Former-commit-id: cd5a1a8b9c6eb59d6e95f79573f60ad8668f1942
This commit is contained in:
fzc8578
2025-01-10 20:27:06 +08:00
parent 25d4889789
commit e63c2df0b1
5 changed files with 51 additions and 47 deletions

View File

@@ -1,8 +1,8 @@
import math
import re
from copy import deepcopy
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
import re
import numpy as np
import torch
@@ -276,38 +276,39 @@ class CpmOPlugin(BasePlugin):
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
if num_image_tokens>0:
mm_inputs = self._get_mm_inputs(images, videos, processor)
pattern = "(<image>./</image>)"
images, image_sizes, tgt_sizes = mm_inputs["pixel_values"], mm_inputs["image_sizes"], mm_inputs["tgt_sizes"]
input_ids_list = []
image_bounds_list = []
if num_image_tokens > 0:
mm_inputs = self._get_mm_inputs(images, videos, processor)
pattern = "(<image>./</image>)"
images, image_sizes, _ = mm_inputs["pixel_values"], mm_inputs["image_sizes"], mm_inputs["tgt_sizes"]
image_index = 0
for index, message in enumerate(messages):
text = message['content']
text = message["content"]
image_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(image_tags)):
final_text = final_text + text_chunks[i] + \
image_processor.get_slice_image_placeholder(
image_sizes[image_index][i],
final_text = (
final_text
+ text_chunks[i]
+ image_processor.get_slice_image_placeholder(
image_sizes[image_index][i],
i,
image_processor.max_slice_nums,
image_processor.use_image_id,
)
)
image_index += 1
final_text += text_chunks[-1]
messages[index]['content'] = final_text
messages[index]["content"] = final_text
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
return messages
@override
def _get_mm_inputs(
self,
@@ -316,25 +317,26 @@ class CpmOPlugin(BasePlugin):
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 512 * 512),
)
if "valid_image_nums_ls" in kwargs:
valid_image_nums_ls = kwargs['valid_image_nums_ls']
valid_image_nums_ls = kwargs["valid_image_nums_ls"]
new_images = []
idx = 0
for valid_image_nums in valid_image_nums_ls:
new_images.append(images[idx:idx+valid_image_nums])
new_images.append(images[idx : idx + valid_image_nums])
idx += valid_image_nums
images = new_images
image_inputs = image_processor(images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt")
image_inputs = image_processor(
images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt"
)
mm_inputs.update(image_inputs)
if len(videos) != 0:
@@ -344,26 +346,26 @@ class CpmOPlugin(BasePlugin):
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
)
return mm_inputs
def trim_and_pad(self, seq, padding_value=0):
return pad_sequence([s for s in seq], batch_first=True, padding_value=padding_value)
return pad_sequence(seq, batch_first=True, padding_value=padding_value)
def pad_data(self, features):
features['position_ids'] = [torch.arange(input_ids.size(0)).long() for input_ids in features['input_ids']]
features['input_ids'] = self.trim_and_pad(
[input_ids for input_ids in features['input_ids']],
features["position_ids"] = [torch.arange(input_ids.size(0)).long() for input_ids in features["input_ids"]]
features["input_ids"] = self.trim_and_pad(
features["input_ids"],
)
features['position_ids'] = self.trim_and_pad(
[position_ids for position_ids in features['position_ids']],
features["position_ids"] = self.trim_and_pad(
features["position_ids"],
)
features['labels'] = self.trim_and_pad(
[labels for labels in features['labels']],
features["labels"] = self.trim_and_pad(
features["labels"],
padding_value=-100,
)
features['attention_mask'] = self.trim_and_pad(
[attention_mask for attention_mask in features['attention_mask']],
features["attention_mask"] = self.trim_and_pad(
features["attention_mask"],
)
return features
@@ -379,11 +381,12 @@ class CpmOPlugin(BasePlugin):
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
image_bounds_list = []
position_ids = []
valid_image_nums_ls = []
for input_ids in batch_ids:
input_ids_ = torch.tensor(input_ids)
start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (input_ids_ == processor.tokenizer.slice_start_id)
start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (
input_ids_ == processor.tokenizer.slice_start_id
)
end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
@@ -398,10 +401,12 @@ class CpmOPlugin(BasePlugin):
)
image_bounds_list.append(image_bounds)
mm_inputs = self._get_mm_inputs(images, videos, processor, valid_image_nums_ls=valid_image_nums_ls)
mm_inputs.update({
"image_bound": image_bounds_list,
})
return mm_inputs
mm_inputs.update(
{
"image_bound": image_bounds_list,
}
)
return mm_inputs
class LlavaPlugin(BasePlugin):