[data] fix qwen2.5 omni template (#7883)

This commit is contained in:
Kingsley
2025-04-29 00:58:23 +08:00
committed by GitHub
parent 3ae5da2a04
commit db9559456c
3 changed files with 106 additions and 48 deletions

View File

@@ -15,6 +15,7 @@
import os
from typing import TYPE_CHECKING, Any
import numpy as np
import pytest
import torch
from PIL import Image
@@ -43,11 +44,20 @@ MM_MESSAGES = [
{"role": "assistant", "content": "A cat."},
]
OMNI_MESSAGES = [
{"role": "user", "content": "<image>What is in this image?"},
{"role": "assistant", "content": "A cat."},
{"role": "user", "content": "<audio>What is in this audio?"},
{"role": "assistant", "content": "Nothing."},
]
TEXT_MESSAGES = [
{"role": "user", "content": "How are you"},
{"role": "assistant", "content": "I am fine!"},
]
AUDIOS = [np.zeros(1600)]
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
NO_IMAGES = []
@@ -58,6 +68,8 @@ NO_AUDIOS = []
IMGLENS = [1]
AUDLENS = [1]
NO_IMGLENS = [0]
NO_VIDLENS = [0]
@@ -76,6 +88,25 @@ def _get_mm_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]:
return image_processor(images=IMAGES, return_tensors="pt")
def _get_omni_inputs(processor: "ProcessorMixin") -> dict[str, "torch.Tensor"]:
mm_inputs = {}
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
feature_extractor = getattr(processor, "feature_extractor", None)
mm_inputs.update(image_processor(IMAGES, return_tensors="pt"))
mm_inputs.update(
feature_extractor(
AUDIOS,
sampling_rate=getattr(processor, "audio_sampling_rate", 16000),
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask")
return mm_inputs
def _is_close(batch_a: dict[str, Any], batch_b: dict[str, Any]) -> None:
assert batch_a.keys() == batch_b.keys()
for key in batch_a.keys():
@@ -104,6 +135,17 @@ def _check_plugin(
expected_mm_inputs: dict[str, Any] = {},
expected_no_mm_inputs: dict[str, Any] = {},
) -> None:
# test omni_messages
if plugin.__class__.__name__ == "Qwen2OmniPlugin":
assert plugin.process_messages(OMNI_MESSAGES, IMAGES, NO_VIDEOS, AUDIOS, processor) == expected_mm_messages
assert plugin.process_token_ids(INPUT_IDS, LABELS, IMAGES, NO_VIDEOS, AUDIOS, tokenizer, processor) == (
expected_input_ids,
expected_labels,
)
_is_close(
plugin.get_mm_inputs(IMAGES, NO_VIDEOS, AUDIOS, IMGLENS, NO_VIDLENS, AUDLENS, BATCH_IDS, processor),
expected_mm_inputs,
)
# test mm_messages
if plugin.__class__.__name__ != "BasePlugin":
assert plugin.process_messages(MM_MESSAGES, IMAGES, NO_VIDEOS, NO_AUDIOS, processor) == expected_mm_messages
@@ -279,6 +321,30 @@ def test_pixtral_plugin():
_check_plugin(**check_inputs)
@pytest.mark.xfail(reason="Unknown error.")
def test_qwen2_omni_plugin():
image_seqlen = 4
audio_seqlen = 2
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2.5-Omni-7B")
qwen2_omni_plugin = get_mm_plugin(
name="qwen2_omni", audio_token="<|AUDIO|>", image_token="<|IMAGE|>", video_token="<|VIDEO|>"
)
check_inputs = {"plugin": qwen2_omni_plugin, **tokenizer_module}
check_inputs["expected_mm_messages"] = [
{
key: (
value.replace("<image>", f"<|vision_bos|>{'<|IMAGE|>' * image_seqlen}<|vision_eos|>").replace(
"<audio>", f"<|audio_bos|>{'<|AUDIO|>' * audio_seqlen}<|audio_eos|>"
)
)
for key, value in message.items()
}
for message in OMNI_MESSAGES
]
check_inputs["expected_mm_inputs"] = _get_omni_inputs(tokenizer_module["processor"])
_check_plugin(**check_inputs)
def test_qwen2_vl_plugin():
image_seqlen = 4
tokenizer_module = _load_tokenizer_module(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")