Release v0.1.6
Former-commit-id: 43c8b3c3c8bfb2e32d17fb3e8b194938e37d54bd
This commit is contained in:
@@ -16,6 +16,6 @@ def create_preview_box() -> Tuple["Block", "Component", "Component", "Component"
|
||||
|
||||
close_btn = gr.Button()
|
||||
|
||||
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box])
|
||||
close_btn.click(lambda: gr.update(visible=False), outputs=[preview_box], queue=False)
|
||||
|
||||
return preview_box, preview_count, preview_samples, close_btn
|
||||
|
||||
@@ -20,7 +20,12 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
|
||||
|
||||
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
|
||||
dataset.change(can_preview, [dataset_dir, dataset], [preview_btn])
|
||||
preview_btn.click(get_preview, [dataset_dir, dataset], [preview_count, preview_samples, preview_box])
|
||||
preview_btn.click(
|
||||
get_preview,
|
||||
[dataset_dir, dataset],
|
||||
[preview_count, preview_samples, preview_box],
|
||||
queue=False
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
||||
@@ -33,6 +38,9 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
|
||||
start_btn = gr.Button()
|
||||
stop_btn = gr.Button()
|
||||
|
||||
with gr.Row():
|
||||
process_bar = gr.Slider(visible=False, interactive=False)
|
||||
|
||||
with gr.Box():
|
||||
output_box = gr.Markdown()
|
||||
|
||||
@@ -54,7 +62,10 @@ def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict
|
||||
batch_size,
|
||||
predict
|
||||
],
|
||||
[output_box]
|
||||
[
|
||||
output_box,
|
||||
process_bar
|
||||
]
|
||||
)
|
||||
stop_btn.click(runner.set_abort, queue=False)
|
||||
|
||||
|
||||
@@ -22,7 +22,12 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
||||
|
||||
dataset_dir.change(list_dataset, [dataset_dir], [dataset])
|
||||
dataset.change(can_preview, [dataset_dir, dataset], [preview_btn])
|
||||
preview_btn.click(get_preview, [dataset_dir, dataset], [preview_count, preview_samples, preview_box])
|
||||
preview_btn.click(
|
||||
get_preview,
|
||||
[dataset_dir, dataset],
|
||||
[preview_count, preview_samples, preview_box],
|
||||
queue=False
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
||||
@@ -46,12 +51,14 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
||||
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
|
||||
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
|
||||
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
|
||||
padding_side = gr.Radio(choices=["left", "right"], value="left")
|
||||
|
||||
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
||||
with gr.Row():
|
||||
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
|
||||
lora_dropout = gr.Slider(value=0, minimum=0, maximum=1, step=0.01, scale=1)
|
||||
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
|
||||
lora_target = gr.Textbox(scale=2)
|
||||
resume_lora_training = gr.Checkbox(value=True, scale=1)
|
||||
|
||||
with gr.Row():
