rename package
Former-commit-id: a07ff0c083558cfe6f474d13027642d3052fee08
This commit is contained in:
0
src/llamafactory/train/__init__.py
Normal file
0
src/llamafactory/train/__init__.py
Normal file
4
src/llamafactory/train/dpo/__init__.py
Normal file
4
src/llamafactory/train/dpo/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_dpo
|
||||
|
||||
|
||||
__all__ = ["run_dpo"]
|
||||
185
src/llamafactory/train/dpo/trainer.py
Normal file
185
src/llamafactory/train/dpo/trainer.py
Normal file
@@ -0,0 +1,185 @@
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import BatchEncoding, Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomDPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
if ref_model is not None:
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.ref_model = ref_model
|
||||
self.beta = finetuning_args.dpo_beta
|
||||
self.label_smoothing = finetuning_args.dpo_label_smoothing
|
||||
self.loss_type = finetuning_args.dpo_loss
|
||||
self.ftx_gamma = finetuning_args.dpo_ftx
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
raise AttributeError("Please update `transformers`.")
|
||||
|
||||
if ref_model is not None:
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
|
||||
): # quantized models are already set on the correct device
|
||||
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
||||
else:
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes the sum log probabilities of the labels under the given logits if loss_type != IPO.
|
||||
|
||||
Otherwise the average log probabilities.
|
||||
"""
|
||||
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
|
||||
|
||||
all_logits: "torch.Tensor" = model(
|
||||
input_ids=batch_copied["input_ids"],
|
||||
attention_mask=batch_copied["attention_mask"],
|
||||
return_dict=True,
|
||||
use_cache=False,
|
||||
).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
logits=all_logits,
|
||||
labels=batch_copied["labels"],
|
||||
average_log_prob=(self.loss_type == "ipo"),
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_chosen_logits,
|
||||
policy_rejected_logits,
|
||||
) = self.concatenated_forward(model, batch)
|
||||
with torch.no_grad():
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
) = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
)
|
||||
if self.ftx_gamma > 1e-6:
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
|
||||
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().mean().cpu()
|
||||
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu()
|
||||
|
||||
return losses.mean(), metrics
|
||||
80
src/llamafactory/train/dpo/workflow.py
Normal file
80
src/llamafactory/train/dpo/workflow.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push, create_ref_model
|
||||
from .trainer import CustomDPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_dpo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Create reference model
|
||||
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
|
||||
ref_model = model
|
||||
else:
|
||||
ref_model = create_ref_model(model_args, finetuning_args)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomDPOTrainer(
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
if id(model) == id(ref_model): # unable to compute rewards without a reference model
|
||||
remove_keys = [key for key in metrics.keys() if "rewards" in key]
|
||||
for key in remove_keys:
|
||||
metrics.pop(key)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
4
src/llamafactory/train/orpo/__init__.py
Normal file
4
src/llamafactory/train/orpo/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_orpo
|
||||
|
||||
|
||||
__all__ = ["run_orpo"]
|
||||
135
src/llamafactory/train/orpo/trainer.py
Normal file
135
src/llamafactory/train/orpo/trainer.py
Normal file
@@ -0,0 +1,135 @@
|
||||
from collections import defaultdict
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomORPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", "torch.nn.Module"],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.beta = finetuning_args.orpo_beta
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss.
|
||||
"""
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
||||
)
|
||||
odds_ratio_loss = -F.logsigmoid(log_odds)
|
||||
return odds_ratio_loss
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes the average log probabilities of the labels under the given logits.
|
||||
"""
|
||||
all_logits: "torch.Tensor" = model(
|
||||
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True, use_cache=False
|
||||
).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
logits=all_logits,
|
||||
labels=batch["labels"],
|
||||
average_log_prob=True,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
|
||||
sft_loss = -chosen_logps
|
||||
odds_ratio_loss = self.odds_ratio_loss(chosen_logps, rejected_logps)
|
||||
batch_loss = (sft_loss + self.beta * odds_ratio_loss).mean()
|
||||
|
||||
chosen_rewards = self.beta * chosen_logps.detach()
|
||||
rejected_rewards = self.beta * rejected_logps.detach()
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
|
||||
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().mean().cpu()
|
||||
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().mean().cpu()
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
||||
metrics["{}odds_ratio_loss".format(prefix)] = odds_ratio_loss.detach().mean().cpu()
|
||||
|
||||
return batch_loss, metrics
|
||||
69
src/llamafactory/train/orpo/workflow.py
Normal file
69
src/llamafactory/train/orpo/workflow.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .trainer import CustomORPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_orpo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomORPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies", "sft_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
4
src/llamafactory/train/ppo/__init__.py
Normal file
4
src/llamafactory/train/ppo/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_ppo
|
||||
|
||||
|
||||
__all__ = ["run_ppo"]
|
||||
480
src/llamafactory/train/ppo/trainer.py
Normal file
480
src/llamafactory/train/ppo/trainer.py
Normal file
@@ -0,0 +1,480 @@
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.trainer_pt_utils import remove_dummy_checkpoint
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
|
||||
from trl import PPOConfig, PPOTrainer
|
||||
from trl.core import PPODecorators, logprobs_from_logits
|
||||
|
||||
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback
|
||||
from ...extras.logging import get_logger
|
||||
from ...extras.misc import AverageMeter, count_parameters, get_current_device, get_logits_processor
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
from .utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
from transformers import (
|
||||
DataCollatorWithPadding,
|
||||
PreTrainedTokenizer,
|
||||
ProcessorMixin,
|
||||
Seq2SeqTrainingArguments,
|
||||
TrainerCallback,
|
||||
)
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
r"""
|
