refactor dataset_attr, add eos in pt, fix #757

Former-commit-id: 0feec9a830b917b36686b61938a66e842eccf930
This commit is contained in:
hiyouga
2023-09-01 19:00:45 +08:00
parent 93be211f80
commit e5b72c6a77
19 changed files with 108 additions and 126 deletions

View File

@@ -1,9 +1,9 @@
import torch
from collections import defaultdict
from peft import PeftModel
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.tuner.core.trainer import PeftModelMixin
@@ -18,9 +18,16 @@ class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
def __init__(
self,
finetuning_args: "FinetuningArguments",
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
disable_dropout: Optional[bool] = True,
**kwargs
):
if disable_dropout:
disable_dropout_in_model(model)
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.finetuning_args = finetuning_args
self.ref_model = ref_model
self.use_dpo_data_collator = True # hack to avoid warning
@@ -29,12 +36,16 @@ class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
self.beta = finetuning_args.dpo_beta
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, **kwargs)
Trainer.__init__(self, model=model, **kwargs)
if not hasattr(self, "accelerator"):
raise AttributeError("Please update `transformers`.")
if ref_model is not None:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if self.is_deepspeed_enabled:
self.ref_model = self.accelerator._prepare_deepspeed(self.ref_model)
self.ref_model.eval()
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
def concatenated_forward(
self,
@@ -42,27 +53,12 @@ class DPOPeftTrainer(PeftModelMixin, DPOTrainer):
batch: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_disable()
if model is None and isinstance(unwrapped_model, PeftModel): # peft model has no ref_model
with unwrapped_model.disable_adapter():
all_logits = self.model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
else:
all_logits = model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
if not torch.is_grad_enabled():
unwrapped_model.gradient_checkpointing_enable()
all_logits = model(
input_ids=batch_copied["input_ids"],
attention_mask=batch_copied["attention_mask"],
return_dict=True
).logits.to(torch.float32)
all_logps = self._get_batch_logps(
all_logits,