@@ -79,6 +79,11 @@ def is_transformers_version_greater_than_4_43():
|
||||
return _get_package_version("transformers") >= version.parse("4.43.0")
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_transformers_version_equal_to_4_46():
|
||||
return _get_package_version("transformers") == version.parse("4.46.0")
|
||||
|
||||
|
||||
def is_uvicorn_available():
|
||||
return _is_package_available("uvicorn")
|
||||
|
||||
|
||||
@@ -29,6 +29,7 @@ from trl.trainer import disable_dropout_in_model
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46
|
||||
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||
|
||||
@@ -118,6 +119,13 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
@override
|
||||
def get_batch_samples(self, epoch_iterator, num_batches):
|
||||
r"""
|
||||
Replaces the method of KTO Trainer with the one of the standard Trainer.
|
||||
"""
|
||||
return Trainer.get_batch_samples(self, epoch_iterator, num_batches)
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
||||
@@ -258,3 +266,15 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
metrics[f"{prefix}odds_ratio_loss"] = ((losses - sft_loss) / self.beta).detach().mean().cpu()
|
||||
|
||||
return losses.mean(), metrics
|
||||
|
||||
@override
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
r"""
|
||||
Fixes the loss value for transformers 4.46.0.
|
||||
https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/trainer.py#L3605
|
||||
"""
|
||||
loss = super().compute_loss(model, inputs, return_outputs)
|
||||
if kwargs.pop("num_items_in_batch", False) and is_transformers_version_equal_to_4_46():
|
||||
loss /= self.args.gradient_accumulation_steps
|
||||
|
||||
return loss
|
||||
|
||||
@@ -28,6 +28,7 @@ from trl.trainer import disable_dropout_in_model
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46
|
||||
from ..callbacks import SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps
|
||||
|
||||
@@ -120,6 +121,13 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
"""
|
||||
return Trainer._get_train_sampler(self)
|
||||
|
||||
@override
|
||||
def get_batch_samples(self, epoch_iterator, num_batches):
|
||||
r"""
|
||||
Replaces the method of KTO Trainer with the one of the standard Trainer.
|
||||
"""
|
||||
return Trainer.get_batch_samples(self, epoch_iterator, num_batches)
|
||||
|
||||
@override
|
||||
def forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
|
||||
@@ -231,3 +239,15 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
metrics["kl"] = kl.item()
|
||||
|
||||
return losses, metrics
|
||||
|
||||
@override
|
||||
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
|
||||
r"""
|
||||
Fixes the loss value for transformers 4.46.0.
|
||||
https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/trainer.py#L3605
|
||||
"""
|
||||
loss = super().compute_loss(model, inputs, return_outputs)
|
||||
if kwargs.pop("num_items_in_batch", False) and is_transformers_version_equal_to_4_46():
|
||||
loss /= self.args.gradient_accumulation_steps
|
||||
|
||||
return loss
|
||||
|
||||
@@ -25,6 +25,7 @@ from transformers import Trainer
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.packages import is_transformers_version_equal_to_4_46
|
||||
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
|
||||
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
@@ -79,7 +80,7 @@ class PairwiseTrainer(Trainer):
|
||||
|
||||
@override
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
|
||||
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
|
||||
r"""
|
||||
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
|
||||
@@ -98,6 +99,10 @@ class PairwiseTrainer(Trainer):
|
||||
chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
|
||||
|
||||
loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
|
||||
|
||||
if kwargs.pop("num_items_in_batch", False) and is_transformers_version_equal_to_4_46():
|
||||
loss /= self.args.gradient_accumulation_steps # fixes the loss value for transformers 4.46.0
|
||||
|
||||
if return_outputs:
|
||||
return loss, (loss, chosen_scores, rejected_scores)
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user