|
||||
start_btn = gr.Button()
|
||||
@@ -59,7 +66,11 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
output_dir = gr.Textbox()
|
||||
with gr.Row():
|
||||
output_dir = gr.Textbox()
|
||||
|
||||
with gr.Row():
|
||||
process_bar = gr.Slider(visible=False, interactive=False)
|
||||
|
||||
with gr.Box():
|
||||
output_box = gr.Markdown()
|
||||
@@ -93,16 +104,21 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
||||
save_steps,
|
||||
warmup_steps,
|
||||
compute_type,
|
||||
padding_side,
|
||||
lora_rank,
|
||||
lora_dropout,
|
||||
lora_target,
|
||||
resume_lora_training,
|
||||
output_dir
|
||||
],
|
||||
[output_box]
|
||||
[
|
||||
output_box,
|
||||
process_bar
|
||||
]
|
||||
)
|
||||
stop_btn.click(runner.set_abort, queue=False)
|
||||
|
||||
output_box.change(
|
||||
process_bar.change(
|
||||
gen_plot, [top_elems["model_name"], top_elems["finetuning_type"], output_dir], loss_viewer, queue=False
|
||||
)
|
||||
|
||||
@@ -128,10 +144,12 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
||||
save_steps=save_steps,
|
||||
warmup_steps=warmup_steps,
|
||||
compute_type=compute_type,
|
||||
padding_side=padding_side,
|
||||
lora_tab=lora_tab,
|
||||
lora_rank=lora_rank,
|
||||
lora_dropout=lora_dropout,
|
||||
lora_target=lora_target,
|
||||
resume_lora_training=resume_lora_training,
|
||||
start_btn=start_btn,
|
||||
stop_btn=stop_btn,
|
||||
output_dir=output_dir,
|
||||
|
||||
@@ -43,7 +43,7 @@ def create_top() -> Dict[str, "Component"]:
|
||||
can_quantize, [finetuning_type], [quantization_bit]
|
||||
)
|
||||
|
||||
refresh_btn.click(list_checkpoint, [model_name, finetuning_type], [checkpoints])
|
||||
refresh_btn.click(list_checkpoint, [model_name, finetuning_type], [checkpoints], queue=False)
|
||||
|
||||
return dict(
|
||||
lang=lang,
|
||||
|
||||
@@ -67,7 +67,7 @@ def create_web_demo() -> gr.Blocks:
|
||||
|
||||
demo.load(manager.gen_label, [lang], [lang] + list(chat_elems.values()))
|
||||
|
||||
lang.change(manager.gen_label, [lang], [lang] + list(chat_elems.values()))
|
||||
lang.change(manager.gen_label, [lang], [lang] + list(chat_elems.values()), queue=False)
|
||||
|
||||
return demo
|
||||
|
||||
|
||||
@@ -277,6 +277,16 @@ LOCALES = {
|
||||
"info": "是否启用 FP16 或 BF16 混合精度训练。"
|
||||
}
|
||||
},
|
||||
"padding_side": {
|
||||
"en": {
|
||||
"label": "Padding side",
|
||||
"info": "The side on which the model should have padding applied."
|
||||
},
|
||||
"zh": {
|
||||
"label": "填充位置",
|
||||
"info": "使用左填充或右填充。"
|
||||
}
|
||||
},
|
||||
"lora_tab": {
|
||||
"en": {
|
||||
"label": "LoRA configurations"
|
||||
@@ -315,6 +325,16 @@ LOCALES = {
|
||||
"info": "应用 LoRA 的线性层名称。使用英文逗号分隔多个名称。"
|
||||
}
|
||||
},
|
||||
"resume_lora_training": {
|
||||
"en": {
|
||||
"label": "Resume LoRA training",
|
||||
"info": "Whether to resume training from the last LoRA weights or create new lora weights."
