rename package
Former-commit-id: a07ff0c083558cfe6f474d13027642d3052fee08
This commit is contained in:
51
src/llamafactory/data/collator.py
Normal file
51
src/llamafactory/data/collator.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
|
||||
r"""
|
||||
Masks out the input ids except for the responses.
|
||||
"""
|
||||
padded_labels = []
|
||||
for feature, (prompt_len, answer_len) in zip(batch, positions):
|
||||
if self.tokenizer.padding_side == "left":
|
||||
start, end = feature.size(0) - answer_len, feature.size(0)
|
||||
else:
|
||||
start, end = prompt_len, prompt_len + answer_len
|
||||
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
|
||||
padded_tensor[start:end] = feature[start:end]
|
||||
padded_labels.append(padded_tensor)
|
||||
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
concatenated_features = []
|
||||
label_positions = []
|
||||
for key in ("chosen_ids", "rejected_ids"):
|
||||
for feature in features:
|
||||
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
|
||||
concatenated_features.append(
|
||||
{
|
||||
"input_ids": feature["prompt_ids"] + feature[key],
|
||||
"attention_mask": [1] * (prompt_len + answer_len),
|
||||
}
|
||||
)
|
||||
label_positions.append((prompt_len, answer_len))
|
||||
|
||||
batch = super().__call__(concatenated_features)
|
||||
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
|
||||
return batch
|
||||
Reference in New Issue
Block a user