release v0.1.0
Former-commit-id: 63c8d3a17cb18f0d8a8e37bfa147daf5bdd28ea9
This commit is contained in:
@@ -28,7 +28,7 @@ check_min_version("4.29.1")
|
||||
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
|
||||
require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
|
||||
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
|
||||
require_version("trl==0.4.4", "To fix: pip install trl==0.4.4")
|
||||
require_version("trl>=0.4.7", "To fix: pip install trl>=0.4.7")
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
|
||||
@@ -25,7 +25,6 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
r"""
|
||||
Inherits PPOTrainer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
training_args: Seq2SeqTrainingArguments,
|
||||
@@ -46,12 +45,13 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
r"""
|
||||
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
|
||||
"""
|
||||
total_train_batch_size = self.config.batch_size * self.config.gradient_accumulation_steps * self.args.world_size
|
||||
total_train_batch_size = (
|
||||
self.args.per_device_train_batch_size * self.args.gradient_accumulation_steps * self.args.world_size
|
||||
)
|
||||
len_dataloader = len(self.dataloader)
|
||||
num_steps_per_epoch = max(len_dataloader // self.config.gradient_accumulation_steps, 1)
|
||||
num_examples = len(self.dataset)
|
||||
num_train_epochs = self.args.num_train_epochs
|
||||
max_steps = math.ceil(num_train_epochs * num_steps_per_epoch)
|
||||
max_steps = math.ceil(num_train_epochs * len_dataloader)
|
||||
|
||||
self.state.max_steps = max_steps
|
||||
self.state.num_train_epochs = num_train_epochs
|
||||
@@ -62,9 +62,9 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {num_examples}")
|
||||
logger.info(f" Num Epochs = {num_train_epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {self.config.batch_size}")
|
||||
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
|
||||
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
|
||||
logger.info(f" Gradient Accumulation steps = {self.config.gradient_accumulation_steps}")
|
||||
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {max_steps}")
|
||||
logger.info(f" Number of trainable parameters = {sum(p.numel() for p in self.model.parameters() if p.requires_grad)}")
|
||||
|
||||
@@ -77,7 +77,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
"eos_token_id": self.tokenizer.eos_token_id,
|
||||
"logits_processor": get_logits_processor()
|
||||
}
|
||||
output_length_sampler = LengthSampler(max_target_length // 2, max_target_length)
|
||||
length_sampler = LengthSampler(max_target_length // 2, max_target_length)
|
||||
unwrapped_model: PreTrainedModel = self.accelerator.unwrap_model(self.model)
|
||||
|
||||
dataiter = iter(self.dataloader)
|
||||
@@ -87,59 +87,45 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
self.log_callback.on_train_begin(self.args, self.state, self.control)
|
||||
|
||||
for step in tqdm(range(max_steps), disable=not self.is_world_process_zero(), leave=False):
|
||||
batch = next(dataiter)
|
||||
steps_trained += 1
|
||||
|
||||
for _ in range(self.config.gradient_accumulation_steps):
|
||||
unwrapped_model.gradient_checkpointing_disable()
|
||||
unwrapped_model.config.use_cache = True
|
||||
|
||||
batch = next(dataiter)
|
||||
steps_trained += 1
|
||||
# Get responses
|
||||
query_tensors = batch["input_ids"]
|
||||
response_tensors = self.generate(batch, length_sampler, return_prompt=False, **gen_kwargs)
|
||||
|
||||
unwrapped_model.gradient_checkpointing_disable()
|
||||
unwrapped_model.config.use_cache = True
|
||||
queries, responses = [], []
|
||||
for i in range(len(query_tensors)):
|
||||
query_length = (query_tensors[i] != self.tokenizer.pad_token_id).nonzero()[0]
|
||||
response_length = (response_tensors[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
||||
queries.append(query_tensors[i, query_length:]) # remove padding from left
|
||||
responses.append(response_tensors[i, :response_length]) # remove padding from right
|
||||
|
||||
# Get response from model
|
||||
query_tensors: torch.Tensor = batch["input_ids"]
|
||||
response_tensors = self.generate(batch, length_sampler=output_length_sampler, return_prompt=False, **gen_kwargs)
|
||||
|
||||
queries: List[torch.Tensor] = []
|
||||
responses: List[torch.Tensor] = []
|
||||
for i in range(len(query_tensors)):
|
||||
query_length = (query_tensors[i] != self.tokenizer.pad_token_id).nonzero()[0]
|
||||
response_length = (response_tensors[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
||||
queries.append(query_tensors[i, query_length:]) # remove padding from left
|
||||
if response_length < 2: # make response have at least 2 tokens
|
||||
responses.append(response_tensors.new_empty(2).fill_(self.tokenizer.eos_token_id))
|
||||
else:
|
||||
responses.append(response_tensors[i, :response_length]) # remove padding from right
|
||||
|
||||
# Compute rewards
|
||||
replace_model(unwrapped_model, target="reward")
|
||||
# Compute rewards
|
||||
replace_model(unwrapped_model, target="reward")
|
||||