|
||||
},
|
||||
"zh": {
|
||||
"label": "继续上次的训练",
|
||||
"info": "接着上次的 LoRA 权重训练或创建一个新的 LoRA 权重。"
|
||||
}
|
||||
},
|
||||
"start_btn": {
|
||||
"en": {
|
||||
"value": "Start"
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import gradio as gr
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
@@ -13,7 +14,7 @@ from llmtuner.extras.misc import torch_gc
|
||||
from llmtuner.tuner import run_exp
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir
|
||||
from llmtuner.webui.locales import ALERTS
|
||||
from llmtuner.webui.utils import format_info, get_eval_results
|
||||
from llmtuner.webui.utils import get_eval_results, update_process_bar
|
||||
|
||||
|
||||
class Runner:
|
||||
@@ -88,14 +89,16 @@ class Runner:
|
||||
save_steps: int,
|
||||
warmup_steps: int,
|
||||
compute_type: str,
|
||||
padding_side: str,
|
||||
lora_rank: int,
|
||||
lora_dropout: float,
|
||||
lora_target: str,
|
||||
resume_lora_training: bool,
|
||||
output_dir: str
|
||||
) -> Generator[str, None, None]:
|
||||
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
|
||||
if error:
|
||||
yield error
|
||||
yield error, gr.update(visible=False)
|
||||
return
|
||||
|
||||
if checkpoints:
|
||||
@@ -133,9 +136,11 @@ class Runner:
|
||||
warmup_steps=warmup_steps,
|
||||
fp16=(compute_type == "fp16"),
|
||||
bf16=(compute_type == "bf16"),
|
||||
padding_side=padding_side,
|
||||
lora_rank=lora_rank,
|
||||
lora_dropout=lora_dropout,
|
||||
lora_target=lora_target or DEFAULT_MODULE.get(model_name.split("-")[0], "q_proj,v_proj"),
|
||||
resume_lora_training=resume_lora_training,
|
||||
output_dir=output_dir
|
||||
)
|
||||
|
||||
@@ -150,18 +155,18 @@ class Runner:
|
||||
thread.start()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(1)
|
||||
time.sleep(2)
|
||||
if self.aborted:
|
||||
yield ALERTS["info_aborting"][lang]
|
||||
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
|
||||
else:
|
||||
yield format_info(logger_handler.log, trainer_callback)
|
||||
yield logger_handler.log, update_process_bar(trainer_callback)
|
||||
|
||||
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
|
||||
finish_info = ALERTS["info_finished"][lang]
|
||||
else:
|
||||
finish_info = ALERTS["err_failed"][lang]
|
||||
|
||||
yield self.finalize(lang, finish_info)
|
||||
yield self.finalize(lang, finish_info), gr.update(visible=False)
|
||||
|
||||
def run_eval(
|
||||
self,
|
||||
@@ -182,7 +187,7 @@ class Runner:
|
||||
) -> Generator[str, None, None]:
|
||||
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
|
||||
if error:
|
||||
yield error
|
||||
yield error, gr.update(visible=False)
|
||||
return
|
||||
|
||||
if checkpoints:
|
||||
@@ -223,15 +228,15 @@ class Runner:
|
||||
thread.start()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(1)
|
||||
time.sleep(2)
|
||||
if self.aborted:
|
||||
yield ALERTS["info_aborting"][lang]
|
||||
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
|
||||
else:
|
||||
yield format_info(logger_handler.log, trainer_callback)
|
||||
yield logger_handler.log, update_process_bar(trainer_callback)
|
||||
|
||||
if os.path.exists(os.path.join(output_dir, "all_results.json")):
|
||||
finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
|
||||
else:
|
||||
finish_info = ALERTS["err_failed"][lang]
|
||||
|
||||
yield self.finalize(lang, finish_info)
|
||||
yield self.finalize(lang, finish_info), gr.update(visible=False)
|
||||
|
||||
@@ -15,13 +15,18 @@ if TYPE_CHECKING:
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
|
||||
|
||||
def format_info(log: str, callback: "LogCallback") -> str:
|
||||
info = log
|
||||
if callback.max_steps:
|
||||
info += "Running **{:d}/{:d}**: {} < {}\n".format(
|
||||
callback.cur_steps, callback.max_steps, callback.elapsed_time, callback.remaining_time
|
||||
)
|
||||
return info
|
||||
def update_process_bar(callback: "LogCallback") -> Dict[str, Any]:
|
||||
if not callback.max_steps:
|
||||
return gr.update(visible=False)
|
||||
|
||||
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0
|
||||
label = "Running {:d}/{:d}: {} < {}".format(
|
||||
callback.cur_steps,
|
||||
callback.max_steps,
|
||||
callback.elapsed_time,
|
||||
callback.remaining_time
|
||||
)
|
||||
return gr.update(label=label, value=percentage, visible=True)
|
||||
|
||||
|
||||
def get_time() -> str:
|
||||
|
||||
Reference in New Issue
Block a user