@@ -35,11 +35,11 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
||||
max_target_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
||||
learning_rate = gr.Textbox(value="5e-5")
|
||||
num_train_epochs = gr.Textbox(value="3.0")
|
||||
max_samples = gr.Textbox(value="100000")
|
||||
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
|
||||
|
||||
with gr.Row():
|
||||
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
||||
@@ -55,7 +55,8 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
|
||||
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
|
||||
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
|
||||
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
|
||||
flash_attn = gr.Checkbox(value=False)
|
||||
rope_scaling = gr.Checkbox(value=False)
|
||||
|
||||
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
||||
with gr.Row():
|
||||
@@ -107,11 +108,11 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
training_stage,
|
||||
dataset_dir,
|
||||
dataset,
|
||||
max_source_length,
|
||||
max_target_length,
|
||||
cutoff_len,
|
||||
learning_rate,
|
||||
num_train_epochs,
|
||||
max_samples,
|
||||
compute_type,
|
||||
batch_size,
|
||||
gradient_accumulation_steps,
|
||||
lr_scheduler_type,
|
||||
@@ -120,7 +121,8 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
logging_steps,
|
||||
save_steps,
|
||||
warmup_steps,
|
||||
compute_type,
|
||||
flash_attn,
|
||||
rope_scaling,
|
||||
lora_rank,
|
||||
lora_dropout,
|
||||
lora_target,
|
||||
@@ -151,11 +153,11 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
preview_count=preview_count,
|
||||
preview_samples=preview_samples,
|
||||
close_btn=close_btn,
|
||||
max_source_length=max_source_length,
|
||||
max_target_length=max_target_length,
|
||||
cutoff_len=cutoff_len,
|
||||
learning_rate=learning_rate,
|
||||
num_train_epochs=num_train_epochs,
|
||||
max_samples=max_samples,
|
||||
compute_type=compute_type,
|
||||
batch_size=batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
lr_scheduler_type=lr_scheduler_type,
|
||||
@@ -165,7 +167,8 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
||||
logging_steps=logging_steps,
|
||||
save_steps=save_steps,
|
||||
warmup_steps=warmup_steps,
|
||||
compute_type=compute_type,
|
||||
flash_attn=flash_attn,
|
||||
rope_scaling=rope_scaling,
|
||||
lora_tab=lora_tab,
|
||||
lora_rank=lora_rank,
|
||||
lora_dropout=lora_dropout,
|
||||
|
||||
Reference in New Issue
Block a user