, column_name) != target_name:
|
||||
if getattr(dataset_attr, column_name):
|
||||
dataset = dataset.rename_column(getattr(dataset_attr, column_name), target_name)
|
||||
else: # None or empty string
|
||||
else: # None or empty string
|
||||
dataset = dataset.add_column(target_name, dummy_data)
|
||||
all_datasets.append(dataset)
|
||||
|
||||
@@ -406,7 +408,6 @@ def preprocess_data(
|
||||
training_args: Seq2SeqTrainingArguments,
|
||||
stage: Literal["pt", "sft", "rm", "ppo"]
|
||||
) -> Dataset:
|
||||
|
||||
column_names = list(dataset.column_names)
|
||||
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
||||
prompt_template = Template(data_args.prompt_template)
|
||||
@@ -429,7 +430,8 @@ def preprocess_data(
|
||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
||||
total_length = (total_length // data_args.max_source_length) * data_args.max_source_length
|
||||
# split by chunks of max_source_length
|
||||
result = [concatenated_ids[i: i+data_args.max_source_length] for i in range(0, total_length, data_args.max_source_length)]
|
||||
result = [concatenated_ids[i: i + data_args.max_source_length] for i in
|
||||
range(0, total_length, data_args.max_source_length)]
|
||||
return {
|
||||
"input_ids": result,
|
||||
"labels": result.copy()
|
||||
@@ -442,9 +444,9 @@ def preprocess_data(
|
||||
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
|
||||
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
|
||||
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
source_ids = source_ids[:data_args.max_source_length - 1]
|
||||
if len(target_ids) > data_args.max_target_length - 1: # eos token
|
||||
if len(target_ids) > data_args.max_target_length - 1: # eos token
|
||||
target_ids = target_ids[:data_args.max_target_length - 1]
|
||||
|
||||
input_ids = source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
|
||||
@@ -461,9 +463,9 @@ def preprocess_data(
|
||||
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
|
||||
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
|
||||
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
source_ids = source_ids[:data_args.max_source_length - 1]
|
||||
if len(target_ids) > data_args.max_target_length - 1: # bos token
|
||||
if len(target_ids) > data_args.max_target_length - 1: # bos token
|
||||
target_ids = target_ids[:data_args.max_target_length - 1]
|
||||
|
||||
input_ids = source_ids + [tokenizer.bos_token_id]
|
||||
@@ -481,11 +483,11 @@ def preprocess_data(
|
||||
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
|
||||
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)
|
||||
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
if len(source_ids) > data_args.max_source_length - 1: # bos token
|
||||
source_ids = source_ids[:data_args.max_source_length - 1]
|
||||
if len(accept_ids) > data_args.max_target_length - 1: # eos token
|
||||
if len(accept_ids) > data_args.max_target_length - 1: # eos token
|
||||
accept_ids = accept_ids[:data_args.max_target_length - 1]
|
||||
if len(reject_ids) > data_args.max_target_length - 1: # eos token
|
||||
if len(reject_ids) > data_args.max_target_length - 1: # eos token
|
||||
reject_ids = reject_ids[:data_args.max_target_length - 1]
|
||||
|
||||
accept_ids = source_ids + [tokenizer.bos_token_id] + accept_ids + [tokenizer.eos_token_id]
|
||||
|
||||
Reference in New Issue
Block a user