||||
Inherits PPOTrainer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_args: "ModelArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: List["TrainerCallback"],
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
reward_model: Optional["AutoModelForCausalLMWithValueHead"],
|
||||
ref_model: Optional["AutoModelForCausalLMWithValueHead"],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
dataset: "Dataset",
|
||||
data_collator: "DataCollatorWithPadding",
|
||||
):
|
||||
backward_batch_size = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
|
||||
ppo_config = PPOConfig(
|
||||
model_name=model_args.model_name_or_path,
|
||||
learning_rate=training_args.learning_rate,
|
||||
mini_batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=backward_batch_size * finetuning_args.ppo_buffer_size,
|
||||
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
||||
ppo_epochs=finetuning_args.ppo_epochs,
|
||||
max_grad_norm=training_args.max_grad_norm,
|
||||
seed=training_args.seed,
|
||||
optimize_device_cache=True,
|
||||
target=finetuning_args.ppo_target,
|
||||
use_score_scaling=finetuning_args.ppo_score_norm,
|
||||
use_score_norm=finetuning_args.ppo_score_norm,
|
||||
whiten_rewards=finetuning_args.ppo_whiten_rewards,
|
||||
accelerator_kwargs={"step_scheduler_with_optimizer": False},
|
||||
log_with=training_args.report_to[0] if training_args.report_to else None,
|
||||
project_kwargs={"logging_dir": training_args.logging_dir},
|
||||
)
|
||||
|
||||
# Create optimizer and scheduler
|
||||
if training_args.max_steps > 0:
|
||||
num_training_steps = training_args.max_steps
|
||||
else:
|
||||
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
|
||||
|
||||
optimizer = self.create_optimizer(model, training_args, finetuning_args)
|
||||
scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)
|
||||
|
||||
PPOTrainer.__init__(
|
||||
self,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
tokenizer=tokenizer,
|
||||
dataset=dataset,
|
||||
data_collator=data_collator,
|
||||
lr_scheduler=scheduler,
|
||||
)
|
||||
|
||||
self.args = training_args
|
||||
self.model_args = model_args
|
||||
self.finetuning_args = finetuning_args
|
||||
self.reward_model = reward_model
|
||||
self.current_device = get_current_device() # patch for deepspeed training
|
||||
self.processor = processor
|
||||
|
||||
self.generation_config = GenerationConfig(
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
||||
**generating_args.to_dict(),
|
||||
)
|
||||
|
||||
self.state = TrainerState()
|
||||
self.control = TrainerControl()
|
||||
self.is_deepspeed_enabled = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
|
||||
self.accelerator.state, "deepspeed_plugin"
|
||||
)
|
||||
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
|
||||
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
|
||||
|
||||
if self.args.max_steps > 0:
|
||||
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
||||
|
||||
if finetuning_args.reward_model_type == "full":
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False)
|
||||
or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False)
|
||||
): # quantized models are already set on the correct device
|
||||
self.reward_model = self._prepare_deepspeed(self.reward_model)
|
||||
else:
|
||||
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
|
||||
"""
|
||||
if resume_from_checkpoint is not None:
|
||||
raise ValueError("`resume_from_checkpoint` will be supported in the future version.")
|
||||
|
||||
total_train_batch_size = (
|
||||
self.args.per_device_train_batch_size
|
||||
* self.args.gradient_accumulation_steps
|
||||
* self.finetuning_args.ppo_buffer_size
|
||||
* self.args.world_size
|
||||
)
|
||||
if self.args.max_steps > 0:
|
||||
num_examples = total_train_batch_size * self.args.max_steps
|
||||
num_train_epochs = sys.maxsize
|
||||
max_steps = self.args.max_steps
|
||||
steps_in_epoch = self.args.max_steps
|
||||
else:
|
||||
len_dataloader = len(self.dataloader)
|
||||
num_examples = len(self.dataset)
|
||||
num_train_epochs = self.args.num_train_epochs
|
||||
max_steps = math.ceil(num_train_epochs * len_dataloader)
|
||||
steps_in_epoch = len_dataloader
|
||||
|
||||
self.state.max_steps = max_steps
|
||||
self.state.num_train_epochs = num_train_epochs
|
||||
self.state.is_local_process_zero = self.is_local_process_zero()
|
||||
self.state.is_world_process_zero = self.is_world_process_zero()
|
||||
|
||||
if self.is_world_process_zero():
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = {}".format(num_examples))
|
||||
logger.info(" Num Epochs = {}".format(num_train_epochs))
|
||||
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
|
||||
logger.info(
|
||||
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
|
||||
total_train_batch_size
|
||||
)
|
||||
)
|
||||
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
|
||||
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
|
||||
logger.info(" Total training steps = {}".format(max_steps))
|
||||
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
dataiter = iter(self.dataloader)
|
||||
loss_meter = AverageMeter()
|
||||
reward_meter = AverageMeter()
|
||||
self.log_callback.on_train_begin(self.args, self.state, self.control)
|
||||
|
||||
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()):
|
||||
try:
|
||||
batch = next(dataiter)
|
||||
except StopIteration:
|
||||
dataiter = iter(self.dataloader)
|
||||
batch = next(dataiter)
|
||||
|
||||
# Cast to inference mode
|
||||
unwrapped_model.gradient_checkpointing_disable()
|
||||
unwrapped_model.config.use_cache = True
|
||||
self.model.eval()
|
||||
|
||||
# Get inputs
|
||||
self.tokenizer.padding_side = "right" # change padding side
|
||||
queries, responses, rewards = [], [], []
|
||||
for idx in range(0, self.config.batch_size, self.config.mini_batch_size):
|
||||
mini_batch_queries, mini_batch_responses = self.get_inputs(
|
||||
batch[idx : idx + self.config.mini_batch_size]
|
||||
)
|
||||
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model)
|
||||
queries.extend(mini_batch_queries)
|
||||
responses.extend(mini_batch_responses)
|
||||
rewards.extend(mini_batch_rewards)
|
||||
|
||||
# Cast to training mode
|
||||
unwrapped_model.gradient_checkpointing_enable()
|
||||
unwrapped_model.config.use_cache = False
|
||||
self.model.train()
|
||||
|
||||
# Run PPO step
|
||||
stats = self.step(queries, responses, rewards)
|
||||
self.tokenizer.padding_side = "left" # restore padding side
|
||||
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards))
|
||||
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards))
|
||||
|
||||
if self.config.log_with is not None:
|
||||
try:
|
||||
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True)
|
||||
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True)
|
||||
self.log_stats(stats, batch, rewards)
|
||||
except Exception:
|
||||
logger.warning("Failed to save stats due to unknown errors.")
