support streaming data, fix #284 #274 #268

Former-commit-id: 819cc1353599e5fa45658bc56dd0dbe4b258b197
This commit is contained in:
hiyouga
2023-07-31 23:33:00 +08:00
parent 124f61b404
commit dd3f3e9749
28 changed files with 478 additions and 344 deletions

View File

@@ -1,16 +1,19 @@
import os
import torch
from typing import Dict, Optional
from typing import TYPE_CHECKING, Dict, Optional
from transformers import Seq2SeqTrainer
from transformers.trainer import TRAINING_ARGS_NAME
from transformers.trainer import TRAINING_ARGS_NAME, WEIGHTS_NAME
from transformers.modeling_utils import PreTrainedModel, unwrap_model
from peft import PeftModel
from trl import PreTrainedModelWrapper
from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params, load_valuehead_params
from llmtuner.hparams import FinetuningArguments
from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params
if TYPE_CHECKING:
from llmtuner.hparams import FinetuningArguments
logger = get_logger(__name__)
@@ -21,7 +24,7 @@ class PeftTrainer(Seq2SeqTrainer):
Inherits Seq2SeqTrainer to support parameter-efficient checkpoints.
"""
def __init__(self, finetuning_args: FinetuningArguments, **kwargs):
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs):
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self._remove_log()
@@ -42,31 +45,35 @@ class PeftTrainer(Seq2SeqTrainer):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
model = unwrap_model(self.model)
state_dict = state_dict or get_state_dict(model)
if hasattr(model, "pretrained_model"): # for models with valuehead (currently using LoRA only)
backbone_model = getattr(model, "pretrained_model")
torch.save(get_state_dict(getattr(model, "v_head")), os.path.join(output_dir, VALUE_HEAD_FILE_NAME))
else:
backbone_model = model
if isinstance(model, PreTrainedModelWrapper):
model_params, v_head_params = {}, {}
for name in state_dict.keys():
if name.startswith("pretrained_model."):
model_params[name.replace("pretrained_model.", "")] = state_dict[name]
elif name.startswith("v_head."):
v_head_params[name.replace("v_head.", "")] = state_dict[name]
if isinstance(backbone_model, PeftModel): # LoRA tuning
backbone_model.save_pretrained(output_dir, state_dict=get_state_dict(backbone_model))
elif isinstance(backbone_model, PreTrainedModel): # freeze/full tuning
backbone_model.config.use_cache = True
backbone_model.save_pretrained(
output_dir,
state_dict=get_state_dict(backbone_model, trainable_only=(self.finetuning_args.finetuning_type != "full")),
safe_serialization=self.args.save_safetensors
)
backbone_model.config.use_cache = False
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
torch.save(v_head_params, os.path.join(output_dir, VALUE_HEAD_FILE_NAME))
state_dict = model_params
model = model.pretrained_model
if isinstance(model, (PeftModel, PreTrainedModel)):
model.config.use_cache = True
model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors)
model.config.use_cache = False
else:
logger.warning("No model to save.")
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f:
f.write(self.args.to_json_string() + "\n")
self.finetuning_args.save_to_json(os.path.join(output_dir, FINETUNING_ARGS_NAME))
def _load_best_model(self):
@@ -76,16 +83,15 @@ class PeftTrainer(Seq2SeqTrainer):
Subclass and override to inject custom behavior. It should not be directly used by external scripts.
"""
logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).")
model = unwrap_model(self.model)
backbone_model = getattr(model, "pretrained_model") if hasattr(model, "pretrained_model") else model
if isinstance(backbone_model, PeftModel):
backbone_model.load_adapter(self.state.best_model_checkpoint, backbone_model.active_adapter)
if hasattr(model, "v_head") and load_valuehead_params(model, self.state.best_model_checkpoint):
model.v_head.load_state_dict({
"summary.weight": getattr(model, "reward_head_weight"),
"summary.bias": getattr(model, "reward_head_bias")
})
if isinstance(model, PreTrainedModelWrapper):
model.v_head.load_state_dict(torch.load(
os.path.join(self.state.best_model_checkpoint, VALUE_HEAD_FILE_NAME), map_location="cpu"
))
model = model.pretrained_model
if isinstance(model, PeftModel):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
else: # freeze/full-tuning
load_trainable_params(backbone_model, self.state.best_model_checkpoint)
load_trainable_params(model, self.state.best_model_checkpoint)