|
|
|
|
@@ -21,7 +21,7 @@ from ..data import get_template_and_fix_tokenizer
|
|
|
|
|
from ..extras.constants import IMAGE_PLACEHOLDER
|
|
|
|
|
from ..extras.logging import get_logger
|
|
|
|
|
from ..extras.misc import get_device_count
|
|
|
|
|
from ..extras.packages import is_vllm_available, is_vllm_version_greater_than_0_5, is_vllm_version_greater_than_0_5_1
|
|
|
|
|
from ..extras.packages import is_vllm_available
|
|
|
|
|
from ..model import load_config, load_tokenizer
|
|
|
|
|
from ..model.model_utils.quantization import QuantizationMethod
|
|
|
|
|
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
|
|
|
|
@@ -32,17 +32,8 @@ if is_vllm_available():
|
|
|
|
|
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
|
|
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
|
|
|
|
|
|
if is_vllm_version_greater_than_0_5_1():
|
|
|
|
|
pass
|
|
|
|
|
elif is_vllm_version_greater_than_0_5():
|
|
|
|
|
from vllm.multimodal.image import ImagePixelData
|
|
|
|
|
else:
|
|
|
|
|
from vllm.sequence import MultiModalData
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
|
|
|
|
|
|
from ..data.mm_plugin import ImageInput, VideoInput
|
|
|
|
|
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
|
|
|
|
|
|
|
|
|
@@ -88,19 +79,11 @@ class VllmEngine(BaseEngine):
|
|
|
|
|
"max_lora_rank": model_args.vllm_max_lora_rank,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if getattr(config, "model_type", None) == "llava":
|
|
|
|
|
image_size = config.vision_config.image_size
|
|
|
|
|
patch_size = config.vision_config.patch_size
|
|
|
|
|
self.image_feature_size = (image_size // patch_size) ** 2
|
|
|
|
|
engine_args["image_input_type"] = "pixel_values"
|
|
|
|
|
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token)
|
|
|
|
|
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
|
|
|
|
engine_args["image_feature_size"] = self.image_feature_size
|
|
|
|
|
if getattr(config, "is_yi_vl_derived_model", None):
|
|
|
|
|
import vllm.model_executor.models.llava
|
|
|
|
|
if getattr(config, "is_yi_vl_derived_model", None):
|
|
|
|
|
import vllm.model_executor.models.llava
|
|
|
|
|
|
|
|
|
|
logger.info("Detected Yi-VL model, applying projector patch.")
|
|
|
|
|
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
|
|
|
|
logger.info("Detected Yi-VL model, applying projector patch.")
|
|
|
|
|
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
|
|
|
|
|
|
|
|
|
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
|
|
|
|
if model_args.adapter_name_or_path is not None:
|
|
|
|
|
@@ -118,29 +101,13 @@ class VllmEngine(BaseEngine):
|
|
|
|
|
**input_kwargs,
|
|
|
|
|
) -> AsyncIterator["RequestOutput"]:
|
|
|
|
|
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
|
|
|
|
|
|
|
|
|
if image is not None:
|
|
|
|
|
if IMAGE_PLACEHOLDER not in messages[0]["content"]:
|
|
|
|
|
messages[0]["content"] = IMAGE_PLACEHOLDER + messages[0]["content"]
|
|
|
|
|
|
|
|
|
|
messages = self.template.mm_plugin.process_messages(messages, [image], self.processor)
|
|
|
|
|
|
|
|
|
|
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
|
|
|
|
system = system or self.generating_args["default_system"]
|
|
|
|
|
prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools)
|
|
|
|
|
|
|
|
|
|
if self.processor is not None and image is not None: # add image features
|
|
|
|
|
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
|
|
|
|
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
|
|
|
|
|
if is_vllm_version_greater_than_0_5_1():
|
|
|
|
|
multi_modal_data = {"image": pixel_values}
|
|
|
|
|
elif is_vllm_version_greater_than_0_5():
|
|
|
|
|
multi_modal_data = ImagePixelData(image=pixel_values)
|
|
|
|
|
else: # TODO: remove vllm 0.4.3 support
|
|
|
|
|
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
|
|
|
|
else:
|
|
|
|
|
multi_modal_data = None
|
|
|
|
|
|
|
|
|
|
prompt_length = len(prompt_ids)
|
|
|
|
|
|
|
|
|
|
use_beam_search: bool = self.generating_args["num_beams"] > 1
|
|
|
|
|
@@ -185,6 +152,11 @@ class VllmEngine(BaseEngine):
|
|
|
|
|
skip_special_tokens=True,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if image is not None: # add image features
|
|
|
|
|
multi_modal_data = {"image": image}
|
|
|
|
|
else:
|
|
|
|
|
multi_modal_data = None
|
|
|
|
|
|
|
|
|
|
result_generator = self.model.generate(
|
|
|
|
|
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
|
|
|
|
|
sampling_params=sampling_params,
|
|
|
|
|
|