|
||||
|
||||
self.state.global_step += 1
|
||||
self.log_callback.on_step_end(self.args, self.state, self.control)
|
||||
|
||||
if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0:
|
||||
logs = dict(
|
||||
loss=round(loss_meter.avg, 4),
|
||||
reward=round(reward_meter.avg, 4),
|
||||
learning_rate=stats["ppo/learning_rate"],
|
||||
epoch=round(step / steps_in_epoch, 2),
|
||||
)
|
||||
tqdm.write(str(logs))
|
||||
logs["step"] = step
|
||||
self.state.log_history.append(logs)
|
||||
self.log_callback.on_log(self.args, self.state, self.control)
|
||||
loss_meter.reset()
|
||||
reward_meter.reset()
|
||||
|
||||
if (step + 1) % self.args.save_steps == 0: # save checkpoint
|
||||
self.save_model(
|
||||
os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step))
|
||||
)
|
||||
self.save_callback.on_save(
|
||||
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
|
||||
)
|
||||
|
||||
if self.control.should_epoch_stop or self.control.should_training_stop:
|
||||
break
|
||||
|
||||
self.log_callback.on_train_end(self.args, self.state, self.control)
|
||||
self.save_callback.on_train_end(
|
||||
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model)
|
||||
)
|
||||
|
||||
def create_optimizer(
|
||||
self,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
optimizer = create_custom_optimzer(model, training_args, finetuning_args)
|
||||
if optimizer is None:
|
||||
decay_params, nodecay_params = [], []
|
||||
decay_param_names = self.get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=nodecay_params),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
return optimizer
|
||||
|
||||
def create_scheduler(
|
||||
self, training_args: "Seq2SeqTrainingArguments", num_training_steps: int, optimizer: "torch.optim.Optimizer"
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(training_args, num_training_steps, optimizer)
|
||||
lr_scheduler = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
||||
num_training_steps=num_training_steps,
|
||||
)
|
||||
return lr_scheduler
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_inputs(self, batch: Dict[str, torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
||||
r"""
|
||||
Generates model's responses given queries.
|
||||
"""
|
||||
if self.model_args.upcast_layernorm:
|
||||
layernorm_params = dump_layernorm(self.model)
|
||||
|
||||
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1
|
||||
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item()
|
||||
for k, v in batch.items():
|
||||
batch[k] = v[:, start_index:]
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
generate_output: torch.Tensor = unwrapped_model.generate(
|
||||
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch
|
||||
)
|
||||
|
||||
if self.model_args.upcast_layernorm:
|
||||
restore_layernorm(self.model, layernorm_params)
|
||||
|
||||
query = batch["input_ids"].detach().cpu()
|
||||
response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu()
|
||||
queries, responses = [], []
|
||||
for i in range(len(query)):
|
||||
query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item()
|
||||
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
|
||||
|
||||
if len(response_index) == 0:
|
||||
response_length = 1 # allow empty response
|
||||
else:
|
||||
response_length = response_index[-1].item() + 1
|
||||
|
||||
queries.append(query[i, query_start_index:]) # remove padding from left
|
||||
responses.append(response[i, :response_length]) # remove padding from right
|
||||
|
||||
return queries, responses
|
||||
|
||||
@torch.no_grad()
|
||||
def get_rewards(
|
||||
self,
|
||||
queries: List[torch.Tensor],
|
||||
responses: List[torch.Tensor],
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead",
|
||||
) -> List[torch.Tensor]:
|
||||
r"""
|
||||
Computes scores using given reward model.
|
||||
|
||||
Both inputs and outputs are put on CPU.
