init unittest

Former-commit-id: 1c6f21cb8878ced043fe0b27c72cad2ef6ee990e
This commit is contained in:
hiyouga
2024-06-08 01:35:58 +08:00
parent 073e34855d
commit e0f2c0b5dc
6 changed files with 36 additions and 35 deletions

35
tests/model/test_attn.py Normal file
View File

@@ -0,0 +1,35 @@
import os
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
def test_attention():
attention_available = ["off"]
if is_torch_sdpa_available():
attention_available.append("sdpa")
if is_flash_attn_2_available():
attention_available.append("fa2")
llama_attention_classes = {
"off": "LlamaAttention",
"sdpa": "LlamaSdpaAttention",
"fa2": "LlamaFlashAttention2",
}
for requested_attention in attention_available:
model_args, _, finetuning_args, _ = get_infer_args({
"model_name_or_path": TINY_LLAMA,
"template": "llama2",
"flash_attn": requested_attention,
})
tokenizer = load_tokenizer(model_args)
model = load_model(tokenizer["tokenizer"], model_args, finetuning_args)
for module in model.modules():
if "Attention" in module.__class__.__name__:
assert module.__class__.__name__ == llama_attention_classes[requested_attention]

View File

@@ -1,30 +0,0 @@
import os
import time
from openai import OpenAI
from transformers.utils.versions import require_version
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
def main():
client = OpenAI(
api_key="0",
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
)
messages = [{"role": "user", "content": "Write a long essay about environment protection as long as possible."}]
num_tokens = 0
start_time = time.time()
for _ in range(8):
result = client.chat.completions.create(messages=messages, model="test")
num_tokens += result.usage.completion_tokens
elapsed_time = time.time() - start_time
print("Throughput: {:.2f} tokens/s".format(num_tokens / elapsed_time))
# --infer_backend hf: 27.22 tokens/s (1.0x)
# --infer_backend vllm: 73.03 tokens/s (2.7x)
if __name__ == "__main__":
main()

View File

@@ -1,64 +0,0 @@
import json
import os
from typing import Sequence
from openai import OpenAI
from transformers.utils.versions import require_version
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
grade_to_score = {"A": 4, "B": 3, "C": 2}
total_score, total_hour = 0, 0
for grade, hour in zip(grades, hours):
total_score += grade_to_score[grade] * hour
total_hour += hour
return round(total_score / total_hour, 2)
def main():
client = OpenAI(
api_key="0",
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
)
tools = [
{
"type": "function",
"function": {
"name": "calculate_gpa",
"description": "Calculate the Grade Point Average (GPA) based on grades and credit hours",
"parameters": {
"type": "object",
"properties": {
"grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"},
"hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"},
},
"required": ["grades", "hours"],
},
},
}
]
tool_map = {"calculate_gpa": calculate_gpa}
messages = []
messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."})
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
if result.choices[0].message.tool_calls is None:
raise ValueError("Cannot retrieve function call from the response.")
messages.append(result.choices[0].message)
tool_call = result.choices[0].message.tool_calls[0].function
print(tool_call)
# Function(arguments='{"grades": ["A", "A", "B", "C"], "hours": [3, 4, 3, 2]}', name='calculate_gpa')
name, arguments = tool_call.name, json.loads(tool_call.arguments)
tool_result = tool_map[name](**arguments)
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
print(result.choices[0].message.content)
# Based on the grades and credit hours you provided, your Grade Point Average (GPA) is 3.42.
if __name__ == "__main__":
main()