with torch.no_grad():
|
||||
_, _, values = self.model(**self.prepare_model_inputs(queries, responses))
|
||||
rewards = [reward for reward in values[:, -1].to(torch.float32)] # use float32 type
|
||||
replace_model(unwrapped_model, target="default") # make sure the model is default at the end
|
||||
rewards = [reward for reward in values[-1].to(torch.float32)] # use float32 type
|
||||
replace_model(unwrapped_model, target="default")
|
||||
|
||||
# Run PPO step
|
||||
unwrapped_model.gradient_checkpointing_enable()
|
||||
unwrapped_model.config.use_cache = False
|
||||
# Run PPO step
|
||||
unwrapped_model.gradient_checkpointing_enable()
|
||||
unwrapped_model.config.use_cache = False
|
||||
stats = self.step(queries, responses, rewards)
|
||||
|
||||
stats = self.step(queries, responses, rewards)
|
||||
|
||||
loss_meter.update(stats["ppo/loss/total"], n=len(rewards))
|
||||
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
|
||||
|
||||
if self.control.should_epoch_stop or self.control.should_training_stop:
|
||||
break
|
||||
|
||||
if steps_trained == len_dataloader:
|
||||
dataiter = iter(self.dataloader)
|
||||
steps_trained = 0
|
||||
loss_meter.update(stats["ppo/loss/total"], n=len(rewards))
|
||||
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
|
||||
|
||||
if self.is_world_process_zero() and (step+1) % self.args.logging_steps == 0:
|
||||
logs = {
|
||||
"loss": round(loss_meter.avg, 4),
|
||||
"reward": round(reward_meter.avg, 4),
|
||||
"learning_rate": stats["ppo/learning_rate"],
|
||||
"epoch": round(step / num_steps_per_epoch, 2)
|
||||
}
|
||||
logs = dict(
|
||||
loss=round(loss_meter.avg, 4),
|
||||
reward=round(reward_meter.avg, 4),
|
||||
learning_rate=stats["ppo/learning_rate"],
|
||||
epoch=round(step / len_dataloader, 2)
|
||||
)
|
||||
print(logs)
|
||||
logs["step"] = step
|
||||
self.state.log_history.append(logs)
|
||||
@@ -150,10 +136,14 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
if (step+1) % self.args.save_steps == 0: # save checkpoint
|
||||
self.save_model(os.path.join(self.args.output_dir, f"checkpoint-{step+1}"))
|
||||
|
||||
if self.control.should_training_stop:
|
||||
if self.control.should_epoch_stop or self.control.should_training_stop:
|
||||
break
|
||||
|
||||
@torch.inference_mode()
|
||||
if steps_trained == len_dataloader:
|
||||
dataiter = iter(self.dataloader)
|
||||
steps_trained = 0
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(
|
||||
self,
|
||||
inputs: Dict[str, torch.Tensor],
|
||||
|
||||
@@ -4,7 +4,8 @@
|
||||
import math
|
||||
from trl import PPOConfig
|
||||
from torch.optim import AdamW
|
||||
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments
|
||||
from typing import Optional, List
|
||||
from transformers import DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, TrainerCallback
|
||||
from transformers.optimization import get_scheduler
|
||||
|
||||
from llmtuner.dsets import get_dataset, preprocess_dataset
|
||||
@@ -19,7 +20,8 @@ def run_ppo(
|
||||
model_args: ModelArguments,
|
||||
data_args: DataArguments,
|
||||
training_args: Seq2SeqTrainingArguments,
|
||||
finetuning_args: FinetuningArguments
|
||||
finetuning_args: FinetuningArguments,
|
||||
callbacks: Optional[List[TrainerCallback]] = [LogCallback()]
|
||||
):
|
||||
dataset = get_dataset(model_args, data_args)
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="ppo")
|
||||
@@ -30,7 +32,7 @@ def run_ppo(
|
||||
model_name=model_args.model_name_or_path,
|
||||
learning_rate=training_args.learning_rate,
|
||||
mini_batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps,
|
||||
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
||||
ppo_epochs=1,
|
||||
max_grad_norm=training_args.max_grad_norm
|
||||
@@ -50,7 +52,7 @@ def run_ppo(
|
||||
ppo_trainer = PPOPeftTrainer(
|
||||
training_args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
callbacks=[LogCallback()],
|
||||
callbacks=callbacks,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
ref_model=None,
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
|
||||
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
|
||||
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from typing import Optional, List
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from llmtuner.dsets import get_dataset, preprocess_dataset
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
@@ -18,7 +19,8 @@ def run_rm(
|
||||
model_args: ModelArguments,
|
||||
data_args: DataArguments,
|
||||
training_args: Seq2SeqTrainingArguments,
|
||||
finetuning_args: FinetuningArguments
|
||||
finetuning_args: FinetuningArguments,
|
||||
callbacks: Optional[List[TrainerCallback]] = [LogCallback()]
|
||||
):
|
||||
dataset = get_dataset(model_args, data_args)
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm")
|
||||
@@ -44,7 +46,7 @@ def run_rm(
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=[LogCallback()],
|
||||
callbacks=callbacks,
|
||||
compute_metrics=compute_accuracy,
|
||||
**trainer_kwargs
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user