|
||||
"""
|
||||
if self.finetuning_args.reward_model_type == "api":
|
||||
token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)]
|
||||
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True)
|
||||
return get_rewards_from_server(self.reward_model, messages)
|
||||
|
||||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="reward")
|
||||
reward_model = self.model
|
||||
else:
|
||||
reward_model = self.reward_model
|
||||
|
||||
batch = self.prepare_model_inputs(queries, responses)
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
|
||||
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True, use_cache=False)
|
||||
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
rewards = []
|
||||
for i in range(values.size(0)):
|
||||
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero()
|
||||
end_index = end_indexes[-1].item() if len(end_indexes) else 0
|
||||
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
|
||||
|
||||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="default")
|
||||
|
||||
return rewards
|
||||
|
||||
@PPODecorators.empty_device_cache()
|
||||
def batched_forward_pass(
|
||||
self,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
queries: torch.Tensor,
|
||||
responses: torch.Tensor,
|
||||
model_inputs: dict,
|
||||
return_logits: bool = False,
|
||||
response_masks: Optional[torch.Tensor] = None,
|
||||
):
|
||||
r"""
|
||||
Calculates model outputs in multiple batches.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
bs = len(queries)
|
||||
fbs = self.config.mini_batch_size
|
||||
all_logprobs = []
|
||||
all_logits = []
|
||||
all_masks = []
|
||||
all_values = []
|
||||
|
||||
for i in range(math.ceil(bs / fbs)):
|
||||
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
|
||||
query_batch = queries[i * fbs : (i + 1) * fbs]
|
||||
response_batch = responses[i * fbs : (i + 1) * fbs]
|
||||
if response_masks is not None:
|
||||
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
|
||||
input_ids = input_kwargs["input_ids"]
|
||||
attention_mask = input_kwargs["attention_mask"]
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16
|
||||
logits, _, values = model(**input_kwargs)
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
|
||||
masks = torch.zeros_like(attention_mask)
|
||||
masks[:, :-1] = attention_mask[:, 1:]
|
||||
|
||||
for j in range(len(query_batch)):
|
||||
start = len(query_batch[j]) - 1
|
||||
if attention_mask[j, 0] == 0: # offset left padding
|
||||
start += attention_mask[j, :].nonzero()[0].item()
|
||||
end = start + len(response_batch[j])
|
||||
|
||||
if response_masks is not None:
|
||||
response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]
|
||||
|
||||
masks[j, :start] = 0
|
||||
masks[j, end:] = 0
|
||||
if response_masks is not None:
|
||||
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
|
||||
|
||||
if return_logits:
|
||||
all_logits.append(logits)
|
||||
else:
|
||||
del logits
|
||||
|
||||
all_values.append(values)
|
||||
all_logprobs.append(logprobs)
|
||||
all_masks.append(masks)
|
||||
|
||||
return (
|
||||
torch.cat(all_logprobs),
|
||||
torch.cat(all_logits)[:, :-1] if return_logits else None,
|
||||
torch.cat(all_values)[:, :-1],
|
||||
torch.cat(all_masks)[:, :-1],
|
||||
)
|
||||
|
||||
def save_model(self, output_dir: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Saves model checkpoint.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
if self.args.should_save:
|
||||
try:
|
||||
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
|
||||
except ValueError:
|
||||
logger.warning(
|
||||
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
|
||||
" use zero_to_fp32.py to recover weights"
|
||||
)
|
||||
self._save(output_dir, state_dict={})
|
||||
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
self.model.save_checkpoint(output_dir)
|
||||
59
src/llamafactory/train/ppo/utils.py
Normal file
59
src/llamafactory/train/ppo/utils.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import json
|
||||
from contextlib import nullcontext
|
||||
from typing import TYPE_CHECKING, Dict, List, Literal, Optional
|
||||
|
||||
import torch
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from ...extras.packages import is_requests_available
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
if is_requests_available():
|
||||
import requests
|
||||
|
||||
|
||||
def get_rewards_from_server(server_url: str, messages: List[str]) -> List[torch.Tensor]:
|
||||
headers = {"Content-Type": "application/json"}
|
||||
payload = {"model": "model", "messages": messages}
|
||||
response = requests.post(server_url, json=payload, headers=headers)
|
||||
rewards = json.loads(response.text)["scores"]
|
||||
return torch.Tensor(rewards)
|
||||
|
||||
|
||||
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.v_head.summary.weight, model.v_head.summary.bias]
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
with context_maybe_zero3:
|
||||
if target == "reward": # save default head temporarily
|
||||
setattr(model, "default_head_weight", model.v_head.summary.weight.data.detach().clone())
|
||||
setattr(model, "default_head_bias", model.v_head.summary.bias.data.detach().clone())
|
||||
|
||||
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
|
||||
model.v_head.summary.weight.data = model.get_buffer("{}_head_weight".format(target)).detach().clone()
|
||||
model.v_head.summary.bias.data = model.get_buffer("{}_head_bias".format(target)).detach().clone()
|
||||
|
||||
|
||||
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
|
||||
layer_norm_params = {}
|
||||
for name, param in model.named_parameters():
|
||||
if param.data.dtype == torch.float32:
|
||||
layer_norm_params[name] = param.data.detach().clone()
|
||||
param.data = param.data.to(model.config.torch_dtype)
|
||||
|
||||
return layer_norm_params
|
||||
|
||||
|
||||
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
|
||||
for name, param in model.named_parameters():
|
||||
if name in layernorm_params:
|
||||
param.data = layernorm_params[name]
|
||||
65
src/llamafactory/train/ppo/workflow.py
Normal file
65
src/llamafactory/train/ppo/workflow.py
Normal file
@@ -0,0 +1,65 @@
|
||||
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorWithPadding
|
||||
|
||||
from ...data import get_dataset
|
||||
from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_ref_model, create_reward_model
|
||||
from .trainer import CustomPPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
def run_ppo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="ppo", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
|
||||
tokenizer.padding_side = "left" # use left-padding in generation while using right-padding in training
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# Create reference model and reward model
|
||||
ref_model = create_ref_model(model_args, finetuning_args, add_valuehead=True)
|
||||
reward_model = create_reward_model(model, model_args, finetuning_args)
|
||||
|
||||
# Initialize our Trainer
|
||||
ppo_trainer = CustomPPOTrainer(
|
||||
model_args=model_args,
|
||||
training_args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
generating_args=generating_args,
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
model=model,
|
||||
reward_model=reward_model,
|
||||
ref_model=ref_model,
|
||||
dataset=dataset,
|
||||
