support ORPO
Former-commit-id: f44a4c27e2461cdaa1b16865f597a31033c0e6d9
This commit is contained in:
@@ -74,7 +74,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
@@ -85,8 +85,8 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
return -all_logps
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor]
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
|
||||
|
||||
all_logits = model(
|
||||
@@ -107,9 +107,9 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, torch.Tensor],
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
@@ -142,21 +142,22 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
)
|
||||
batch_loss = losses.mean()
|
||||
if self.ftx_gamma > 1e-6:
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
|
||||
batch_loss += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels).mean()
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
|
||||
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
|
||||
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
|
||||
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
|
||||
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
|
||||
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
|
||||
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
|
||||
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean()
|
||||
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().cpu().mean()
|
||||
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().cpu().mean()
|
||||
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().cpu().mean()
|
||||
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().cpu().mean()
|
||||
|
||||
return losses.mean(), metrics
|
||||
return batch_loss, metrics
|
||||
|
||||
@@ -2,13 +2,12 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push, create_ref_model
|
||||
from .collator import DPODataCollatorWithPadding
|
||||
from .trainer import CustomDPOTrainer
|
||||
|
||||
|
||||
@@ -29,7 +28,7 @@ def run_dpo(
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = DPODataCollatorWithPadding(
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
@@ -64,7 +63,7 @@ def run_dpo(
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "accuracy"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
|
||||
4
src/llmtuner/train/orpo/__init__.py
Normal file
4
src/llmtuner/train/orpo/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .workflow import run_orpo
|
||||
|
||||
|
||||
__all__ = ["run_orpo"]
|
||||
150
src/llmtuner/train/orpo/trainer.py
Normal file
150
src/llmtuner/train/orpo/trainer.py
Normal file
@@ -0,0 +1,150 @@
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomORPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", "torch.nn.Module"],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.beta = finetuning_args.orpo_beta
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps
|
||||
|
||||
# Borrowed from:
|
||||
# https://github.com/huggingface/trl/blob/0ee349dcd43b0f4b3169449f16751c38ac4a609f/trl/trainer/orpo_trainer.py#L592
|
||||
def odds_ratio_loss(
|
||||
self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor"
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss.
|
||||
|
||||
Args:
|
||||
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
|
||||
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
|
||||
|
||||
Returns:
|
||||
A tuple of five tensors: (losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen).
|
||||
"""
|
||||
|
||||
# Derived from Eqs. (4) and (7) from https://arxiv.org/abs/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x)
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log(1 - torch.exp(chosen_logps)) - torch.log(1 - torch.exp(rejected_logps))
|
||||
)
|
||||
ratio = F.logsigmoid(log_odds)
|
||||
losses = self.beta * ratio
|
||||
|
||||
chosen_rewards = self.beta * chosen_logps.detach()
|
||||
rejected_rewards = self.beta * rejected_logps.detach()
|
||||
|
||||
return losses, chosen_rewards, rejected_rewards, ratio, log_odds
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
all_logits = model(
|
||||
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True
|
||||
).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
all_logits,
|
||||
batch["labels"],
|
||||
average_log_prob=False,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss(
|
||||
chosen_logps, rejected_logps
|
||||
)
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
sft_loss = self.sft_loss(chosen_logits, chosen_labels)
|
||||
batch_loss = (sft_loss - losses).mean()
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean()
|
||||
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().cpu().mean()
|
||||
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().cpu().mean()
|
||||
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().cpu().mean()
|
||||
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().cpu().mean()
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().cpu().mean()
|
||||
metrics["{}log_odds_ratio".format(prefix)] = log_odds_ratio.detach().cpu().mean()
|
||||
metrics["{}log_odds_chosen".format(prefix)] = log_odds_chosen.detach().cpu().mean()
|
||||
|
||||
return batch_loss, metrics
|
||||
68
src/llmtuner/train/orpo/workflow.py
Normal file
68
src/llmtuner/train/orpo/workflow.py
Normal file
@@ -0,0 +1,68 @@
|
||||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .trainer import CustomORPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_orpo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomORPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "accuracy"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
||||
@@ -2,13 +2,12 @@
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import get_dataset, split_dataset
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .collator import PairwiseDataCollatorWithPadding
|
||||
from .metric import compute_accuracy
|
||||
from .trainer import PairwiseTrainer
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ from ..extras.logging import get_logger
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from .dpo import run_dpo
|
||||
from .orpo import run_orpo
|
||||
from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
@@ -36,6 +37,8 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
||||
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "dpo":
|
||||
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "orpo":
|
||||
run_orpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
else:
|
||||
raise ValueError("Unknown task.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user