Former-commit-id: 43a56cb331fae899ca35b0c312730d4ab79d0c42
This commit is contained in:
hiyouga
2024-07-15 01:04:56 +08:00
parent 68365045b4
commit e4d11a117b
18 changed files with 46 additions and 41 deletions

View File

@@ -61,11 +61,12 @@ def calculate_lr(
packing=packing,
output_dir="dummy_dir",
overwrite_cache=True,
do_train=True,
)
)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
dataset_module = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"]
if stage == "pt":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
elif stage == "sft":
@@ -73,7 +74,7 @@ def calculate_lr(
else:
raise NotImplementedError("Stage does not supported: {}.".format(stage))
dataloader = DataLoader(dataset_module["eval_dataset"], batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
valid_tokens, total_tokens = 0, 0
for batch in tqdm(dataloader):
valid_tokens += torch.sum(batch["labels"] != IGNORE_INDEX).item()

View File

@@ -83,11 +83,12 @@ def cal_ppl(
train_on_prompt=train_on_prompt,
output_dir="dummy_dir",
overwrite_cache=True,
do_train=True,
)
)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
dataset_module = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"]
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
if stage == "pt":
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
@@ -100,7 +101,7 @@ def cal_ppl(
else:
raise NotImplementedError("Stage does not supported: {}.".format(stage))
dataloader = DataLoader(dataset_module["eval_dataset"], batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
criterion = torch.nn.CrossEntropyLoss(reduction="none")
total_ppl = 0
perplexities = []

View File

@@ -44,13 +44,14 @@ def length_cdf(
cutoff_len=1_000_000,
output_dir="dummy_dir",
overwrite_cache=True,
do_train=True,
)
)
tokenizer_module = load_tokenizer(model_args)
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
total_num = len(dataset_module["eval_dataset"])
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)["train_dataset"]
total_num = len(trainset)
length_dict = defaultdict(int)
for sample in tqdm(dataset_module["eval_dataset"]["input_ids"]):
for sample in tqdm(trainset["input_ids"]):
length_dict[len(sample) // interval * interval] += 1
length_tuples = list(length_dict.items())