data_collator=data_collator,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
ppo_trainer.ppo_train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
ppo_trainer.save_model()
|
||||
if training_args.should_save:
|
||||
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
|
||||
ppo_trainer.save_state() # must be called after save_model to have a folder
|
||||
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "reward"])
|
||||
4
src/llamafactory/train/pt/__init__.py
Normal file
4
src/llamafactory/train/pt/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_pt
|
||||
|
||||
|
||||
__all__ = ["run_pt"]
|
||||
51
src/llamafactory/train/pt/trainer.py
Normal file
51
src/llamafactory/train/pt/trainer.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Optional
|
||||
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from transformers import ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomTrainer(Trainer):
|
||||
r"""
|
||||
Inherits Trainer for custom optimizer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
68
src/llamafactory/train/pt/workflow.py
Normal file
68
src/llamafactory/train/pt/workflow.py
Normal file
@@ -0,0 +1,68 @@
|
||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/language-modeling/run_clm.py
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorForLanguageModeling
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .trainer import CustomTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
def run_pt(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
try:
|
||||
perplexity = math.exp(metrics["eval_loss"])
|
||||
except OverflowError:
|
||||
perplexity = float("inf")
|
||||
|
||||
metrics["perplexity"] = perplexity
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
4
src/llamafactory/train/rm/__init__.py
Normal file
4
src/llamafactory/train/rm/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_rm
|
||||
|
||||
|
||||
__all__ = ["run_rm"]
|
||||
8
src/llamafactory/train/rm/metric.py
Normal file
8
src/llamafactory/train/rm/metric.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from typing import Dict, Sequence, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
|
||||
preds, _ = eval_preds
|
||||
return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])}
|
||||
128
src/llamafactory/train/rm/trainer.py
Normal file
128
src/llamafactory/train/rm/trainer.py
Normal file
@@ -0,0 +1,128 @@
|
||||
import json
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PairwiseTrainer(Trainer):
|
||||
r"""
|
||||
Inherits Trainer to compute pairwise loss.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.can_return_loss = True # override property to return eval_loss
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
r"""
|
||||
Computes pairwise loss. The first n examples are chosen and the last n examples are rejected.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
|
||||
Note that the first element will be removed from the output tuple.
|
||||
See: https://github.com/huggingface/transformers/blob/v4.39.1/src/transformers/trainer.py#L3777
|
||||
"""
|
||||
# Compute rewards
|
||||
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True)
|
||||
|
||||
unwrapped_model: "PreTrainedModel" = self.accelerator.unwrap_model(self.model)
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
# Split the inputs and rewards into two parts, chosen and rejected
|
||||
batch_size = inputs["input_ids"].size(0) // 2
|
||||
chosen_input_ids, rejected_input_ids = inputs["input_ids"][:batch_size], inputs["input_ids"][batch_size:]
|
||||
chosen_rewards, rejected_rewards = values[:batch_size], values[batch_size:]
|
||||
chosen_scores, rejected_scores = [], []
|
||||
|
||||
# Compute pairwise loss. Only backprop on the different tokens before padding
|
||||
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/reward_model.py
|
||||
loss = 0
|
||||
for i in range(batch_size):
|
||||
chosen_length = (chosen_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
||||
rejected_length = (rejected_input_ids[i] != self.tokenizer.pad_token_id).nonzero()[-1] + 1
|
||||
check_divergence = (chosen_input_ids[i] != rejected_input_ids[i]).nonzero()
|
||||
|
||||
if len(check_divergence) == 0:
|
||||
end_index = chosen_length
|
||||
div_index = end_index - 1
|
||||
else:
|
||||
end_index = max(chosen_length, rejected_length)
|
||||
div_index = check_divergence[0]
|
||||
|
||||
assert div_index > 0
|
||||
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
|
||||
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
|
||||
if return_outputs: # use the score on the last token except pad token for inference
|
||||
chosen_scores.append(chosen_rewards[i, chosen_length - 1])
|
||||
rejected_scores.append(rejected_rewards[i, rejected_length - 1])
|
||||
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
|
||||
|
||||
loss = loss / batch_size
|
||||
if return_outputs:
|
||||
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
|
||||
return loss, [loss, chosen_scores, rejected_scores]
|
||||
|
||||
return loss
|
||||
|
||||
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
||||
r"""
|
||||
Saves model predictions to `output_dir`.
|
||||
|
||||
A custom behavior that not contained in Seq2SeqTrainer.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
||||
logger.info(f"Saving prediction results to {output_prediction_file}")
|
||||
chosen_scores, rejected_scores = predict_results.predictions
|
||||
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
res: List[str] = []
|
||||
for c_score, r_score in zip(chosen_scores, rejected_scores):
|
||||
res.append(json.dumps({"chosen": round(float(c_score), 2), "rejected": round(float(r_score), 2)}))
|
||||
writer.write("\n".join(res))
|
||||
75
src/llamafactory/train/rm/workflow.py
Normal file
75
src/llamafactory/train/rm/workflow.py
Normal file
@@ -0,0 +1,75 @@
|
||||
# Inspired by: https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .metric import compute_accuracy
|
||||
from .trainer import PairwiseTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
def run_rm(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True)
|
||||
data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = PairwiseTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
compute_metrics=compute_accuracy,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
if training_args.should_save:
|
||||
fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors)
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
4
src/llamafactory/train/sft/__init__.py
Normal file
4
src/llamafactory/train/sft/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_sft
|
||||
|
||||
|
||||
__all__ = ["run_sft"]
|
||||
61
src/llamafactory/train/sft/metric.py
Normal file
61
src/llamafactory/train/sft/metric.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
if is_jieba_available():
|
||||
import jieba # type: ignore
|
||||
|
||||
if is_nltk_available():
|
||||
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
|
||||
|
||||
if is_rouge_available():
|
||||
from rouge_chinese import Rouge
|
||||
|
||||
|
||||
@dataclass
|
||||
class ComputeMetrics:
|
||||
r"""
|
||||
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
|
||||
"""
|
||||
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
|
||||
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
|
||||
r"""
|
||||
Uses the model predictions to compute metrics.
|
||||
"""
|
||||
preds, labels = eval_preds
|
||||
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
||||
|
||||
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
|
||||
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
|
||||
|
||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
for pred, label in zip(decoded_preds, decoded_labels):
|
||||
hypothesis = list(jieba.cut(pred))
|
||||
reference = list(jieba.cut(label))
|
||||
|
||||
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
|
||||
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
|
||||
else:
|
||||
rouge = Rouge()
|
||||
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
|
||||
result = scores[0]
|
||||
|
||||
for k, v in result.items():
|
||||
score_dict[k].append(round(v["f"] * 100, 4))
|
||||
|
||||
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
|
||||
return {k: float(np.mean(v)) for k, v in score_dict.items()}
|
||||
132
src/llamafactory/train/sft/trainer.py
Normal file
132
src/llamafactory/train/sft/trainer.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import json
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Seq2SeqTrainer
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
r"""
|
||||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
|
||||
) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: "torch.nn.Module",
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
r"""
|
||||
Removes the prompt part in the generated tokens.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
|
||||
if self.args.predict_with_generate:
|
||||
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
||||
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
|
||||
if prompt_len > label_len:
|
||||
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
|
||||
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
|
||||
inputs["labels"] = inputs["labels"][:, :prompt_len]
|
||||
|
||||
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
if generated_tokens is not None and self.args.predict_with_generate:
|
||||
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
|
||||
generated_tokens = generated_tokens.contiguous()
|
||||
|
||||
return loss, generated_tokens, labels
|
||||
|
||||
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Pads the tensor to the same length as the target tensor.
|
||||
"""
|
||||
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
|
||||
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
|
||||
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
|
||||
return padded_tensor.contiguous() # in contiguous memory
|
||||
|
||||
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
||||
r"""
|
||||
Saves model predictions to `output_dir`.
|
||||
|
||||
A custom behavior that not contained in Seq2SeqTrainer.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
||||
logger.info(f"Saving prediction results to {output_prediction_file}")
|
||||
|
||||
labels = np.where(
|
||||
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
|
||||
)
|
||||
preds = np.where(
|
||||
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
|
||||
)
|
||||
|
||||
for i in range(len(preds)):
|
||||
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
|
||||
if len(pad_len):
|
||||
preds[i] = np.concatenate(
|
||||
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
|
||||
) # move pad token to last
|
||||
|
||||
decoded_labels = self.tokenizer.batch_decode(
|
||||
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
res: List[str] = []
|
||||
for label, pred in zip(decoded_labels, decoded_preds):
|
||||
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
||||
writer.write("\n".join(res))
|
||||
99
src/llamafactory/train/sft/workflow.py
Normal file
99
src/llamafactory/train/sft/workflow.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
def run_sft(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False if model_args.visual_inputs else training_args.remove_unused_columns
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
||||
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
metrics.pop("eval_loss", None)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results.metrics.pop("predict_loss", None)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
101
src/llamafactory/train/tuner.py
Normal file
101
src/llamafactory/train/tuner.py
Normal file
@@ -0,0 +1,101 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.callbacks import LogCallback
|
||||
from ..extras.logging import get_logger
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .dpo import run_dpo
|
||||
from .orpo import run_orpo
|
||||
from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
from .sft import run_sft
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerCallback
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []) -> None:
|
||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||
callbacks.append(LogCallback(training_args.output_dir))
|
||||
|
||||
if finetuning_args.stage == "pt":
|
||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "rm":
|
||||
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "ppo":
|
||||
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "dpo":
|
||||
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "orpo":
|
||||
run_orpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
else:
|
||||
raise ValueError("Unknown task.")
|
||||
|
||||
|
||||
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
||||
model_args, data_args, finetuning_args, _ = get_infer_args(args)
|
||||
|
||||
if model_args.export_dir is None:
|
||||
raise ValueError("Please specify `export_dir` to save model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
processor = tokenizer_module["processor"]
|
||||
get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab
|
||||
|
||||
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
|
||||
raise ValueError("Cannot merge adapters to a quantized model.")
|
||||
|
||||
if not isinstance(model, PreTrainedModel):
|
||||
raise ValueError("The model is not a `PreTrainedModel`, export aborted.")
|
||||
|
||||
if getattr(model, "quantization_method", None) is None: # cannot convert dtype of a quantized model
|
||||
output_dtype = getattr(model.config, "torch_dtype", torch.float16)
|
||||
setattr(model.config, "torch_dtype", output_dtype)
|
||||
model = model.to(output_dtype)
|
||||
else:
|
||||
setattr(model.config, "torch_dtype", torch.float16)
|
||||
|
||||
model.save_pretrained(
|
||||
save_directory=model_args.export_dir,
|
||||
max_shard_size="{}GB".format(model_args.export_size),
|
||||
safe_serialization=(not model_args.export_legacy_format),
|
||||
)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
model.push_to_hub(
|
||||
model_args.export_hub_model_id,
|
||||
token=model_args.hf_hub_token,
|
||||
max_shard_size="{}GB".format(model_args.export_size),
|
||||
safe_serialization=(not model_args.export_legacy_format),
|
||||
)
|
||||
|
||||
try:
|
||||
tokenizer.padding_side = "left" # restore padding side
|
||||
tokenizer.init_kwargs["padding_side"] = "left"
|
||||
tokenizer.save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
|
||||
|
||||
if model_args.visual_inputs and processor is not None:
|
||||
getattr(processor, "image_processor").save_pretrained(model_args.export_dir)
|
||||
if model_args.export_hub_model_id is not None:
|
||||
getattr(processor, "image_processor").push_to_hub(
|
||||
model_args.export_hub_model_id, token=model_args.hf_hub_token
|
||||
)
|
||||
except Exception:
|
||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||
388
src/llamafactory/train/utils.py
Normal file
388
src/llamafactory/train/utils.py
Normal file
@@ -0,0 +1,388 @@
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||||
from transformers.trainer_pt_utils import get_parameter_names
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_galore_available
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
|
||||
|
||||
|
||||
if is_galore_available():
|
||||
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import DataArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DummyOptimizer(torch.optim.Optimizer):
|
||||
r"""
|
||||
A dummy optimizer used for the GaLore algorithm.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
|
||||
) -> None:
|
||||
dummy_tensor = torch.randn(1, 1)
|
||||
self.optimizer_dict = optimizer_dict
|
||||
super().__init__([dummy_tensor], {"lr": lr})
|
||||
|
||||
def zero_grad(self, set_to_none: bool = True) -> None:
|
||||
pass
|
||||
|
||||
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
|
||||
pass
|
||||
|
||||
|
||||
def create_modelcard_and_push(
|
||||
trainer: "Trainer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> None:
|
||||
kwargs = {
|
||||
"tasks": "text-generation",
|
||||
"finetuned_from": model_args.model_name_or_path,
|
||||
"tags": ["llama-factory", finetuning_args.finetuning_type],
|
||||
}
|
||||
if data_args.dataset is not None:
|
||||
kwargs["dataset"] = [dataset.strip() for dataset in data_args.dataset.split(",")]
|
||||
|
||||
if model_args.use_unsloth:
|
||||
kwargs["tags"] = kwargs["tags"] + ["unsloth"]
|
||||
|
||||
if not training_args.do_train:
|
||||
pass
|
||||
elif training_args.push_to_hub:
|
||||
trainer.push_to_hub(**kwargs)
|
||||
else:
|
||||
trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub
|
||||
|
||||
|
||||
def create_ref_model(
|
||||
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
|
||||
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
|
||||
r"""
|
||||
Creates reference model for PPO/DPO training. Evaluation mode is not supported.
|
||||
|
||||
The valuehead parameter is randomly initialized since it is useless for PPO training.
|
||||
"""
|
||||
if finetuning_args.ref_model is not None:
|
||||
ref_model_args_dict = model_args.to_dict()
|
||||
ref_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.ref_model,
|
||||
adapter_name_or_path=finetuning_args.ref_model_adapters,
|
||||
quantization_bit=finetuning_args.ref_model_quantization_bit,
|
||||
)
|
||||
)
|
||||
ref_model_args = ModelArguments(**ref_model_args_dict)
|
||||
ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
|
||||
else:
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
ref_model = None
|
||||
else:
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from the model itself.")
|
||||
|
||||
return ref_model
|
||||
|
||||
|
||||
def create_reward_model(
|
||||
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
|
||||
) -> Optional["AutoModelForCausalLMWithValueHead"]:
|
||||
r"""
|
||||
Creates reward model for PPO training.
|
||||
"""
|
||||
if finetuning_args.reward_model_type == "api":
|
||||
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
|
||||
logger.info("Use reward server {}".format(finetuning_args.reward_model))
|
||||
return finetuning_args.reward_model
|
||||
elif finetuning_args.reward_model_type == "lora":
|
||||
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
|
||||
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
|
||||
if "default" in name:
|
||||
param.data = param.data.to(torch.float32) # trainable params should in fp32
|
||||
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
|
||||
assert vhead_params is not None, "Reward model is not correctly loaded."
|
||||
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
|
||||
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
|
||||
model.register_buffer(
|
||||
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
|
||||
)
|
||||
model.register_buffer(
|
||||
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
|
||||
)
|
||||
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
return None
|
||||
else:
|
||||
reward_model_args_dict = model_args.to_dict()
|
||||
reward_model_args_dict.update(
|
||||
dict(
|
||||
model_name_or_path=finetuning_args.reward_model,
|
||||
adapter_name_or_path=finetuning_args.reward_model_adapters,
|
||||
quantization_bit=finetuning_args.reward_model_quantization_bit,
|
||||
)
|
||||
)
|
||||
reward_model_args = ModelArguments(**reward_model_args_dict)
|
||||
reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
|
||||
reward_model = load_model(
|
||||
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
||||
)
|
||||
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
|
||||
return reward_model
|
||||
|
||||
|
||||
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
||||
r"""
|
||||
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
|
||||
"""
|
||||
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
|
||||
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
||||
return decay_parameters
|
||||
|
||||
|
||||
def _create_galore_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
|
||||
galore_targets = find_all_linear_modules(model)
|
||||
else:
|
||||
galore_targets = finetuning_args.galore_target
|
||||
|
||||
galore_params: List["torch.nn.Parameter"] = []
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
|
||||
for param in module.parameters():
|
||||
if param.requires_grad and len(param.shape) > 1:
|
||||
galore_params.append(param)
|
||||
|
||||
galore_kwargs = {
|
||||
"rank": finetuning_args.galore_rank,
|
||||
"update_proj_gap": finetuning_args.galore_update_interval,
|
||||
"scale": finetuning_args.galore_scale,
|
||||
"proj_type": finetuning_args.galore_proj_type,
|
||||
}
|
||||
|
||||
id_galore_params = {id(param) for param in galore_params}
|
||||
decay_params, nodecay_params = [], [] # they are non-galore parameters
|
||||
trainable_params: List["torch.nn.Parameter"] = [] # galore_params + decay_params + nodecay_params
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
trainable_params.append(param)
|
||||
if id(param) not in id_galore_params:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
|
||||
if training_args.optim == "adamw_torch":
|
||||
optim_class = GaLoreAdamW
|
||||
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
|
||||
optim_class = GaLoreAdamW8bit
|
||||
elif training_args.optim == "adafactor":
|
||||
optim_class = GaLoreAdafactor
|
||||
else:
|
||||
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
|
||||
|
||||
if finetuning_args.galore_layerwise:
|
||||
if training_args.gradient_accumulation_steps != 1:
|
||||
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
|
||||
|
||||
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
|
||||
for param in nodecay_params:
|
||||
param_groups = [dict(params=[param], weight_decay=0.0)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in decay_params:
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in galore_params: # galore params have weight decay
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
def optimizer_hook(param: "torch.nn.Parameter"):
|
||||
if param.grad is not None:
|
||||
optimizer_dict[param].step()
|
||||
optimizer_dict[param].zero_grad()
|
||||
|
||||
for param in trainable_params:
|
||||
param.register_post_accumulate_grad_hook(optimizer_hook)
|
||||
|
||||
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
|
||||
else:
|
||||
param_groups = [
|
||||
dict(params=nodecay_params, weight_decay=0.0),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
|
||||
return optimizer
|
||||
|
||||
|
||||
def _create_loraplus_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
default_lr = training_args.learning_rate
|
||||
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
|
||||
embedding_lr = finetuning_args.loraplus_lr_embedding
|
||||
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
param_dict: Dict[str, List["torch.nn.Parameter"]] = {
|
||||
"lora_a": [],
|
||||
"lora_b": [],
|
||||
"lora_b_nodecay": [],
|
||||
"embedding": [],
|
||||
}
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if "lora_embedding_B" in name:
|
||||
param_dict["embedding"].append(param)
|
||||
elif "lora_B" in name or param.ndim == 1:
|
||||
if name in decay_param_names:
|
||||
param_dict["lora_b"].append(param)
|
||||
else:
|
||||
param_dict["lora_b_nodecay"].append(param)
|
||||
else:
|
||||
param_dict["lora_a"].append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
|
||||
dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
|
||||
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
|
||||
dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio))
|
||||
return optimizer
|
||||
|
||||
|
||||
def _create_badam_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
decay_params, nodecay_params = [], []
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=nodecay_params, weight_decay=0.0),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
]
|
||||
|
||||
if finetuning_args.badam_mode == "layer":
|
||||
from badam import BlockOptimizer
|
||||
|
||||
base_optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
optimizer = BlockOptimizer(
|
||||
base_optimizer=base_optimizer,
|
||||
named_parameters_list=list(model.named_parameters()),
|
||||
block_prefix_list=None,
|
||||
switch_block_every=finetuning_args.badam_switch_interval,
|
||||
start_block=finetuning_args.badam_start_block,
|
||||
switch_mode=finetuning_args.badam_switch_mode,
|
||||
verbose=finetuning_args.badam_verbose,
|
||||
)
|
||||
logger.info(
|
||||
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
|
||||
f"switch block every {finetuning_args.badam_switch_interval} steps, "
|
||||
f"default start block is {finetuning_args.badam_start_block}"
|
||||
)
|
||||
|
||||
elif finetuning_args.badam_mode == "ratio":
|
||||
from badam import BlockOptimizerRatio
|
||||
|
||||
assert finetuning_args.badam_update_ratio > 1e-6
|
||||
optimizer = BlockOptimizerRatio(
|
||||
param_groups=param_groups,
|
||||
named_parameters_list=list(model.named_parameters()),
|
||||
update_ratio=finetuning_args.badam_update_ratio,
|
||||
mask_mode=finetuning_args.badam_mask_mode,
|
||||
verbose=finetuning_args.badam_verbose,
|
||||
include_embedding=False,
|
||||
**optim_kwargs,
|
||||
)
|
||||
logger.info(
|
||||
f"Using BAdam optimizer with ratio-wise update, update ratio is {finetuning_args.badam_update_ratio}, "
|
||||
f"mask mode is {finetuning_args.badam_mask_mode}"
|
||||
)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def create_custom_optimzer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if finetuning_args.use_galore:
|
||||
return _create_galore_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
if finetuning_args.loraplus_lr_ratio is not None:
|
||||
return _create_loraplus_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
return _create_badam_optimizer(model, training_args, finetuning_args)
|
||||
|
||||
|
||||
def create_custom_scheduler(
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
num_training_steps: int,
|
||||
optimizer: Optional["torch.optim.Optimizer"] = None,
|
||||
) -> None:
|
||||
if optimizer is not None and isinstance(optimizer, DummyOptimizer):
|
||||
optimizer_dict = optimizer.optimizer_dict
|
||||
scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {}
|
||||
|
||||
for param in optimizer_dict.keys():
|
||||
scheduler_dict[param] = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer_dict[param],
|
||||
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
||||
num_training_steps=num_training_steps,
|
||||
)
|
||||
|
||||
def scheduler_hook(param: "torch.nn.Parameter"):
|
||||
scheduler_dict[param].step()
|
||||
|
||||
for param in optimizer_dict.keys():
|
||||
param.register_post_accumulate_grad_hook(scheduler_hook)
|
||||
Reference in New Issue
Block a user